Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

межмолекулярные силы в жидком

    Теплота испарения индивидуальных веществ расходуется па преодоление межмолекулярных сил, действующих в жидком состоянии, а также на преодоление давления в процессе возникновения паровой фазы. Жидкие углеводородные смеси выкипают в некотором интервале температур, поэтому часть подводимой теплоты расходуется на повышение температуры смеси и точное определение энтальпии испарения становится затруднительным. [c.45]


    Межмолекулярные силы взаимодействия при растворении компонентов масляных фракций в полярных и неполярных растворителях различны. Неполярные растворители, как например, низкомолекулярные жидкие или сжиженные углеводороды, ССЦ или соединения с небольшим дипольным моментом (хлороформ, этиловый спирт и др.) характеризуются тем, что притяжение между молекулами растворителя и углеводородов нефтяных фракций, обусловливающее образование растворов, происходит за счет дисперсионных сил. Неполярные растворители смешиваются с жидкими углеводородами нефти в любых соотношениях. [c.46]

    Тиксотропное структурообразование — это самопроизвольный процесс, протекающий в изотермических условиях тиксотропные связи обратимы, они восстанавливаются в результате сближения дисперсных частиц (волокон, лент) на расстояние действия межмолекулярных сил при тепловом движении в жидкой среде без термической обработки. [c.669]

    На адгезию между контактирующими поверхностями оказывают влияние межмолекулярные силы их взаимодействия, число точек контакта и расстояние между этими точками, среда между контактирующими поверхностями и истинная площадь контакта. Полярные вещества (асфальтены, смолы) обладают большей адгезией к поверхности, чем слабополярные (парафино-нафтеновые углеводороды) или неполярные. Чем выше поляризуемость или чем больше полярность жидкого вещества, тем сильнее адгезионное взаимодействие между контактирующими поверхностями. Увеличению адгезии способствует повышение площади истинного контакта между связующим и поверхностью углерода путем заполнения связующим пор, трещин и микронеровностей поверхности углерода. [c.76]

    С проявлением межмолекулярных сил приходится сталкиваться как при рассмотрении поведения нефтяных газов, так и при изучении процессов взаимодействия молекул в жидких нефтяных средах, а также при исследовании процессов адсорбции на поверхности нефтяного углерода и т. д. В основу теории строения ССЕ положена концепция убывания потенциала межмолекулярных взаимодействуй по мере удаления от центра ССЕ и приближения к ее периферии. Поэтому совершенно необходимо краткое изложение современных представлений о молекулярных силах, действующих между молекулами нефтяных компонентов. [c.14]


    Согласно /108, 109, 126, 127/ достаточно длинные молекулы алканов (л 12) в жидкой фазе сворачиваются в статистический клубок, что полностью исключает возможность существования сколько-нибудь протяженных транс-участков цепей. Короткие молекулы 5 /7(, = 6) стремятся, по мнению авторов /126, 134/, принять более вытянутую форму под действием межмолекулярных сил. [c.159]

    Теории пачечного строения высокомолекулярных соединений позволяют подразделить процесс кристаллизации в растворах высокомолекулярных соединений на несколько стадий. Первая стадия кристаллизации заключается в том, что вначале несколько молекул высокомолекулярных соединений притягиваются друг к другу слабыми межмолекулярными силами и образуют аморфный пакет или пучок молекул. Этот аморфный пакет не кристаллизуется для растворов таких веществ, как целлюлоза и ее эфиры в воде, натуральный каучук и полиизобутилены в жидких углеводородах. [c.59]

    Займемся прежде всего простейшим случаем свободной жидкой пленки (например, пенной пленки), находящейся в равновесии с паром. Плотность пара сравнительно мала, и так как межмолекулярные силы очень быстро спадают с расстоянием, то энергией взаимодействия пленки с молекулами газообразной фазы можно пренебречь. [c.165]

    Диффузия в объеме подвижной жидкости определяется тем, что межмолекулярные силы взаимодействия в жидкости довольно велики. Поэтому длина свободного пробега молекулы в жидкости равна примерно одному диаметру молекулы, в то время как в газе она составляет примерно 100 диаметров. Отсюда коэффициенты диффузии в жидкости Дж относительно невелики и для молекул небольшой молекулярной массы при комнатной температуре обычно равны 10 см2 с 1. Замена газообразной подвижной фазы жидкой приводит, таким образом, к изменению коэффициента диффузии на несколько порядков. Существенное влияние на Оук оказывает вязкость. Известно, что [c.71]

    Как уже указывалось в гл. I, межмолекулярные силы взаимодействия в растворах можно подразделить на ориентационные, индукционные, дисперсионные и специфические. Последние наиболее важны для газо-жидкостной хроматографии, так как именно они определяют высокую селективность жидких фаз. [c.62]

    Набор тактоидов (коллоидных или молекулярных) позволительно рассматривать как независимые сегменты, соединенные в цепочки межмолекулярными силами, действующими между их концами. В силу энтропийных причин (ср. соображения по поводу жидких кристаллов в гл. I) возникновение полного беспорядка в таких системах маловероятно, т. е. все изменения конфигурационной энтропии связаны с незначительными поворотами смежных (с концов) частиц друг относительно друга. Отсутствие ковалентных перемычек между такими сегментами решающей роли не играет, и коллоидный раствор в целом способен претерпевать обратимые высокоэластические деформации. К жидким кристаллам это относится в меньшей степени из-за значительно большей корреляции движений смежных цепей. [c.160]

    Молекулярные вещества (мономерные ковалентные соединения) построены из молекул, атомы которых связаны более или менее полярными ковалентными связями. Объединение молекул в жидком или твердом состоянии осуществляется за счет межмолекулярных сил. [c.346]

    Все жидкости и твердые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечников с1,томов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на г])анице жидкости или твердого тела с их паром), или с молекулами различной химической природы (например, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.292]

    Адгезия (прилипание) — это молекулярное притяжение между поверхностями двух соприкасающихся разнородных твердых или жидких фаз. Адгезия является причиной склеивания двух разных веществ за счет действия физических или химических межмолекулярных сил. [c.317]

    Жидкости сочетают свойства газообразного и кристаллического состояний. Они имеют поверхность и собственный объем. Молекулы жидкого вещества связаны между собой более прочными межмолекулярными силами, и упорядоченность в расположении частиц жидкой системы намного выше, чем у газов. В некоторых жидкостях (вода) отдельные очень небольшие ее объемы имеют упорядоченность, близкую к кристаллической. [c.10]


    Между молекулами всегда действуют так называемые межмолекулярные силы, величина которых определяет агрегатное состояние вещества при стандартных условиях (стандартные условия температура 25° С, давление 1 атм.). Если межмолекулярные силы малы (молекулы притягиваются друг к другу слабо), вещество будет находиться в газообразном состоянии, если же они велики (молекулы сильно притягиваются друг к другу) — в жидком или твердом состоянии. [c.95]

    Если вещество находится в твердом агрегатном состоянии, то его молекулы неподвижны относительно друг друга. При температуре плавления, т. е. при переходе из твердого состояния в жидкое, межмолекулярные силы уменьшаются, однако не настолько, чтобы молекулы могли отделиться одна от другой, а подвижность их резко возрастает. При температуре кипения вещество из жидкого состояния переходит в газообразное. При этой температуре межмолекулярные силы ослабляются настолько, что молекулы отделяются друг от друга. [c.95]

    Межмолекулярные силы взаимодействия. Между насыщенными и в целом электронейтральными молекулами в газах, жидкостях и твердых телах действуют одновременно силы отталкивания и притяжения. Относительная интенсивность этих сил в значительной мере определяет физико-химические свойства веществ. Сила отталкивания в твердых и жидких телах определяет их малую сжимаемость. Притяжение приводит к конденсации молекул газов, образованию молеку- [c.33]

    При выводе уравнения Ленгмюр исходил из молекулярно-кинетических представлений, физическая сущность которых заключается в следующем. Поверхность каждого адсорбента неоднородна. Адсорбция происходит не на всей поверхности, а лишь на активных центрах этой поверхности. Число активных центров определяется числом молекул, атомов или ионов с некомпенсированными межмолекулярными, межатомными или межионными силами, за счет которых и происходит адсорбция хаотически движущихся частиц адсорбтива. Ленгмюр считал, что ненасыщенные, или некомпенсированные, силы адсорбционных центров адсорбента являются либо типичными валентными силами (в случае твердых адсорбентов с ионными и атомными решетками), либо особыми межмолекулярными силами (в случае жидких и твердых адсорбентов молекулярного строения), которые он также отождествлял с химическими силами. [c.286]

    Межмолекулярные силы. Как и всюду в природе, между молекулами действуют силы тяготения, прямо пропорциональные произведению масс взаимодействующих тел и обратно пропорциональные квадрату расстояния между их центрами (закон всемирного тяготения). Однако из-за ничтожности масс отдельных молекул силы эти настолько малы, что практически ими можно пренебречь. Между тем уже из наличия твердого и жидкого агрегатных состояний веществ вытекает, что взаимное притяжение молекул несомненно существует. [c.101]

    Разделение обычно происходит в колонках, наполненных твердым пористым сорбентом, на который нанесена жидкая стационарная фаза. Проба паров анализируемых компонентов вводится в поток газа-носителя, который нерастворим в стационарной фазе. Во время прохождения анализируемых веществ вдоль неподвижной жидкой фазы между газовой и жидкой фазами многократно устанавливается равновесие, связанное с повторением процесса растворения и испарения. Вещества, лучше растворимые в стационарной фазе, удерживаются ею дольше. Таким образом, процесс разделения обусловлен различием в силах межмолекулярного взаимодействия анализируемых веществ с жидкой фазой. Из различных типов межмолекулярных сил наибольшее значение имеют дисперсионные ориентационные и донорно-акцепторные. Теория газо-хроматографического разделения тесно связана с теорией растворов и в настоящее время еще окончательно не разработана. Динамика поведения вещества, проходящего через колонку, обычно описывается на основе теории тарелок (по аналогии с процессом ректификации) и теории эффективной диффузии. Суть теории тарелок заключается в том, что хроматографическая колонка рассматривается как совокупность ряда последовательных небольших идеальных ступенек-тарелок, содержащих газовую и жидкую фазы. Предполагается, что в начальный момент вещество находится на первой тарелке, причем некоторая его доля q будет в газовой фазе, а доля р — в жидкой. Соотношение между q я р зависит от количества взятого вещества и константы равновесия. Входящий в колонку газ будет вытеснять находящуюся в газовой фазе долю вещества оставляя на предыдущей тарелке долю вещества р. Каждая доля вновь будет распределяться между фазами, но уже в двух [c.288]

    Изучение структуры жидкого кислорода, азота, хлора, брома и других простейших молекулярных жидкостей представляет большой интерес для теории жидкого состояния вещества. Их молекулярные функции распределения могут быть использованы для вычисления потенциала межмолекулярных сил, вязкости, сжимаемости и других величин. В качестве примера рассмотрим структуру жидкого брома. [c.200]

    Данные рентгеноструктурного анализа показывают, что в жидком броме, азоте, кислороде и хлоре наряду с дисперсионными силами притяжения имеют место близкодействующие направленные межмолекулярные силы, которые ориентируют молекулы в одном преимущественном направлении. Каждая молекула окружена максимально возможным числом ближайших соседей. [c.201]

    Известно, что в любом ряду соединений сходного строения температура кипения возрастает с увеличением относительного молекулярного веса. Если допустить, что межмолекулярные силы, действующие в жидкой фазе, приблизительно одинаковы для молекул, имеющих подобную структуру, то более тяжелым молекулам для достижения скорости отрыва с поверхности жидкости для перехода в газовую фазу нужно затратить большую кинетическую энергию ( /2 гпУ ) чем это требуется для более легких молекул. [c.174]

    Существование избытка (сгущения) свободной энергии на границе раздела фаз в поверхностном слое может быть доказано различными способами. Так, средние во времени значения равнодействующей сил взаимодействия молекулы в глубине жидкой фазы с окружающими молекулами равны нулю — вследствие симметрии силового поля. На границе раздела с газом силы взаимодействия поверхностных молекул с жидкой фазой больше, чем с газообразной, поэтому равнодействующая сил направлена нормально к поверхности в сторону жидкой фазы. Процесс увеличения площади поверхности (при постоянном объеме) выводит молекулы из объемной фазы в поверхностный слой, совершая при этом работу против межмолекулярных сил. Эта работа в изотермических условиях равна увеличению свободной поверхностной энергии. Точно так же к увеличению свободной энергии приводит работа разрыва связей при дроблении твердых тел, сопровождающаяся увеличением поверхности раздела. Подобные выводы об увеличении свободной энергии с ростом площади поверхности могут быть обобщены для любой границы раздела фаз. [c.45]

    При разрущении жидкого раствора в процессе кристаллизации межмолекулярные силы также принимают участие, и в результате кристаллы компонентов раствора могут выделяться или в виде чистых веществ, или в виде кристаллов твердого раствора, или в виде кристаллов соединения растворенного вещества и растворителя. [c.187]

    Теоретические расчеты межмолекулярных взаимодействий пока еще, как правило, имеют значение для качественных выводов об их особенностях. Количественные характеристики в подавляющем большинстве случаев получаются с помощью эксперимента. Экспериментальные данные об энергии межмолекулярного взаимодействия могут быть описаны с помощью эмпирических формул. Некоторые из них будут рассмотрены в этой главе. Почти все они основаны на анализе свойств разреженных газов. Формулы, пригодные для эмпирического описания межмолекулярных взаимодействий в разреженных газах, часто применяют для тех же целей к жидким системам. Здесь порой упускают из виду следующее. Во-первых, в разреженных газах среднее расстояние между молекулами велико, поэтому сравнительно большой вклад во взаимодействие вносят дальнодействующие силы. (Когда молекулы электрически нейтральны, то это в основном дипольные и лондоновские взаимодействия.) В жидкостях же, как мы видели,очень важна роль близкодействующих сил. Во-вторых, энергия реактивного взаимодействия полярных молекул с окружающей средой в газах мала, а в жидкостях велика и может существенно изменять энергию образования связей между молекулами. В этом отношении формулы, основанные на свойствах газов, ведут к недооценке роли дальнодействующих сил. В-третьих, при переходе от жидкой фазы к парам межмолекулярные силы могут испытывать качественные изменения, обусловленные влиянием коллективного взаимодействия большого числа частиц. Так происходит, например, при испарении металлов. В-четвертых, эмпирические формулы представляют собой усредненную эффективную характеристику межмолекулярных сил. Способ усреднения обычно не ясен, но он должен зависеть от метода исследования энергии взаимодействия и влиять на математическую форму эмпирической потенциальной функции Е(Я) и значения фигурирующих в этой функции параметров. [c.92]

    Ковалентно связанные молекулярные цепочки, удерживаемые вместе в кристалле и жидкости межмолекулярными силами. Узкий-диапазон жидкого состояния т. пл. 400 С, т. кип. 520"С. Образует димер ВегСи [c.453]

    Большое влияние на растворимость веществ А п В может оказать присутствие третьего вещества С, не смешивающегося с А. В этом случае будут существовать две фазы Л и С, а вещество В распределится между обеими фазами. Растворимость вещества В по отношению к первоначальному состоянию (одна фаза) может при этом измениться коренным образом. Может случиться, что вещество В, очень хорошо растворимое в жидкости Л с образованием однофазной системы, перейдет полностью в жидкость С после введения ее в систему. Растворимость вещества В в обеих жидких фазах и его распределение в этих фазах также является результатом действия описанных выше межмолекулярных сил. В трехкомпонентной и двухфазной системе действие сил еще более неясно и его труднее предвидеть, чем в однофазной и двух компонентной системе. [c.13]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]

    Поверхностный слой жидкости вследствие 1Юдвижности молекул в объеме, а такн<е в результате постоянно протекающих процессов испарения и конденсации находится в состоянии непрерывного обновления. Так, среднее время жизни молекулы воды на поверхности составляет около с. Плотность граничного слоя между водной фазой и ее насыщенным паром изменяется непрерывно от плотности жидкой воды до плотности ее пара. В то же время межмолекулярные силы обеспечивают наличие поверхностного слоя жидкости определенной толщины. Обычно толщина поверхностного слоя жидкости составляет несколько молекул. Чем больше межмолекулярные силы, тем на меньшее расстояние молекулы могут диффундировать с поверхности, т. е. тем меньше толщина поверхностного слоя. Внутренняя граница слоя соответствует началу изменения структуры жидкости в объеме. Благодаря подвижности жидкости ее поверхность является гладкой и сплошной, или эквипотенциальной, т. е. все точки иоверхности энергетически эквивалентны. [c.19]

    В соответствии с уравнениями (1.8) и (1.9) полная поверхностная энергия Us содержит две составляющие qs и а. С повышением температуры поверхностное иатяжение ст уменьшается, а теплота образования единицы поверхности увеличивается. Это объясняется тем, что с повышением температуры расстояние между молекулами в жидких телах увеличивается и соответственно равнодействующая межмолекулярных сил (и, следовательно, поверхностное натяжение) уменьшается. Вместе с тем с ростом разрыхленности поверхностного слоя увеличивается его энтропия. При линейной зависимости поверхностного натяжения от температуры, что обычно наблюдается для большинства жидкостей, поверхностное натяжение уменьшается на величину Тйа/йТ, тогда как энтропийная составляющая увеличивается. Таким образом, полная поверхностная энергия для таких систем является температурным инвариантом. [c.11]

    Активаторы, являясь полярными веществами, во-первых, способствуют ослаблению межмолекулярных сил притяжения молекул твердых и жидких углеводородов, создавая условия для образования спиралеобразной гексагональной решетки карбамида во-вторых, препятствуют адсорбции на кристаллах карбамида или комплекса неуглеводородных компонентов сырья, являющихся ингибиторами комплексообразования (смолистых веществ, серо- и кислородсодержащих соединений и др.). Кроме того, акти- [c.214]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    Итак, переход к концентрированному состоянию в мономолекулярных слоях иногда осуществляется постепенно, без скачков. Мономолекулярные пленки в этой промежуточной области называют растянутыми. Для объемных фаз такой постепенный переход из одного агрегатного состояния в другое неизвестен. Так как межмолекулярные силы сильно зависят от расстояния, то характер теплового движения молекул в жидкости, расположенных близко друг от друга, совершенно отличен от движения молекул в паре. Это приводит к резкому изменению свойств вещества при конденсации. В случае монослоев влияние жидкой подложки на адсорбированные молекулы существенно меняет положение. В мономоле-кулярном слое на жидкости, как и в любом адсорбционном слое вообще, эти различия в свойствах близко расположенных и удаленных друг от друга адсорбированных молекул гораздо меньше, поскольку все они притягиваются к подложке. Когда притяжение достаточно сильное, поступательное движение молекул, характер, ное для неуплотненных слоев, значительно затруднено, и вследст  [c.130]

    Диспергированием называют такое измельчение твердых или жидких тел в инертнЬй (не взаимодействующей с измельчаемым веществом) среде, при котором резко повышается дисперсность и образуется дисперсная сист мя, пблядяюшая значительной удельвой межфазной поверхностью 6 противоположность растворению диспергирование происходит, как правило, не самопроизвольно, а с затратой внешней работы, расходуемой на преодоление межмолекулярных сил при дроблении вещества. [c.232]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Межмолекулярные силы, действующие между отдельными атомами и их группами, препятствуют изменению формы макромолекул. Чтобы изменить форму макромолекул, надо преодолеть действие межмолекулярных сил, что сопряжено с затратой определенного количества энергии. С повышением температуры растет энергия макромолекул, причем энергия теплового движения может оказаться больше энергии взаимодействия молекул друг с другом, в результате чего вероятность изменения конфигурации и взаимного расположения молекул увеличивается. Наоборот, при охлаждении полимера перегруппировка макромолекул практически прекращается, в результате полимер остается по своей неупорядоченной структуре в аморфно-жидком состоянии и при температурах значительно ниже температуры кристаллизации. Таким образом, даже при сильном охлаждении высокополимеры не переходят в упорядоченное (кристаллическое) состояние. В этом ВМВ сходны со стеклами, и такое состояние высокополимера называется стеклообразным. Процесс застекловывания идет часто в довольно значительном температурном интервале. Та температурная область, в которой происходит такой переход, называется температурой перехода, в частности для явления застекловывания она называется температурой застекловывания. [c.357]

    Системы, предельно самосжатые действием межмолекулярных сил, называются конденсированными. Сюда, как уже отмечено, относятся тела твердые и жидкие. Характерная особенность подобных систем большое сопротивление всестороннему сжатию при действии внешних сил и малая зависимость от последних физических и химических процессов, протекающих в этих системах (при наложении на них не сверхвысоких внешних давлений). [c.93]

    Итак, изучение межатомных связей включает изучение ионной и ковалентной связи. Рассмотрим также некоторые проблемы, обусловленные существованием этих связей, такие, как геометрическая форма молекул. В дальнейшем будет видно, что между молекулами действуют силы, которые, хотя они и гораздо слабее межатомных, обеспечивают агрегацию молекул вещества в жидкое, а иногда и в твердое состояние за счет взаимопритяжения молекул. Эти силы называются межмолекулярными силами. [c.48]

    Любое вещество может находиться в трех агрегатных состояниях газообразном, жидком и твердом. Наименьшее влияние сил межмолекулярного взаимодействия наблюдается в газообразном состоянии, так как плотность газов мала и молекулы их находятся на больших расстояниях друг от друга. Газы, находящиеся при температурах, значительно превышающих их критическую температуру, и при давлениях ниже критического, мы может считать идеальными . К идеальным газам применимы статистика Максвелла — Больцмана и уравнение состояния идеального газа Клапейрона — Менделеева (с. 16). Однако при точных расчетах нужно вносить поправки на межмолекулярное взаимодействие (Рандалл, Льюис). Величины критической температуры (абсолютная температура кипения — Д. И. Менделеев) и критического давления зависят от строения молекул газа. При понижении температуры ниже Гкрит и при повышении давления газ начинает конденсироваться и под-действием межмолекулярных сил между отдельными молекулами вещество переходит в жидкое состояние. [c.93]

    Первая часть посвящена теории межмолекулярных сил. Теория межмолекулярных взаимодействий в неэлектролитах в течение многих лет выдвигала на первый план дипольные и дисперсионные силы. Недооценивалась роль реактивного взаимодействия полярных молекул, весьма существенная в жидких средах. При описании слабых сил химического типа обычно огра1шчивались некоторыми, наиболее ярко выраженными случаями образования водородной связи. Но водородная связь — лишь одна из бесконечного множества форм слабых химических взаимодействий, сопровождающихся перераспределением электронной плотности. В последние десятилетия изучение этих взаимодействий стало особенно интенсивным. Рассказать о них необходимо потому, что их исследование имеет большое значение для химии и ряда областей физики. [c.6]


Смотреть страницы где упоминается термин межмолекулярные силы в жидком: [c.437]    [c.217]    [c.64]    [c.146]    [c.191]    [c.244]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Галоидоводородные соединения межмолекулярные силы в твердом и жидком состояниях

Межмолекулярные

Межмолекулярные силы

жидкая, межмолекулярные силы в ней также Галоидоводородные соединения

метиловый спирт жидкий межмолекулярные силы в нем



© 2025 chem21.info Реклама на сайте