Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные граничные

    Как было показано Б. В. Дерягиным и А. С. Ахматовым, под действием силового поля металла в тонких граничных слоях жидкость (смазка) приобретает свойства, существенно отличные от свойств жидкости в объеме. Существует критическая толщина граничной пленки (Лк), меньше которой прекращается скольжение между молекулярными рядами смазки. При этом слои с толщиной ниже критической способны выдерживать [c.239]


    Б. В. Дерягин, развивая молекулярную теорию граничного трения, представил его основной закон двучленным выражением (5.2). Исходя из этого выражения, сила трения зависит от молекулярного прилипания (адгезии) поверхностей и является функцией нормального давления. [c.240]

    Исходя из молекулярно-механической теории, для случая химически активной смазки силу трения в граничном режиме при постоянной нагрузке можно выразить зависимостью [c.241]

    Перенос вещества вдоль оси потока вследствие молекулярной диффузии весьма невелик он осуществляется в основном за счет движения потока. При ламинарном режиме течения средняя скорость потока равна Ыо/2, поэтому через время х введенное вещество будет находиться на расстоянии Х1 = х+ (ио/2)х от плоскости отсчета х — расстояние от плоскости отсчета при отсутствии движения). После подстановки значения х в уравнение (П. 14) и использования граничных условий было получено выражение для переносимого количества вещества в направлении оси потока  [c.33]

    Если при повышении температуры граничные слои разрушаются, то ее понижение должно, напротив, приводить к усилению структурных эффектов. Это проявляется, в частности, в граничном плавлении льда. Этот известный эффект можно наблюдать в строго цилиндрических тонких капиллярах с молекулярно гладкой поверхностью [31]. При приближении температуры к точке плавления столбики льда становятся легко подвижными в связи с образованием у поверхности лед — кварц незамерзающей водной прослойки, обладающей свойствами вязкой ньютоновской жидкости. При понижении температуры скорость сдвига столбиков льда падает в связи с уменьшением толщины незамерзающих прослоек и ростом их вязкости. [c.11]

    Понижение диэлектрической проницаемости граничных слоев воды следует также из молекулярно-динамических оценок изменений вращательной подвижности диполей воды [4] п подтверждается исследованиями структуры воды в тонких прослойках методом неупругого рассеяния нейтронов и ЯМР. Так, для дисперсий кремнезема времена релаксации молекул воды в граничном слое 1 нм в 5—10 раз превышают объемные значения [39]. Методом электронного спинового резонанса показано, что подвижность спиновой метки снижается с уменьшением радиуса пор силикагеля от 5 до 2 нм [40]. [c.14]

    Вблизи гидрофильных поверхностей плотность воды повышена и давление на стенке выше Рй- Структурная составляющая расклинивающего давления здесь положительна (П8>0). Резкое возрастание структурных сил отталкивания при утончении водных прослоек препятствует слипанию частиц гидрофильных коллоидов и обеспечивает устойчивость тонких пленок воды на гидрофильных поверхностях. В тех случаях, когда состояние поверхности является промежуточным между гидрофильным и гидрофобным, структура воды в граничных слоях изменена незначительно и структурное взаимодействие практически не проявляется. В этом случае взаимодействие м жду поверхностями, разделяющими водную прослойку, определяется, в соответствии с теорией Дерягина — Ландау—Фервея — Овербека (ДЛФО), молекулярной и электростатической составляющими расклинивающего давления [42, 43]. [c.16]


    Вид изотерм определяется при этом не только гидрофильностью поверхности, но и составом водного раствора, влияющим на электростатические и структурные силы и, в меньшей степени, на молекулярные. Так, концентрационное подавление граничных слоев (несмотря на исходно гидрофильную поверхность, например, кварца) приводит к ослаблению сил структурного отталкивания в водных пленках, что вызывает переход от изотерм типа 1 к изотермам 2 или от изотерм типа 2 к изотермам 3. Так как устойчивость толстых -пленок определяется, в основном, электростатическими силами, изменение концентрации и состава водного раствора, влияющее на электрические потенциалы обеих поверхностей пленки, сказывается на виде изотерм П(/г). При повышении концентрации электролита или (и) снижении pH уменьшаются силы электростатического отталкивания, что приводит к сдвигу изотерм П(/1) [c.17]

    Коллоидно-химическую науку, однако, интересуют формы молекулярно связанной воды. Нами ранее [71—74] было показано, что следует выделять сорбционно (прочно) связанную воду, воду граничных слоев и осмотически связанную воду. Свойства и отличительные особенности указанных категорий молекулярно связанной воды удобно рассмотреть применительно к слоистым и слоисто-ленточным силикатам, которые обладают большой вариабельностью коллоидно-химических свойств в зависимости от особенностей строения, состава обменного комплекса, и в последнее время находят все возрастающее применение в качестве эффективных сорбентов, катализаторов, наполнителей полимерных сред, загустителей, пластификаторов, компонентов буровых растворов и т. д. [c.31]

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]

    Резюмируя изложенные выше результаты, следует заключить, что в последние годы благодаря применению метода ЯМР наши представления о структуре и динамике воды в гидрофильных объектах существенно расширились. Вместе с тем хотелось бы отметить некоторые наиболее важные проблемы, которые все еще ожидают своего решения. Необходимо 1) построить модель молекулярной подвижности связанной воды и определить взаимосвязь между трансляционным и вращательным движениями 2) определить причины анизотропии коэффициента диффузии в граничном слое 3) определить взаимосвязь ориентационных параметров со строением гидрофильного покрова гетерогенных систем 4) построить структурные модели воды для различных типов гидрофильных систем. [c.242]

    Граничные условия учитываются при составлении уравнений для точек, расположенных вблизи оси и стенки так же, как и в уравнениях с нисходящими разностями. Основное отличие состоит в том, то для контроля ошибки приближения первое разностное уравнение соответствует дифференциальному уравнению для п-го интервала на расстоянии Д h от оси, а не на самой оси. Разность между температурой реакционной смеси и охлаждающей жидкости принимается равной средней величине между температурами в (м—1)-ом и (п+1)-ом интервалах. При вычислении изменения давления плотность и молекулярный вес также принимаются рав-. ными своим средним значениям для соответствующих интервалов  [c.195]

    Как известно [171—173, 216—227], в зоне контакта двух фаз, например жидкости и твердого тела, действуют поверхностные силы, такие, как силы прилипания, поверхностного натяжения, молекулярного притяжения. Поэтому граничный слой жидкости, связанный с материалом мембраны, по структуре и, следовательно, по физико-химическим свойствам, может значительно отличаться от подобных характеристик жидкости в объеме. Так, граничные слои полярных жидкостей вблизи гидрофильных поверхностей (на расстоянии 10- —10- мкм) обладают [c.200]

    Составлена система дифференциальных уравнений в частных производных применительно к балансу растворимого вещества в процессе его переноса молекулярной диффузией из застойной поры в проточную и перемещения с промывной жидкостью по проточной поре. С использованием граничных условий, когда застойные поры целиком заполнены фильтратом, получено решение этой системы уравнений, которое здесь приведено в несколько измененном виде  [c.253]


    Таким образом, в граничном слое Прандтля при наличии в нем градиента концентрации массоперенос осуществляется двумя разными параллельно протекающими путями. Суммарная скорость процесса массопереноса определяется скоростью протекания каждого элементарного процесса переноса. Если, однако,торможение одного из этих параллельных процессов значительно меньше торможения другого, то суммарная скорость массопереноса определяется в основном скоростью этого наименее заторможенного, т. е. быстрого, процесса переноса. Скорость конвективного массопереноса в граничном слое Прандтля снижается по мере уменьшения скорости движения V в нем жидкости (см. рис. 143) и его роль в определении суммарной скорости массопереноса тоже уменьшается, а роль молекулярной диффузии возрастает. Начиная с какого-то расстояния от твердой поверхности б молекулярный перенос вещества становится преобладающим по сравнению с конвективным переносом, который преобладает в части слоя Прандтля (77 — б). [c.209]

    Принимая во внимание, что для газовой среды а — (где Хм — коэффициент молекулярной теплопроводности газа) и используя граничное условие (III.110), находим  [c.133]

    Расклинивающее давление возникает при сближении двух дисперсных частиц, взаимодействующих с дисперсной средой за счет перекрытия а) электромагнитных флюктуационных полей, образующих сферу действия молекулярно-поверхностных сил в окрестностях каждой фазы б) двойных ионных слоев в граничных слоях жидкости, содержащей растворенные ионы в) граничных слоев с измененной под влиянием поверхностных сил структурой [74]. Причем давление положительно при действии сил отталкивания, отрицательно при действии сил притягивания. [c.83]

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]

    Другим подходом к решению этой проблемы является использование значений граничной я-электронной плотности, т. е. электронной плотности на высшей занятой молекулярной орбитали. Перераспределение электронной плотности под влиянием заместителя оказывает огромное влияние на реакционную способность и стабильность а-комплексов их относительная стабильность может быть определена при оценке изменения энергии локализации по сравнению с исходной молекулой. [c.45]

    Явления, обусловливаемые молекулярным взаимодействием, играют большую роль в условиях нефтяного пласта, высокодисперсной пористой среды с развитой поверхностью, заполненной жидкостями, которые содержат поверхностно-активные вещества. Однако механизм этих явлений не познан настолько, чтобы при разработке нефтяных месторождений их можно было учитывать количественно. Использование изученных закономерностей в технологических процессах возможно лишь тогда, когда они описаны математически, с учетом основных факторов, определяющих эти закономерности. Решить такую задачу для нефтяного пласта трудно, так как геолого-физические и минералогические характеристики пласта и свойства жидкостей и газов, насыщающих его, не постоянны. Как результат молекулярно-поверхностных эффектов на границе раздела фаз в нефтяном пласте наибольшее значение имеет процесс адсорбции активных компонентов нефти на поверхности породообразующих минералов. С этим процессом прежде всего связана гидрофобизация поверхности, а следовательно, и уменьшение нефтеотдачи пласта. Образование адсорбционного слоя ведет к построению на его основе граничного слоя нефти, вязкость которого на порядок выше вязкости нефти в объеме, а толщина в ряде случаев соизмерима с радиусом поровых каналов. В связи с этим уменьшается проницаемость и увеличиваются мик-ро- и макронеоднородности коллектора. [c.37]

    Поверхностные явления в системе жидкость — твердая фаза обусловлены структурой и свойствами монослоев, структурно-механическими свойствами граничных слоев жидкостей, находящихся в контакте с твердыми телами, адгезией жидкостей к твердым поверхностям и другими показателями. Адсорбция молекул жидкости на поверхности твердого тела определяет особенности структуры граничного слоя, характер упаковки макромолекул в граничных слоях, отсюда — молекулярную подвижность, релаксационные и другие явления. [c.65]

    Граничный слой формируется в результате 1) индукционного влияния поля твердой фазы через адсорбционный слой 2) влияния собственного молекулярного поля адсорбционного слоя. [c.67]

    Присутствие в жидкости поверхностно-активных веществ и повышение молекулярной массы составляющих компонентов жидкости увеличивают толщину граничного слоя. [c.70]

    Б. В. Дерягиным было показано [39], что структура граничного слоя полидиметилсилоксанов (ПМС) зависит от характера молекулярно-весового распределения (МВР). Так, у ПМС жидкостей с относительно узким интервалом МВР граничная фаза, толщина которой составляет 2,0—2,5 нм, имеет вязкость на порядок ниже, чем вязкость этой же жидкости в объеме [39], Расширение МВР жидкостей приводит к появлению граничной фазы с повышенной вязкостью [99]. [c.70]

    Механические — составляют наиболее обширную группу методов исследования граничных слоев жидкости, так как их механические свойства непосредственно связаны со строением аномальных слоев и действующими на них молекулярными силами. Именно из-за тесной связи со структурой механические (реологические) параметры получили в физико-химической механике название структурно-механических. [c.73]

    Наличие аномальных слоев нефти и воды на поверхности породы при двухфазной фильтрации этих жидкостей должно привести к чрезвычайно сложному комплексу явлений, определяющих во многом механизм жидкостей в пористой среде. От свойств граничных слоев нефти и воды зависит кинетика разрушения слоев, отрыв и прилипание капель нефти на поверхности породы, а также возможность продвижения жидкости, не связанной молекулярно-поверхностными силами в пористой среде. [c.97]

    Были определены коэффициенты светопоглощения асфальтенов из исследованных нефтей. Величина этих коэффициентов асфальтенов из нефти СКВ. 408 ниже, чем у асфальтенов нефти скв. 377 (соответственно 8670 и 11 430). В работе [116] указывается на существование связи между коэффициентом светопоглощения асфальтенов и их молекулярной массой. Нашими исследованиями показано, что асфальтены с меньшей молекулярной массой содержат большое количество металлопорфириновых комплексов, присутствие которых, по-видимому, способствует формированию более прочных граничных слоев [111]. [c.103]

    Результаты обработки показывают, что иа толщину граничного слоя влияют содержание асфальтенов "5 и их молекулярная масса X . [c.104]

    Закономерности изменения молекулярной массы асфальтенов и их коэффициентов светопоглощения по глубине граничного слоя нефти [c.113]

    Эти данные показывают, что при формировании граничного слоя происходит своеобразное распределение асфальтенов по их свойствам. Данное предположение подтверждается результатами измерения молекулярной массы асфальтенов, выделенных из эффективных граничных слоев нефти различной толщины (рис. 55). [c.113]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Смазочная способность масел является важнейшей их характеристикой в условиях работы машин и механизмов при больших нагрузках и малых скоростях. Она определяет способность масла создавать на металлической поверхности весьма прочный, но очень тонкий смазочный слой толщиной всего лишь 0,1 — 1,1 мкм, т.е. 50 — 00 молекулярных слоев. Такой тип смазки получил название граничной смазки. Несмотря на ничтожно малую толщину такого слоя, износ материалов при граничной смазке уменьшается в тысячи раз по сравнениго с сухим трением. Наилучшей смазочной способностью обладают смолисто-асфальтеновые вещества, некоторые г ысокомолекулярные сероорганические и кислородсодержащие соединения, которые, с точки зрения других эксплуатационных показателей, в маслах нежелательны и подлежат удалению. Поэтому //vя улучшения смазочной способности в масла вводят специальные новерхностно-активные присадки. [c.132]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Таким образом, с привлечением обобщенной теории ДЛФО классификация молекулярно связанной воды на адсорбционно (прочно связанную) воду, воду граничных слоев и осмотически связанную воду получает надежное теоретическое обоснование. Первые две категории воды в теории ДЛФО рассматриваются как внутренняя, более прочно связанная с гидрофильной поверхностью, и внешняя часть граничного слоя, обладающего измененной по сравнению с объемной водой структурой. Формирование слоя осмотически связанной воды регулируется ионноэлектростатической составляющей расклинивающего давления. [c.45]

    С разрушением особой структуры граничных слоев связан также и известный эффект ухудшения смачивания при повышении температуры [562]. На рис. 13.5 приводятся результаты расчетов изотерм расклинивающего давления смачивающих пленок водного 10 М раствора КС1 с добавками ионогенных ПАВ. Для молекулярных сил принята та же константа А для структурных сил — экспонента IIs= sexp(—/i/Я-), где С = = 10 Н/см и А,=0,25 нм. Исходной, без добавок ПАВ, является изотерма, показанная кривой 6. Потенциалы поверхностей кварца (ii)i) и пленки (ij]2) принимали в этом случае равными —100 мВ и —25 мВ, соответственно. Расчеты по уравнению (13.3) приводят к значению 0о = 8° (см. рис. 13.4). Влияние добавок ПАВ сводилось в проведенных расчетах к изменению потенциала вследствие адсорбции ПАВ на поверхности пленка— газ. Адсорбция анионоактивного ПАВ, повышающая отрицательный потенциал ifi2, приводила к улучшению смачивания. Так, при il]2= —35 мВ рассчитанный краевой угол уменьшается до 7°, а при 11)2 = —45 мВ—до 5°. Дальнейший рост i 52 (кривые 1—<3) обеспечивает уже полное смачивание поверхности кварца. Если же на поверхности пленки адсорбируется катионоактивный ПАВ, заряжающий поверхность пленка — газ положительно (г1)2=+Ю0 мВ), в то время как поверхность подложки остается заряженной отрицательно, краевой угол растет до 28° в связи с тем, что электростатические силы вызывают притяжение поверхностей пленки (Пе<0). Полученные результаты находятся в хорошем согласии с результатами прямых измерений краевых углов растворов КС1 с добавками анионоактивного натрийдодецилсульфата и катионоактивного цетилтриметиламмонийбромида [563]. [c.220]

    Оценка параметров, характеризующих структуру и молекулярную подвижность граничной воды. Наиболее важной оцениваемой характеристикой является толщина граничных слоев с анизотропной структурой (Х п) или заторможенной подвижностью (Хт). Исследования изменений Avd(Q) при увеличении толщины водных прослоек позволяют заключить, что Хап равна 1—2 слоям молекул (табл. 14.1) [579, 628, 632]. Авторы некоторых работ [634, 635], не учитывая при интерпретации экспериментальных данных по ширине протонных линий ЯМР-воды эффектов неоднородности магнитной восприимчивости, получают A 10—100 слоев. Количество незамерзающей воды по данным ПМР также обычно соответствует Х 1 [636], хотя авторы [627] получили несколько более высокие значения. Так как количество незамерзающей воды в гетерогенных системах может определяться наличием нерастворимых примесей, вычисляемая в этих экспериментах величина к может содержать вклад, связанный с образованием эвтектик [315]. Из релаксационных данных с помощью соотношений (14.12) и (14.13) несложно вычислить XxBf/xF и отсюда оценить xef- По данным большинства авторов (см. табл. 14.1), подвижность связанной воды на 1—2 порядка ниже подвижности объемной воды. [c.240]

    Использование метода квазистацнонарных процессов или равнодоступной поверхности. Этот метод позволяет упростить задачу и указывает на важные предельные случаи макрокинетики. Для упрощения задачи принимается, что диффузия в первом приближении не зависит от протекания химической реакции. При этом можно принять простое граничное условие с = 0. Обозначим концентрацию реагента на поверхности через с, а в массе потока через с. Действительная скорость реакции на поверхности зерна зависит от величины с. При установившемся протекании реакции эта концентрация определяется количеством реагента, доставляемого к граничной поверхности благодаря молекулярной или вихревой диффузии. [c.94]

    Весьма важным для установления границ аналогии является характер движения частиц в нсевдоожиженном слое. В термостатированной капельной жидкости ее состояние определяется пульсационным движением молекул. В однородном псевдоожиженном слое механизм диффузии твердых частиц подобен молекулярному . При псевдоожижении газом твердые частицы также совершают нульсационные перемещения , но с увеличением скорости газа начинает доминировать движение не отдельных частиц, а их агрегатов > , что аналогично движению турбулентных вихрей в капельной жидкости. Вихревой механизм переноса в нсевдоожиженном слое обусловлен движением газовых пузырей и граничными эффектами. Вблизи поверхностей и деталей (даже в отсутствие пузырей) нарушается равномерность распределения скоростей ожижающего агента и возникает направленная циркуляция твердого материала, аналогично конвективным токам в нетермостатированном сосуде с капельной жидкостью. Следует подчеркнуть, что граничные эффекты в псевдоожиженном слое выражены резче, чем в капельной жидкости. [c.495]

    Величину и направление скорости в каждой точке определяют решением уравнений гидродинамики. В правой части уравнения (1П.13) оставлена вторая производная только по координате X, нормальной к поверхности, так как по всем другим нацравлениям перенос вещества молекулярной диффузией пренебрежимо мал. Граничные условия для уравнения (П1.13) определяются тем, что диффузионный поток на твердую поверхность катализатора равен скорости химической реакции, а на достаточном удалении от поверхности концентрация равна С . [c.103]

    Точность, вносимая граничными условиями (VI.27), является, однако, обманчивой. Дело в том, что при их выводе предполагается, что диффузионная модель справедлива повсюду, в том числе и для процессов переноса на малых расстояниях. На самом деле, однако, не существует систем, в точности описывающихся уравнением конвективной диффузии (VI. 14) или (VI. 15) с постоянными значениями линейной скорости потока и коэффициента диффузии. В случае турбулентного потока в реакторе без насадки скорость потока почти постоянна по всему сечению аппарата (кроме тонкого слоя близ его стенки), однако коэффициент турбулентной диффузии является переменной величиной, увеличиваясь пропорционально расстоянию от стенки реактора. В ламинарном потоке перенос вещества осуществляется молекулярной диффузией, так что коэффициент диффузии постоянен. Однако основная причина случайного разброса времени пребывания в реакторе — сильное различие локальных скоростей потока на различных расстояниях от стенки аппарата. Наконец, в реакторах с насадкой, отклонение времени пребывания в реакторе от среднего знйчения вызывается образованием турбулентных вихрей в промежутках между твердыми частицами, разбросом локальных скоростей потока за счет неоднородности упаковки слоя и задержкой вещества в застойных зонах. Во всех этих случаях распределение времени пребывания в реакторе делается близким к нормальному, если длина аппарата достаточно велика, и только в этих условиях диффузионная модель становится пригодной для приближенного описания процесса. [c.211]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Граничные условия прп г = /, не заданы, так как для всех практических целей молекулярной диффузией А в направленип потока [первый член уравнения (а)1 можно пренебречь по сравнению с конвективным переносом [второй член уравнения (а)1 поэтому опустим первый член уравнения (а), учитывая, что соблюдается условие < v L DJ > 1. [c.101]

    Рассмотрим вначале случай, когда сила Р является центральносимметричной. Такими силами являются силы молекулярного взаимодействия частиц, а также силы, обусловленные свободными электрическими зарядами на частицах. Решая уравнение (5.35) в сферической системе координат с началом в центре частицы ЯхИ граничными условиями п=0 при и = 0 при г оо, получим следующее выражение для потока частиц на частицу [c.90]

    Нефти различных месторождений и даже одного и того же месторождения по составу и физическим свойствам сильно различаются между собой (табл. 1), но всем нефтям в большей или меньшей степени присуща поверхностная активность. Еще в начале 40-х годов М. М. Кусаковым, П. А. Ребиндером, К. Е. Зинченко [88], а затем Ф. А. Требиным [178] было установлено, что фильтрация нефти в пористой среде сопровождается некоторым уменьшением расхода. Это явление указанные исследователи объясняли образованием на поверхности поровых каналов адсорбционных слоев полярных компонентов нефти, изменяющих молекулярную природу твердой поверхности и являющихся базой для формирования коллоидизированных граничных слоев нефти, отличающихся по реологическим свойствам от нефти, находящейся в свободном объеме. В результате этого явления уменьшается сечение фильтрационных каналов пористой среды и снижаются ее проницаемость и нефтеотдача. [c.5]

    Итак, в условиях трехфазной границы раздела возможности существования или разрыва граничного слоя, прилипания или отрыва капель нефти или воды на поверхности, а следовательно, кинетика процесса вытеснения этих жидкостей в пористой среде определяется молекулярной природой поверхности породы, слагающей продуктивные пласты, а также молекулярно-поверхностными и физико-химическими свойствами нефти и воды. В зависимости от свойств этих жидкостей и их состояния в пористой среде возникающие при совместном движении нефти и воды молекулярно-поверхностные явления, обусловленные влиянием граничных слоев, могут являться одной из серьезных причин, приводящих к значительному снижению коэффициента нефтеотдачи. [c.97]


Библиография для Молекулярные граничные: [c.313]   
Смотреть страницы где упоминается термин Молекулярные граничные: [c.7]    [c.250]    [c.260]    [c.148]   
Органическая химия Том1 (2004) -- [ c.73 , c.116 , c.118 ]




ПОИСК







© 2024 chem21.info Реклама на сайте