Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокно свойств от степени полимеризации полимера

    Зависимость механических свойств волокон от степени полимеризации полимера наиболее отчетливо выявляется у природных волокон, для которых возможность изменений конфигурации макромолекул и их взаимного расположения, а также и надмолекулярной структуры путем вытягивания ограничена. При одной и той же структуре полимера степень полимеризации оказывает существенное влияние на основные показатели волокна — прочность при разрыве (см. разд. 5.1), удлинение, стойкость к многократным деформациям и истиранию. [c.31]


    У химических волокон влияние степени полимеризации полимера на механические свойства волокна выражено менее отчетливо, чем у природных волокон. В процессе формования волокна и последующей его обработки (вытягивании) можно в широких пределах изменять структуру и величину агрегатов макромолекул (элементов надмолекулярной структуры), а также степень ориентации макромолекул и их агрегатов, и тем самым в несколько раз увеличить его прочность. При этом степень полимеризации остается без изменения. Поэтому структура химического волокна влияет на его прочность в значительно бoл >шeй степени, чем молекулярный вес .  [c.31]

    Зависимость механических свойств волокон от степени полимеризации полимера на иболее отчетливо выявляется у природных волокон, для которых возможность изменений конфигурации макромолекул и их взаимного расположения путем вытягивания ограничена. При одной и той же структуре полимера степень полимеризации оказывает существенное влияние на основные показатели волокна — прочность при разрыве (см. стр. 112), удлинение, стойкость к многократным деформациям и истиранию. С уменьшением степени полимеризации (в результате частичной деструкции макромолекулы) до известного предела прочность природных волокон не изменяется при дальнейшем уменьшении происходит закономерное, все более значительное ухудшение этого показателя, а ниже определенного значения волокно полностью теряет прочность и рассыпается. [c.32]

    Если первое требование — определенные механические свойства волокна — связано в первую, очередь и непосредственно с молекулярным весом полимера (минимальная степень полимеризации, начиная с которой проявляются свойства вещества как полимерного материала), то второе требование — способность к формованию— связано с молекулярным весом лишь косвенно, а определяется в основном возможностями перевода полимера в вязкотекучее состояние и вязкими свойствами образовавшейся системы. [c.246]

    Проведенное исследование показало, что в процессе привитой полимеризации на ненапряженных волокнах происходит релаксация замороженных напряжений в волокнах под действием радиации и сорбированного мономера. Этот процесс сопровождается уменьшением степени ориентации полимера волокна за счет разориентации аморфной фазы при сохранении ориентации кристаллической фазы и СК волокна. При соответствующем подборе условий прививки можно избежать уменьшения степени ориентации волокна, а следовательно, и ухудшения его механических свойств. [c.560]


    Величина молекулярного веса поливинилхлорида сказывается не только на характере текучести полимера, но и на механических свойствах изделий из поливинилхлорида. Так, разрывная длина синтетического волокна хлорированного поливинилхлорида с повышением степени полимеризации в три раза [c.368]

    Для производства П. в. обычно применяют полученные суспензионным или блочным способами полимеры со степенью полимеризации не менее 1000 и низким содержанием примесей (особенно нежелательны нримеси соединений железа). П. в. производят в внде штапельного волокна с различной усадкой и в виде филаментной нити. Свойства штапельных П. в. приведены в таблице. [c.74]

    Выше рассмотрена зависимость свойств волокнообразующих полимеров только от молекулярного веса. Однако, как видно из данных, приведенных в табл. 57, основным фактором является не абсолютная величина молекулярного веса, а диэлектрические свойства макромолекулы, т. е. прочность по сечению волокна определяется межмолекулярным взаимодействием. Чем больше это взаимодействие, тем меньше степень полимеризации, требуемая для обеспечения необходимой прочности волокна. Следовательно, необходимый для образования волокон молекулярный вес полимера зависит от типа макромолекулы, т. е. от интенсивности межмолекулярного взаимодействия (и наличия водородных связей) между отдельными группами. В табл. 60 приведены данные о способности к образованию волокон и пленок для различных полиэфиров из этих данных видно, что эти свойства обусловливаются числом эфирных групп, причем как в случае четного, так и нечетного числа атомов углерода в элементарном звене молекулы полиэфира имеется относительно постоянное число эфирных групп однако при нечетном числе атомов углерода способность к образованию нитей и пленок начинает проявляться при более высоких значениях степени полимеризации. Это связано с возможностью проявления полярности эфирных связей. [c.206]

    При промышленном производстве полиамидов, применяемых для получения волокна, требуется, чтобы полимер всегда давал волокно с постоянными и возможно лучшими свойствами. Важнейшей предпосылкой для этого является постоянная — точнее, примерно постоянная — вязкость расплава. Это уело е, имеющее в большей или меньшей степени значение для любого раствора или расплава, из которого формуют волокно, особенно важно при получении полиамидных волокон, поскольку в этом случае оно определяет не только условия формования, но и в значительной степени последующий процесс вытягивания при комнатной температуре ( холодное вытягивание ) сформованного полиамидного волокна. Добавление регуляторов или стабилизаторов имеет целью устранение неконтролируемого роста цепей, с тем чтобы гарантировать получение отдельных партий полиамида (при полимеризации в автоклавах) или непрерывное получение полиамида (при полимеризации в трубе НП) с определенной постоянной вязкостью, колебания которой должны лежать в сравнительно узких пределах. Вязкость полученного полиамида по возможности не должна изменяться в результате дополнительной полимеризации при последующем плавлении полимера. Указанная задача решается введением уже при растворении мономеров веществ, реагирующих с концевыми группами полиамида с образованием соединений, устойчивых при повышенной температуре. Тем самым прекращается рост цепей по достижении определенной средней степени полимеризации, которая определяется количеством добавляемого стабилизатора [2, 3, 165). [c.247]

    Необходимо отметить, что средняя степень полимеризации ацетилцеллюлозы и получаемого из нее волокна ниже, чем готового вискозного волокна (220—250 вместо 300—350). С повышением степени полимеризации ацетилцеллюлозы увеличивается вязкость раствора, вследствие чего затрудняется приготовление прядильного раствора, подготовка его к формованию и формование волокна. При использовании ацетилцеллюлозы с повышенным молекулярным весом процесс растворения и фильтрования должен проводиться более тщательно, так как из подобного полимера труднее образуются однородные концентрированные растворы. Однако при более высокой степени полимеризации ацетилцеллюлозы получается волокна с лучшим комплексом физико-механических свойств (табл. 7). [c.68]

    Методом мокрого формования из ОЭЦ получают водорастворимые волокна и пленки. Волокна из ОЭЦ получают на основе полимера со степенью полимеризации 200—600. После пластификационной вытяжки волокно имеет прочность 15— 20 сН/текс и удлинение 8—25% [6, с. 43]. Пленки из ОЭЦ выдерживают нагревание до 100 °С, устойчивы к действию масел и многих растворителей. Однако при относительной влажности воздуха свыше 50% наблюдается слипание пленок. Ниже приводятся некоторые свойства непластифицированных пленок из ОЭЦ при 25 °С [5, с. 448 6, с. 83]  [c.17]


    Необходимо, однако, отметить, что прочность при разрыве не вполне характеризует устойчивость волокна к другим воздействиям, имеющим место в процессе эксплуатации изделий, в частности к истиранию и многократным деформациям (см. разд. 5—6). Большое значение имеет также устойчивость волокна к механическим воздействиям, в частности при стирках. Систематические исс.тедования влияния степени полимеризации на эти важнейшие эксплуатационные свойства волокна еще не проведены, однако имеются данные, что они в значительно большей степени зависят от молекулярного веса волокнообразующего полимера, чем прочность при разрыве. [c.31]

    Обычно в молекулу исходного полимера вводят сравнительно небольшое число длинных цепей, степень полимеризации которых значительно превышает степень полимеризации исходного полимера. Как правило, к макромолекуле исходного полимера присоединяется (прививается) не более 1—2 цепей синтетического полимера. Большой интерес представляет выяснение вопроса о влиянии длины и числа привитых цепей (при одном и том же количестве привитого полимера) на изменение отдельных практически важных свойств волокна. Не выяснено, например, что целесообразнее при одинаковом увеличении массы волокна привить 100 длинных или 1000 более коротких цепей. [c.161]

    Все агрессивные среды могут быть классифицированы на следующие группы кислоты, основания, окислители (восстановители), растворители. Разрушение полимера или изменение его свойств под действием кислот, оснований и окислителей сводится,как правило, к омылению или окислительной деструкции связей между элементарными звеньями в цепи макромолекулы, в результате чего резко снижается степень полимеризации, что приводит к падению прочности волокна или даже к растворению низкомолекулярных продуктов деструкции. Гидролиз эфирных связей может протекать не только в основной цепи, но и в боковых эфирных группах некоторых полимеров. Это также приводит к изменению состава полимера и к потере волокном первоначально заданных ему свойств. [c.33]

    Это те полимерные материалы, из которых производят искусственные волокна. Типичным волокнообразующим полимером является ПА-6,6. Попытаемся растянуть мононить из этого полимера. Можно заметить, что в отличие от каучуковой полоски процессы растяжения и деформации нити затруднены из-за ее значительного сопротивления. Как же ведет себя мононить после снятия нагрузки В отличие от каучуковой полоски она не восстанавливает свои первоначальные размеры, а сохраняет свой деформированный вид. Если мы попробуем разорвать мононить, то убедимся, что сделать это практически невозможно. Это происходит потому, что в результате растяжения ее прочность и жесткость увеличиваются, что и является свойством, характерным для волокнообразующих полимеров. При растяжении эти материалы проявляют высокую жесткость и прочность и способны лишь к необратимым деформациям. Для того чтобы материал обладал такими свойствами, необходимо, чтобы его макромолекулы имели высокую степень полимеризации и не обладали ни локализованной сегментальной, ни общей молекулярной подвижностью цепей. Макроцепи в таком полимере должны быть плотно упакованы и удерживаться вместе посредством межцепных когезионных сил, ко- [c.333]

    Типичными деструктирующимися полимерами являются целлюлоза и ее производные. В результате их облучения происходит быстрое снижение степени полимеризации, падение прочности и, наконец, полное разрушение [36, 93, 94. 140]. Одновременно наблюдается увеличение растворимости этих полимеров в воде. Так, при дозе 1—5-10 р хлопковое волокно становится водорастворимым, содержание сахаров в нем увеличивается до 65— 70%, а степень полимеризации становится намного меньше 200 [140]. Процессы деполимеризации и деструкции глюкозидов до сахаров происходят одновременно, но с разными скоростями. Исследования показали, что для дозы 10 р на каждый акт деполимеризации приходится 5 актов деструкции глюкозидов [140]. Скорость деструкции целлюлозных волокон не зависит от присутствия воздуха и влаги, но условия облучения влияют на свойства материалов (например, на накрашиваемость). Обнаружено, что облучение хлопковой пряжи сопровождается улучшением накрашивае-мости основными и снижением накрашиваемости прямыми красителями [94]. Этот эффект, по-видимому, обусловлен образованием значительных количеств оксицеллюлозы. Облучение влажных хлопковых волокон приводит к образованию перекисных групп в полимере, которые в дальнейшем, легко распадаясь, заметно ухудшают свойства материала. [c.68]

    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]

    Все химические волокна состоят из линейных макромолекул. Последние, как правило, сильно вытянуты в длину, в тысячи и десятки тысяч раз превосходящую их поперечник. Каждая такая макромолекула как бы моделирует волокно, в состав которого она входит. Форма и гибкость макромолекул в большой степени обусловливают важнейшие свойства волокон эластичность, упругость, растяжимость. Прочность волокон сильно зависит от молекулярной массы полимера (степени его полимеризации), характера построения макромолекулы (стереоизомерии). [c.306]

    Промышленное получение полиамидных волокон связано с применением некоторых специфических технологических процессов и использованием специальной аппаратуры как для проведения полимеризации, так и для переработки расплава в крошку. Принципы обоих способов полимеризации (в автоклавах под давлением и в трубе НП) кратко уже были описаны, поэтому ниже будут рассмотрены некоторые детали технологического процесса и аппаратура. В последующем развитии способа получения полиамидных волокон было установлено, что полимеризация и дальнейшая переработка продукта полимеризации должны быть проведены по-разному, в зависимости от того, используется ли полиамид для получения синтетического волокна или пластмасс. Этот вывод не был неожиданным, однако из него вытекало, что для получения шелка, используемого для технических целей и изготовления одежды, также должны быть синтезированы полиамиды с различными свойствами. Соответственно и при получении штапельного волокна из полиамидов процесс полимеризации проводят по-разному в зависимости от типа получаемого штапельного волокна (типа хлопка или шерсти). По-видимому, до известной степени целесообразно изменять свойства полимера в зависимости от тонины получаемого волокна, т. е. волокно высоких и наиболее высоких номеров надо формовать из поликапроамида с несколько иными свойствами, чем волокно средних и низких номеров. [c.96]

    ВЫСОКОГО давления. Полиакриловая кислота, видимо, является промотором кристаллизации полиэтилена. Степень кристалличности прогретого полиэтилена увеличивается, а привитых сополимеров уменьшается. Вследствие подвижности боковых цепей при прогреве несколько затрудняется кристаллизация полимера. В связи с приведенными в табл. 63 данными интересно получить волокна непосредственно из привитых сополимеров и сопоставить их свойства со свойствами полиэтиленового волокна и волокна, модифицированного методом привитой полимеризации. [c.252]

    Сильное влияние на эффективность термообработки оказывают условий получения ПВС, определяющие полидисперсность и особенно разветвленность молекул [98]. Короткие разветвления даже в небольшом количестве резко затрудняют плотную упаковку молекул полимера и его кристаллизацию в технологическом процессе получения волокна. Длинные разветвления, вероятно, меньше влияют на свойства волокна. Как уже указывалось, разветвленность ПВС увеличивается с увеличением степени конверсии или температуры полимеризации винилацетата. Поскольку простых прямых методов определения разветвленности полимеров нет, то ниже приведены данные, косвенно показываюш,ие, как влияют условия полимеризации на свойства волокна (табл. 13.15). [c.197]

    Для изготовления волокна используется специальная марка ПВС, имеющая степень полимеризации 1700 50, узкое ММР и содержание ацетатных групп менее 0,2—0,5% (масс.). Норми-" руются также примеси ацетата натрия и железа, набухаемость полимера в воде, что необходимо для отмывки ацетата натрия, растворимость ПВС и качество растворов. Детально изучено влияние свойств ПВС и особенно его молекулярных характеристик на процессы волокнообразования и показатели качества во-лркна [35, 56, с. 90]. [c.151]

    Е. Б. Тростянская и Л. П. Кобец [9] заполняли поры волокна мономерами, образующими сшитый полимер, а затем проводили их полимеризацию, благодаря чему улучшились свойства графи-топластиков. При применении спиртовых растворов фенолоформальдегидного форконденсата активно сорбируется растворитель, в меньшей степени фенол и олигомеры, состоящие не более чем из трех звеньев, С увеличением полярности растворителя возрастает [c.291]

    Известны работы и по получению волокон из смеси ацетилцеллюлозы с большим количеством другого полимера. Работы в этом направлении начались еще в начале XX века с целью получения из смеси ацетилцеллюлозы и неомыленного нитрата целлюлозы негорючего волокна, обладающего большей прочностью, чем ацетатное волокно Эти работы не увенчались успехом, так как уже при добавлении 5% нитроцеллюлозы волокно легко воспламенялось В настоящее время проводятся работы по получению волокон из смеси ацетилцеллюлозы и полиакрилонитрила (или его сополимеров) для создания волокна, обладающего комплексом положительных свойств полиакрилонитрильного и ацетатного волокон . При получении волокон из смеси ацетилцеллюлозы и полиакрилонитрила в качестве растворителя используют диметилформамид Степень полимеризации ацетилцеллюлозы 175—360, а полиакрилонитрила— 1270. Степень замещения гидроксилов целлюлозы в ацетате составляла =220. Формование волокна проводили сухим способом из 23%-ных растворов при температуре 180° С в нижней и 140° С в верхней части шахты. Волокно подвергали 4—8-кратному вытягиванию в паровой камере при 130° С. [c.199]

    Например, при уменьшении содержания ксзнтогената целлюлозы в растворе до 3—5% понижаются механические свойства волокона, а при концентрации 1,5—2% получение прочного волокна вообще не представляется возможным даже при применении полимеров с очень высоким молекулярным весом (степенью полимеризации) . [c.52]

    Помимо вытягивания, связанного с десольватацией, обычно предусматривается преднамеренная вытяжка, которая осуществляется путем увеличения скорости приема волокна по сравнению со скоростью выдавливания нитей. Оба процесса вытягивания оказывают совместное влияние на увеличение ориентации молекул и агрегатов полимера в направлении оси волокон. Насколько эффективна для осуществлегшя ориентации молекул та или иная степень вытяжки, зависит от нескольких факторов. Факторами, благоприятствующими ориентации, являются высокая степень полимеризации, которая, так же как и выпрямление полимерных молекул [42], обусловливает большую величину отношения длины к ширине [43] и образование поперечных связей [44]. Было предложено несколько теоретических зависимостей для оценки влияния вытягивания сильно набухших гелей на конечную ориентацию полимерных звеньев, но экспериментальные результаты обнаруживают более или менее заметные отклонения от теоретических предположений [45]. Это можно объяснить тем, что выбранные для теоретического рассмотрения модели были слишком простыми. Большие успехи были достигнуты при интерпретации изменений свойств растянутого каучука [47], так как в этом случае возможно толкование этих изменений при помощи статистики свернутых и выпрямленных цепных молекул. Кроме того, в структуре волокна имеются агрегаты молекул кристаллического или квазикристаллического типа. Большинство попыток объяснить связь между вытягиванием и ориентацией в волокнах основывалось на предположении о том, что эти агрегаты являются структурными единицами, причем некристаллические области рассматривались просто как своеобразные шарнирные соединения [45]. Это также слишком простой механизм, но дальнейшая разработка вопроса задерживается из-за отсутствия точных знаний об изменениях в некристаллических областях, происходящих при вытягивании волокна. [c.355]

    Конечно, высокая вязкость прядильных растворов обусловливает некоторые технологическиетрудпости. Верхнее предельное значение вязкости раствора ацетилцеллюлозы практически составляет 1000—2000 пуаз (при 40°). При увеличении вязкости прядильного раствора необходимо повышать давление, под которым подается насосом вязкий раствор. Правда, при повышении температуры вязкость может быть существенно понижена, но и для повышения температуры имеется предел, определяемый температурой кипения растворителя. Попытки уменьшить вязкость другими путями, например добавлением растворителей, понижающих вязкость, в большинстве случаев приводят к снижению разрывной прочности получаемого волокна. Во многих случаях, включая и гомогенные растворы полимера, вязкость раствора может иметь гораздо большее значение, чем это соответствует степени полимеризации применяемого полимера. Такое явление наблюдал, например. Ломан 1381. Описанный им ссолевой эффект / заключается в образовании солей ди- или поливалентных положительных ионов, например ионов Са, с карбоксильными группами ацетилцеллюлозы или сернокислыми эфирами целлюлозы, в результате-чего прядильный раствор приобретает очень высокую вязкость. При добавлении кислот солеобразование прекращается и разрушаются поперечные связи, что приводит к снижению вязкости раствора до нормальной иногда вязкость можно снизить до половины от первоначальной величины без ухудшения механических свойств полученного волокна. Наоборот, свойства волокна в этом случае могут быть улучшены вследствие того, что для прядения можно применять более концентрированные растворы. Больншнство синтетических волок-нообразующих высокополимеров не имеет в свеем составе карбоксильных групп, однако явления, подобные описанному выше солевому эффекту, наблюдались и в ряде других случаев, например, в случае поливинилхлорида. [c.373]

    В присутствии персульфата в шерстяных волокнах можно быстро занолимеризовать акрилонитрил [293]. При проведении реакции в течение 4 час было найдено, что, судя по привесу, в волокнах шерсти образовалось 27% полимера нри полимеризации на воздухе и 39% полимера при полимеризации в атмосфере азота. Однако инициирование полимеризации персульфатом в гораздо больше степени изменяет механо-химиче-ские свойства модифицированной таким образом шерсти, чем инициирование этого процесса системой двухвалентное железо — перекись водорода, которое очень мало влияет на эти свойства полимера. В последующей публикации из лаборатории Спикмена [300] обсуждается механизм полимеризации внутри волокон шерсти, пропитанных раствором персульфата. В этой работе подвергнута сомнению гипотеза о том, что полимеризация в белке инициируется свободными радикалами, образующимися при действии персульфата на цистин [уравнения (У1-53) — (У1-56)], [c.419]

    В отличие от полиэтиленовых полипропиленовые волокна имеют важное значение в промышленности. Исходным сырьем для них служит полипропилен с преимущественно изотактиче-ской структурой, который получается полимеризацией пропилена при низких давлениях и температурах на катализаторах циглеровского типа в инертном углеводородном растворителе. Атактический полипропилен не обладает волокнообразующими Свойствами, а синдиотактический не производится в промышленности. Полимер с Т пл 165°С и молекулярным весом до 400 000 отфильтровывают от реакционной смеси, освобождают от остатков катализатора, добавляют антиоксидант, окрашивают (если это нужно) и подвергают формованию из расплава с последующим вытягиванием волокна. Существенно, чтобы тактичность полипропилена составляла около 90%. Ориентированное волокно может иметь высокую степень кристалличности — до 50—60%). Стремление свести к минимуму пространственное взаимодействие между метильными группами заставляет почти линейные молекулы полимера принимать форму спирали, в которой на каждый, виток приходится три мономерных звена, а скелетные связи С—С поочередно находятся в транс- и гош-по-ложениях (рис. 9.6). [c.334]

    Полимеризация акрилонитрила может быть осуществлена и в других растворителях, растворяющих как мономер, так и образующийся полимер, например в диметилформамиде, этиленкар-бонате, растворе роданистых солей. Однако до настоящего времени не проведены систематические исследования по выяснению влияния растворителя на скорость процесса полимеризации, свойства полимера (в частности, полидисперсность и степень разветвленности) и волокна. Не имеется также сопоставимых данных о свойствах полимеров, получаемых путем полимеризации в эмульсии и в растворе, а также изготовляемых из них волокон. Так как метод полимеризации акрилонитрила в растворе нри получении полиакрилонитрильных волокон приобретает в настоящее время большое промышленное значение, отсутствие таких данных затрудняет выбор наиболее рационального метода синтеза волокнообразующего иолиакри-лонитрила. [c.174]

    Низкомолекулярные фракции, находящиеся в поликапроамиде, применяемом для формования волокна, влияют как пластификаторы на способность волокна к вытягиванию. Было показано, что с увеличением содержания низкомолекулярных фракций способность волокна к вытягиванию повышается, но увеличение степени вытягивания не сопровождается одновременным увеличением прочности волокна. Это становится понятным, если учесть, что наличие низкомолекулярных фракций препятствует взаимодействию между макромолекулами полиамида. Однако это влияние низкомолекулярных фракций не очень велико, поэтому волокно, получаемое методом непрерывной полимеризации и формования, как правило, заметно не отличается по свойствам от волокна, получаемого из полимера, из которого низкомолекулярные фракции удалены [c.393]

    Характерной особенностью процесса полимеризации акрилонитрила в растворе является сравнительно низкая степень конверсии мономера, не превышающая 50—70%. Не вступивший в реакцию мономер отгоняется под вакуумом из образовавшегося концентрированного раствора полимера (процесс демономеризации) и снова используется для полимеризации. Дальнейшее повышение конверсии мономера не рекомендуется во избежание образования разветвленного полимера и получения продукта, обладающего повышенной полидисперсностью. Надежных экспериментальных данных о влиянии степени конверсии мономера на строение получаемого полимера и свойства волокна пока нет. [c.185]

    Структура и свойства привитых сополимеров. В продуктах прививки на полиолефины структурная упорядоченность, характерная для данного полиолефина, сохраняется даже при высоких степенях прививки, поскольку эта реакция обычно протекает в основном в аморфных областях и на поверхности кристаллических образований. Такая прививка сообщает неоднородность привитым сополимерам и обусловливает зависимость хода процесса привитой полимеризации от микроструктуры полимера. Геледжи и Одор [38], изучая прививку метилметакрила на полипропиленовые волокна и пленки, подвергнутые предварительному у-облучению на воздухе, пришли к выводу, что характер микроструктуры полимера оказывает влияние на процессы рекомбинации, продолжительность существования свободных радикалов и образование перекисных и гидроперекисных групп. [c.54]

    Зосс (50] нашел, что менее активные мономеры, такие, как винилметиловый эфир, не вступают в полифазную полимеризацию, однако способные к кристаллизации полимеры можно получить, если в систему добавлять активаторы , такие, как хлороформ или хлористый метилен. Окамура и сотр. [51 ] изучали полимеризацию винилметилового эфира под действием эфирата фтористого бора при —74° в смешанных растворителях н-гексан — толуол и н-гексан — хлороформ, которые по существу являются смесями осадитель — растворитель для поливинилметилового эфира, получающегося в реакции, причем н-гексан является осадителем. Было найдено, что полимеризация начинается, когда к гексану добавлено 15% хлороформа или 30% толуола, и протекает гетерогенно, причем основной функцией активатора является растворение полимера с поверхности катализатора. Важным наблюдением явилось то, что при высоких отношениях растворителя к оса-дителю полимеризация протекает гомогенно с образованием все того же изотактического полимера, имеющего рентгенограмму волокна, аналогичную рентгенограмме изотактического поливинилизобутилового эфира. В ходе исследований [51, 53] оказалось возможным так подобрать условия, чтобы полимеризация винилизопропилового и винилизобутилового эфиров в чистом н-гексане протекала гомогенно при —78°. Например, капельное прибавление эфирата фтористого бора к раствору мономера в н-гексане приводит к гетерогенной системе, тогда как если мономер добавляют к раствору фтористого бора в н-гексане, происходит гомогенная полимеризация, приводящая к образованию также изотактического полимера. По сравнению с метил- и изобутилвиниловыми эфирами н-бутил-, изопропил- и этилвини-ловые эфиры дают полимеры с более низкой степенью кристалличности [54]. Не ясно, в какой степени этот эффект обусловлен упаковкой боковых групп и в какой степени он отражает различие в стереорегулярности полимерных цепей. Повышение температуры и увеличение диэлектрической проницаемости растворителя приводят к уменьшению молекулярного веса и изотактичности поливинилизобутилового эфира [53]. Прибавление передатчиков цепи уменьшает молекулярные веса, не влияя на изотактический характер полимера. Стереоспецифическая природа полимера зависит от применяемого катализатора. Хигасимура и сотр. [55] рассмотрели стереоспецифи-ческую полимеризацию, исходя из электростатических факторов и перекрывания орбит, связанных со стабилизацией переходного состояния полимерный карбониевый ион — противоион — мономер. Фактор перекрывания орбит при этом является направляющим, определяя стереоспеци-фический характер присоединения мономера. Эти рассмотрения находятся в согласии с общим стремлением приписывать стереорегулирующую функцию молекулярным свойствам, а не наличию поверхности, разделяющей фазы [c.338]


Смотреть страницы где упоминается термин Волокно свойств от степени полимеризации полимера: [c.120]    [c.206]    [c.891]    [c.156]    [c.321]    [c.19]    [c.125]    [c.253]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация свойства полимеров

Полимеризация степень полимеризации

Степень полимеризации



© 2024 chem21.info Реклама на сайте