Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь и фазовое состояние веществ

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    От известных процессов химического осаждения химическая сборка отличается тем, что позволяет получать твердые вещества не только периодического, но и регулярного непериодического строения. От кристаллизации этот процесс отличается тем, что позволяет осуществлять фазовое превращение, минуя высокие потенциальные барьеры, обусловленные зародышеобразованием и необходимостью разрыва особо прочных межатомных связей С — С, Si — О, В — N и т. п. Благодаря этому химическая сборка связана с термодинамическими условиями не обычного фазового перехода, а с условиями протекания химических реакций и потому осуществляется при сравнительно низких температурах и давлении. Часть избыточной энергии образования побочных продуктов конденсации (НС1, Н2О и др.) потребляется для химической сборки структурных единиц, часть аккумулируется твердым веществом в виде энергии связи, а часть рассеивается. Синтезируемое этим методом твердое вещество может иметь любую из бесчисленного множества структур, существующих при метастабильном состоянии вещества, и притом именно ту, которая необходима. [c.190]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Природа химической связи между атомами вещества определяет его химические свойства, но не объясняет причин его фазового состояния — газообразного, жидкого или твердого. [c.80]


    Все фазовые превращения в последовательности перехода из твердого состояния через жидкость в газ являются процессами эндотермическими. Причина этого в том, что для каждого последующего состояния по сравнению с предыдущими характерно увеличение хаотичности взаимного расположения и движения частиц, образующих вещество. Такая возрастающая подвижность частиц (атомов, ионов, агрегатов) связана с разрывом части химических связей в структуре веществ, что требует затраты энергии. Фазовые превращения при зафиксированном давлении осуществляются, как правило, при строго определенных температурах. Так, при барометрическом давлении в 1013 гПа вода затвердевает (или плавится лед) при 0°С, а при 100°С—кипит. [c.45]

    Радиационно-химические процессы в молекулярных кристаллах изучены еще сравнительно мало. Поэтому можно привести ограниченное число примеров реакций разложения и синтеза, иллюстрирующих значение фазового состояния вещества. Например, было установлено, что выход продуктов радиолиза н-гексана [143] изменяется следующим образом в газовой фазе О = 7,3 в жидкой — 0= 1,72 в твердой — 0 = 0,96. Таким образом, в газовой фазе содержится значительно больше веществ, образующихся при диссоциации связей С—С, чем в жидкой и твердой. По-видимому, в последнем случае проявляется эффект клетки, обусловливающий более эффективную рекомбинацию радикалов. Наблюдалось также различие в выходах гидразина при у-радиолизе аммиака в твердой и жидкой фазах при практически одинаковой температуре [144]. [c.324]

    Природа химической связи между атомами вещества определяет его химические свойства, но не объясняет причин его фазового состояния— газообразного, жидкого или твердого. Вещество нами воспринимается в виде реально существующего тела — совокупности громадного числа химических частиц — атомов, молекул или ионов — носителей его химических свойств. В зависимости от поведения этих частиц в их огромном коллективе, в зависимости от их образа жизни — расположения в пространстве, взаимодействий и прочего — тело может находиться в том или ином фазовом состоянии. [c.91]

    Превращение функциональных групп у полимеров протекает с меньшей скоростью, чем у низкомолекулярных веществ. Это связано с влиянием на реакционную способность функциональных групп полимеров структуры их цепей (изоляция функциональных групп, характер соседних групп), формы макромолекул (рыхлый или плотный клубок), фазового состояния полимеров (кристаллическое или аморфное). Перечисленные факторы определяют доступность функциональных групп макромолекул для химического реагента. [c.15]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    По химическому составу загрязнения в нефтяных маслах, как уже говорилось, подразделяют на неорганические, куда входят минеральные вещества, вода и воздух, и органические, имеющие углеводородное и микробиологическое происхождение (табл. 2). С химическим составом загрязнений тесно связано их фазовое состояние. [c.20]

    Несмотря на то, что область применения РПА постоянно расширяется, их внедрение не получило достаточного развития из-за отсутствия представлений о закономерностях протекания процесса обработки композиций различного назначения. Осуществить подобный анализ достаточно сложно, так как многие технологические процессы связаны с получением смесей различных веществ, различающихся фазовым состоянием, вязкостью, плотностью и другими параметрами. При этом необходимо учитывать особенности реологического поведения перерабатываемых материалов и анализировать физико-химические превращения, протекающие при обработке. [c.320]


    Особенность гетерогенного катализа состоит в том, что катализаторы (обычно твердые вещества) находятся в ином фазовом состоянии, чем реагенты и продукты реакции. Реакция развивается на поверхности твердого тела, которая всегда имеет много дефектов, в том числе свободные электронные пары, не участвующие в образовании связи. Молекулы реагентов легко взаимодействуют с этими электронами и благодаря образующимся связям удерживаются на поверхности катализатора. В результате некоторые связи внутри адсорбированных молекул настолько ослабевают, что молекулы либо разрушаются, либо превращаются в активные радикалы. Каталитическая активность твердого вещества тем выше, чем лучше реагенты адсорбируются на его поверхности и чем слабее продукты реакции удерживаются ею. При этом важно, чтобы, изменяя энергетическое состояние молекул реагента, катализатор сам не образовывал с ними прочных химических связей. [c.59]

    Скорость химической реакции зависит от концентрации реагирующих веществ и наличия или отсутствия катализаторов — ускорителей реакции. В связи с этим реакции подразделяются на каталитические и некаталитические. Наконец, реакции могут идти как только с участием валентно-насыщенных молекул или ионов — так называемые неценные реакции, — так и с участием свободных радикалов или атомов. В последнем случае реакции идут по цепному механизму и относятся к классу цепных реакций. В зависимости от условий протекания реакции механизм кинетических процессов меняется. Поэтому для различных условий течения реакции характерны специфически отличные кинетические законы. Это приводит к необходимости разделения кинетики на разделы кинетика некаталитических и каталитических реакций. Каждая из этих глав может быть в свою очередь разделена на кинетику нецепных реакций и кинетику цепных-реакций. Нецепные и цепные реакции могут быть как гомогенными, так и гетерогенными. Кинетика гомогенных реакций объединяет кинетику газовых реакций и кинетику реакций в растворах. Специфика гетерогенных реакций зависит как от фазового состояния системы, так и от того, в какой области (кинетической, диффузионной или переходной) протекает реакция. [c.6]

    В учении о химической структуре главное внимание сосредоточено на теории строения атома и периодического закона Д. И. Менделеева, химической связи и строения молекул, химической связи и фазового состояния веи еств. Здесь выявляется зависимость между химической структурой веществ и их свойствами. [c.3]

    При отсутствии сведений о теплотах образования или сгорания (разложения) можно вычислить теплоту образования при 298 К по энергии связей [92 ]. Согласно этому методу вычисляют затраты на разрыв химических связей между элементами структуры всех простых исходных веществ в принятых при 298 К агрегатно-структурных состояниях рассчитывают теплоту сублимации или возгонки твердых и жидких исходных простых веществ в виде одноатомных газов определяют энергию (теплоту) всех связей между элементами в структурной формуле рассматриваемого вещества рассчитывают теплоту фазового перехода вещества из газа в твердое или жидкое состояние. Расчетная формула для определения теплоты образования вещества  [c.34]

    Б. Физическая химия. Общие вопросы. Некоторые вопросы субатомного строения вещества. Превращения ядер. Атом. Молекула. Химическая связь. Молекулярные спектры. Кристаллы. Газы. Жидкости. Аморфные тела. Радиохимия. Изотопы. Термодинамика. Термохимия. Равновесия. Фазовые переходы. Физико-химический анализ. Кинетика. Горение. Взрывы. Топохимия. Катализ. Радиационная химия. Фотохимия. Теория фотографического процесса. Растворы. Теория кислот и оснований. Электрохимия. Поверхностные явления. Адсорбция. Хроматография. Ионный обмен. Химия коллоидов. Дисперсное состояние. [c.29]

    Исследования калорических свойств веществ сводятся к определению тепловых эффектов, сопровождающих изменения состояния. вещества. Такие изменения могут быть связаны с фазовыми переходами, с изменением температуры, давления, химического состава, объема. [c.440]

    Методы рентгеновского и рентгеноэлектронного анализа широко используются [29, 30, 31] для изучения электронного строения атомов, молекул, а также зонной структуры твердых тел определения зарядового состояния атомов в молекулах и твердых телах установления элементного состава химических соединений (качественного и количественного анализа веществ) исследования химического и фазового состава поверхности и тонких пленок установления способа координации лигандов в комплексных соединениях изучения строения и природы ближнего окружения атомов в молекулах жидких и аморфных тел. Метод расширенного рентгеновского поглощения является уникальным по чувствительности методом структурного анализа твердых и жидких проб [32, 33]. Метод обеспечивает непосредственное определение межатомных расстояний даже в тех случаях, когда отсутствует кристаллографическая структура, позволяет решать проблемы дифференциации типа химической связи, расшифровки электронной геометрии молекул, оценки состояний окисления, в ряде случаев - исследования быстрых химических процессов. [c.172]

    Метановые УВ в обычных условиях находятся в разных фазовых состояниях С1-С4 — газы, С5-С15 — жидкости, С16 и выше — твердые вещества твердые парафины обычны в нефти до С40, в то же время разветвленные изомеры того же молекулярного веса в зависимости от структуры могут быть жидкими или твердыми. Алканы практически нерастворимы в воде, но хорошо растворимы в ароматических УВ и органических растворителях. Алканы химически наиболее инертная группа УВ, не способная к реакции присоединения, поскольку все связи насыщены, но для них свойственна реакция замещения, особенно с галогенами, а также дегидрирование, окисление, изомеризация. [c.20]

    Условия и процессы образования природного газа (ПГ) исключительно разнообразны биохимические и термокаталитические превращения органического вещества (ОВ) химические реакции процессы, протекающие при воздействии на горные породы высоких температур и давлений радиоактивный распад и др. Образующиеся при этом газы по химическому составу весьма различны. Нередко одни и те же процессы приводят к образованию газовых смесей неодинакового состава. Часто одни и те же компоненты способны образовываться за счет разных процессов. Например, метан, азот, оксид углерода(1У) могут быть биохимического генезиса и термокаталитического (абиогенного). Отличить компоненты по генетическому признаку часто практически невозможно. Обладая высокой подвижностью, газы в процессе миграции могут значительно изменять свой первоначальный химический состав в результате процессов сорбции, растворения, окисления и др. В связи с этим генетически чистые ассоциации (скопления) газов в природе практически отсутствуют. Это создает определенные трудности при систематизации ПГ и создании оптимального варианта их классификации. В настоящее время существует более 20 различных классификационных схем, основанных на различиях в происхождении газов, условиях нахождения их в природе, фазовом состоянии и формах проявления, связях газов с породами и флюидами, химическом составе и т. д. Выбор той или иной классификации зависит от полей и задач исследований. Наиболее важными при решении общих и глобальных задач являются генетические [c.20]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Оптические методы, обладающие высокой чувствительностью и пригодные для изучения вещества в любом агрегатном и фазовом состоянии, обеспечивают весьма ценный массив данных о природном органическом сырье Недостаток этой фуппы методов для количественного анализа заложен в их физической сущности интенсивности линий поглощения, излучения или рассеяния в электронных и колебательных спектрах связаны с количеством химических связей, функциональных групп и структурных фрагментов, ответственных за них, нелинейно Для получения количественной структурной информации необходимо учитывать вероятности переходов, полярность и поляризуемость связей, разности энергий возмущенных состояний итд В итоге оптическую спектроскопию можно признать полуколичественным методом частичного определения строения природного органического сырья. [c.9]

    Кроме того, при диспергировании в структуре вещества возникают различные дефекты, играющие существенную роль при дальнейших превращениях. Наличие разных по плотности, твердости, фазовому состоянию компонентов угольного вещества легко объясняет неравномерное распределение подводимой механической энергии при диспергировании и возникновении местных (локальных) перегрузок, критические значения которых превышают прочность химических связей. Механокрекинг приводит к образованию активных радикалов, ионов, ион-радикалов и других дефектов и нарушений в структуре. [c.283]

    Из изложенного выше следует, что понятие об идеальной газовой смеси как о смеси частиц, взаимодействие которых заключается только в упругих соударениях, неприменимо к жидкостям и твердым телам, так как эти состояния вещества невозможны без межмолекулярного взаимодействия. Энергия последнего зависит от химической природы и строения молекул, которые чрезвычайно разнообразны. Поэтому изучение свойств вещества в конденсированном состоянии представляет большие трудности по сравнению с изучением свойств вещества в газообразном состоянии. Однако применительно к задачам, возникающим при исследовании фазового равновесия, эти трудности можно в некоторой степени обойти. Специфика этих задач заключается в том, что в них всегда рассматриваются по крайней мере две фазы. В состоянии равновесия свойства фаз связаны выведенными выше термодинамическими условиями равновесия. Используя эти условия, представляется возможность почти полностью исключить из рассмотрения вопросы, связанные со строением конденсированных фаз. Это достигается путем сопоставления реальных смесей с идеальными. [c.49]

    Следовательно, химической и фазовой координатой состояния является количество вещества отдельных составляющих. Количество вещества можно характеризовать массой этого вещества. В химической термодинамике принято характеризовать количество вещества не массой, а числом киломолей данного вещества . Масса О связана с числом киломолей п соотношением [c.16]

    В целом, говоря о влиянии различных факторов на скорость процесса химического превращения вещества, можно отметить следующее. Это влияние будет зависеть от фазового состояния реагирующих веществ и наличия между ними поверхности раздела фаз. Чем однороднее фазовый состав реагирующих веществ, тем меньшее число факторов будет оказывать влияние на скорость процесса. В гомогенных системах такими факторами будут давление, температура и состав реакционной смеси. В гетерогенных системах это влияние сложнее. На скорость процесса большое влияние будут оказывать также физические процессы переноса вещества и тепла (тепло- и массообмен в системе). Влияние будет тем значительнее, чем выше скорость собственно химической реакции. Безусловно, в этом случае следует учитывать и гидродинамический режим в системе, так как явления переноса движения, тепла и массы (гидродинамика, тепло- и массообмен) тесно связаны между собою. [c.17]

    Как уже отмечалось, диффузия в жидких и твердых телах независимо от их химической природы и фазового состояния осуществляется путем обмена мест между молекулой диффундирующего вещества и молекулами диффузионной среды под влиянием градиента концентрации и кооперативного теплового движения окружающего комплекса молекул. Особенность высокомолекулярных тел как диффузионных сред для большинства анализируемых систем обусловлена прежде всего огромной разницей в размерах макромолекул диффузионной среды и диффундирующих молекул. Очевидно, что в этих системах перемещение мигрирующей молекулы связано с обменом места не с целой макромолекулой, а лишь с ее небольшой частью — звеном, группой звеньев или иной структурной единицей. Скорость процессов структурной перегруппировки связана с сегментальной подвижностью, которая в свою очередь определяется средней долей свободного объема диффузионной среды. Накопленный в настоящее время экспериментальный материал позволяет рассматривать / или Уев как некоторую количественную интегральную характеристику кинетических свойств полимерных тел Г29, 36, 183]. Напомним, что аналитическое выражение этой связи в нашем случае дается выражением (1.43). Отметим полуколичественный характер теории свободного объема, связанный с тем, что она не позволяет получать абсолютных значений коэффициентов диффузии, а рассматривает лишь их изменение относительно некоторого состояния под влиянием тех или иных факторов. Достоинство этой теории состоит в том, что она позволяет на основе простейших предположений получать аналитические выражения для интерпретации экспериментальных данных, построить стройную схему расчетов диффузионных свойств практически любых по составу, строению и структуре полимерных матриц, резко сократить число систем, подлежащих экспериментальному исследованию. [c.115]

    Значение теплоты, выделяемой или поглощаемой в процессе химической реакции при постоянном давлении, можно использо вать для оценки прочности химической связи. Изменение физиче-ТГкши (фазового) состояния вещества при постоянном давлении [c.73]

    В пособии рассматриваются классы гомо- и гетеросоедипений (простые вещества, оксиды, хлориды, гидриды бинарные и сложные, типа кислородных кислот, солей и оснований), виды химических реакций (фазовые превращения, реакции обменного разложения, окислительно-восстановительные и комплексносоединительные), учения о тепловых эффектах и скоростях химических реакций, о химическом равновесии и электрохимии. Вводятся представления об энтропии веществ в различном агрегатном состоянии, о максимальной работе химических реакций, о порядке реакции дается количественная связь между этими характеристиками и тепловым эффектом реакции, константой химического равновесия и температурой. [c.240]

    Теория поверхностных химических соединений Шилова рассматривает область поверхностных химических реакций как промежуточную между областью поглощения ( молекулярной сорбции ) и областью обычной химической реакции. Согласно этой теории, поверхностные химические реакции, так же как и молекулярная сорбция, не приводят ни к каким новым веществам, которые можно было бы выделить, так как атомы твердого тела, вступая в поверхностную химическую реакцию, не порывают связи с другими атомами, составляющими пространственную решетку этого твердого тела. Поэтому поверхностные химические соединения и не выделяются в виде новой фазы. Поверхностные соединения нужно считать стехиометрически неопределенными и неопределенными также в отношении своего фазового состояния. [c.51]

    Энергия, выделяющаяся в результате ядерных реакций, на несколько порядков больше прочности химических связей, энергетического эффекта обычных химических реакций или количества энергии, необходимого для образования дефектов (дислокаций и вакантных узлов) в решетке твердых веществ. Ни однн материал независимо от его фазового состояния или внешних условий не является совершенно инертным по отношению к ядерным излучениям. Поэтому в последние годы с появлением легкодоступных источников высокой энергии химическое действие радиации активно исследовалось многочисленными учеными с самыми различными целями. Новая область радиацрюнной химии включает исследования, направленные на предотвращение ущерба от разрушающего действия радиации, на разработку методов избирательного разрушения (например, стерилизация и применение в медицине), или специфическое использование радиации для избирательного проведения химических реакций. Данная глава ограничивается рассмотрением последней из перечисленных областей радиационной химии и, в частности, выявлением возможностей использования ядерных излучений как способа проведения химических превращений в процессах нефтепереработки. [c.114]

    Проведение кинетического анализа химического процесса связано с исследованием его кинетики, установлением количественной связи между скоростью реакции и концентрациями (пархщ-альными давлениями) реагирующих веществ в зависимости от внешних факторов (температуры, давления, фазового состояния реакционной системы, катализатора, среды и др.), механйзма и кинетики элементарных реакций с участием лабильных промежуточных частиц (возбужденных молекул, радикалов, ионов и др.). [c.130]

    Книга Р. Кремана и М. Пестемера о зависимости между физическими свойствами и [химическим строением представляет особый интерес и для лиц, специально работающих в области органической химии. В этой книге рассмотрены разнообразные свойства материи, тесно-связанные с строением и тем Или иным аггрегатным ее состоянием.-Хотя строение органических соединений в историческом развитинг этого вопроса устанавливалось на целом ряде примеров классическими методами экспериментального исследования, что давало возможность связать строение вещества с некоторыми физическими его свойствами, тем не менее научный интерес требует более глубокого изучения химической и физической природы веществ, уделяя особое внимание таким проявлениям их свойств, как явления равновесия, кинетика, катализ, фазовое состояние, внутреннее трение, изменение объема, теплота растворения и смешения, поглощение и излучение электромагнитных колебаний, электрическая поляризация, магнитная проницаемость и проч. Нельзя забывать, что только точное и внимательное изучение и сопоставление всех свойств вещества может расширить до возможной полноты нашн-сведения о действительном его строении. [c.3]

    Уже на границе двух веков Ф. Вальд [1] настаивал на необходимости дать четкое определение химического индивида. Тогдя это было в основном связано с изучением растворов и сплавов, т. е. соединений неопределенного состава, не подчинявшихся стехиометрическим законам, а также новым подходом в исследовании веществ, основывавшимся на изучении их фазового состояния. Впоследствии к этим непокорным областям химии примкнули [c.190]

    Процессы адсорбции в общем случае разделяют на две группы — физическую и химическую. Физическая адсорбция не сопровождается образованием химических связей. Наоборот, хемосорбированные частицы настолько прочно могут быть связаны с адсорбентом, что выступают как новые, не имеющие аналогов в объеме, поверхностные вещества. Уравнение адсорбции Гиббса (11.15) не зависит от типа адсорбции и связывает поверхностные избытки с концентрацией раствора в объеме адсорба-та. Зависимость Fi = Fi (с) ири постоянной темиературе часто называют изотермой адсорбции Fuoo a, и она может быть получена из измерения поверхностного натяжения изучаемой системы, находящейся в жидком состоянии. Таким образом, адсорбционные уравнения Гиббса накладывают определенные ограничения на фазовые состояния исследуемых систем. [c.243]

    Данные о частотах колебаний по связям ХН образуют один из наиболее крупных разделов наиболее надежно установленных групповых частот. Частоты валентных колебаний оказываются мало чувствительными к эффектам масс, и эти колебания не связаны с другими основными колебаниями молекул [1]. Поэтому с некоторыми оговорками можно считать, что наблюдающиеся частоты являются хорошей мерой силовых постоянных связей, и таким образом изменения частот при изменении структуры будут следовать тем же закономерностям, что и многие другие химические и физические свойства, такие, как реакционная способность или длина связи. Можно также показать, что, когда валентное колебание расщепляется на симметричное и антисимметричное колебания, среднее значение частоты является функцией силовой постоянной [1], и разделение двух полос может быть использовано для получения полезной информации об изменениях в структуре. Например, в случае валентных колебаний МНгХ разделение полос является прямой функцией валентного угла НМН, и поэтому может быть использовано для прослеживания изменений состояния гибридизации атома азота [44]. Упомянутые оговорки касаются следующих требований можно сопоставлять частоты колебаний двух молекул веществ, исследовавшихся в одних и тех же фазовых состояниях должны отсутствовать водородная связь и взаимодействия с обертонами или составными частотами низкочастотных колебаний. [c.93]

    Основные физико-химические и в первую очередь механические свойства, низкомолекулярных тел связаны с их фазовым состоянием. Поэтому соответствующие температуры пере-.чодов, т. е. плавления или кипения, являются основными характеристиками таких веществ. Однако у аморфных полнмерон и.меются другие явно выраженные переходы из одно1 о состояния в другое. Хотя они и выражены менее резко, а различ я самих состояний ме1 ее ощутимы, чем в случае фазовых превращений, те.м не мепее легко попять, что эти температуры переходов полимеров из одного состояния в другое Т и Г,.) являются основ ыми характеристиками свойств аморфных полимеров. [c.41]

    Как отмечалось в 2 этой главы, каждое вещество при заданных условиях существует в определенном фазовом состоянии, при котором изобарно-изотермический потенциал системы (как совокупности всех химических частиц, составляющих данное вещество) имеет минимальное значение. Вещество переходит из газового в жидкое состояние, если при этом величина уменьшения энтальпии преобладает над величиной уменьшения энтропии. Необходимым условием перехода вещества в конденсированное состояние является установление связей между его отдельными частицами (молекулами или атомами), в результате чего внутренняя энергия системы становится меньше. Поэтому обратный переход вещества в газообразное состояние требует затраты энергии на разрыв связей между его частицами. Если энергии атомных связей имеют значения от 100 до 800 кДж/моль, энергии ионных связей 400—800 кДж/моль и энергии металлических связей 100— 200 кДж/г-атом, то энергия самых прочных межмолекулярных связей— водородных — составляет от 20 до 40 кДж/моль, а энергия ван-дер-ваальсова взаимодействия не превышает 10 кДж/моль. Поэтому при нормальном давлении молекулярные вещества кипят при низких температурах (табл. 12). В области более высоких температур (100—300°С) лежат точки кипения веществ, молекулы которых образуют Н-связи (аммиак, вода и др.) или являются многоатомными. [c.117]

    Прежде всего необходимо выяснить влияние характера химической связи в твердой фазе на природу изменений, происходящих при переходе веществ из твердого состояния в жидкое и при дальнейшем нагреве расплава. Непосредственно к этому примыкает и вопрос о роли исходной структуры твердого тела в процессе формирования структуры ближнего порядка в жидкссти. Определенный интерес представляет и выяснение взаимосвязи между характером диаграмм состав — свойство в жидком состоянии с топологией фазовых диаграмм. [c.268]


Смотреть страницы где упоминается термин Химическая связь и фазовое состояние веществ: [c.217]    [c.195]    [c.383]    [c.5]    [c.10]   
Смотреть главы в:

Теоретические основы неорганической химии -> Химическая связь и фазовое состояние веществ




ПОИСК





Смотрите так же термины и статьи:

Вещество, фазовые состояния

Фазовые состояния

Химическая связь

Химическая связь связь

Химический ое не ная химическая вещества

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте