Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная активации

    Уравнение Бренстеда представляет собой только один весьма удачный пример соотношений, которые получили название линейных соотношений свободной энергии . Найдено, что существует линейное соотношение между свободной энергией активации целого ряда констант скоростей и констант равновесия. [c.488]


    Свободная энергия активации [c.148]

    Следствием такого положения является то, что данные по реакциям с участием свободных радикалов являются, безусловно, менее точными, чем данные для простых кинетических систем. Поэтому и вычисляемые значения энергии активации, и величины частотных факторов не могут считаться столь же надежными, как в случае реакций, идущих по простым кинетическим механизмам. [c.261]

    Образование свободных радикалов может происходить в процессе распада вещества при нагревании, освещении, под действием ядерных излучений, от сильных механических воздействий, при электроразряде и т. д. Свободные радикалы рождаются также в процессе самых разнообразных химических превращений. Энергия активации реакций с участием ионов также н значительна (0—80 кДж/моль). Для осуществления же реакций непосредственно между молекулами обычно требуется высокая энергия активации, поэтому такие реакции весьма редки.,  [c.199]

    Как следует ожидать из теории мономолекулярных реакций, имеет энергию активации меньше, чем измеренная энергия связи 21 ккал , а предэкспоненциальный множитель аномально высок для бимолекулярной реакции. В действительности предэкспоненциальный множитель является наивысшим из когда-либо найденных значений для бимолекулярных реакций, и если бы это подтвердилось, то это означало бы свободное враш ение групп О2N — [c.361]

    При окислении углеводорода накапливается гидропероксид, который реагирует, образуя свободные радикалы. В газовой фазе гидропероксид распадается мономолекулярно по О—0-связи, энергия разрыва которой составляет 155—170 кДж/моль [35]. В жидкой фазе константа скорости распада КООН на 1—2 порядка выше, чем в газовой фазе, а энергия активации распада—на 20—50 кДж/моль меньше [35, 79]. Это свидетельствует [c.39]

    Здесь левая часть уравнения представляет разность свободных энергий активации для двух ароматических соединений, а правая часть — разность свободных энергий ионизации для тех же ароматических соединений — константа. Учитывая, что свободная энергия связана с соответствующей скоростью или константами ионизации (см. разд. XVI.3) уравнением [c.525]

    Соответственно изменению п с температурой будет изменяться и энергия активации реакции (О ). Таким образом, при жидкофазном окислении углеводородов в условиях, когда зарождение цепей происходит преимущественно по гомогенному механизму, может существовать такая температура, при которой скорость реакции образования свободных радикалов будет наибольшей. Соответственно при небольших временных превращениях, когда в целом скорость цепного процесса определяется скоростью наиболее медленной стадии — зарождения цепей, скорость окисления также будет характеризоваться экстремальной температурной зависимостью. [c.37]


    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]

    Подсчитаны значения энергии активации образования НС1 через свободные радикалы  [c.264]

    Свободный радикал инициатора или растущая полимерная цепь (макрорадикал) могут взаимодействовать с неактивными молекулами полимера и отрывать атом водорода, находящийся в середине молекулы. В этом месте возникает возможность присоединения мономера. При этом образуется полимерная цепь, направленная в сторону от основной полимерной молекулы. Это —реакция разветвления полимера. Кроме наличия примесей, на разветвление полимерной цепи влияет увеличение конверсии мономеров, так как столкновение растущих полимерных цепей с молекулами полимера становится более вероятным, чем с молекулами мономера. Разветвление происходит также при повышении температуры полимеризации, так как энергия активации разветвления больше, чем энергия активации роста полимерной цепи (58,8 и 21,0— 25,2 кДж/моль соответственно) [19]. [c.142]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Как известно из термодинамики, константа равновесня связана со свободной энергией процесса. Эту связь можно использовать и для нахождения величины Л , вводя понятие свободная энергия активации, характеризующее изменение свободной энергии при переходе системы из исходного состояния в переходное и учитывающей все степени свободы, кроме координаты реакции. Если вещества находятся в стандартном состоянии, то для процесса, протекающего при постоянном объеме [c.148]

    Суш ность обработки заключается в вытеснении воды из пор гидрогеля и заменой ее молекулами вытеснителя. Известно, что высокомолекулярные соединения обладают более высокой адсорбируемостью. Процесс вытеснения воды ускоряется при нагревании вода в порах расширяется, давит на стенки нор, в то время как скелет гидрогеля при потере влаги сжимается. В результате смешения мокрого гидрогеля, прошедшего синерезис, активацию п промывку, с высококипящими нефтяными углеводородами свободные от воды поры заполняются молекулами вытеснителя, которые в дальнейшем не дают им возможности сжиматься. Углеводородные молекулы из-за их высокой температуры кипения в процессе обработки остаются в порах гидрогеля и удаляются из них только путем выжигания - последующим прокаливанием при 550—600 С. После выжигания вытеснителя норы силикагеля остаются свободными. Количество пор обусловливает величину адсорбирующей новерхности силикагеля, а от их размеров зависит степень избирательной активности по отношению к разным парам и газам. [c.118]

    Чтобы диэлектрик (изолятор) стал проводить электрический ток, необходима энергия, достаточная для возбуждения электронов из заполненной зоны через межзонную щель в свободную зону молекулярных орбиталей. Эта энергия является энергией активации процесса проводимости. Лишь высокие температуры или чрезвычайно сильные электрические поля могут обеспечить энергию, необходимую для возбуждения значительного числа электронов, которые придают кристаллу проводимость. В алмазе межзонная щель (интервал между потолком заполненной, или валентной, зоны и низом свободной зоны, называемой зоной проводимости) составляет 5,2 эВ, т.е. 502 кДж моль . [c.631]

    При комнатных температурах (300° К) кТ/к % 6-101 eк = 200 сж 1. Частоти колебания связей лежат главным образом в интервале 500—2500 и, таким образом, при этой температуре вносят небольшой вклад в (>кол- Ножничные колебания являются более низкочастотными и могут вносить. заметный вклад. Однако, наибольший вклад вносят очень низкие частоты, возникающие от почти свободных внутренних вращений (например, вращение вокруг простой связи в углеводородах). Иесомненпо, что наибольшее влияние на отношение Q IQ будет оказывать освобождение или замораншвание этих низкочастотных колебаний в процессах активации. [c.221]


    Возможно также, что peaкr ия разложения с/-пинена с образованием /-лимонена или /-пипена (см. первую сноску к табл. Х1.3) происходит через разрыв четырехчленного кольца. Сложность продуктов реакции, а также намного более низкая энергия активации (по сравнению с другими кольцами) указывают на участие в качестве промежуточных частиц свободных радикалов [25]. [c.228]

    Реакции цис-транс изомеризации олефинов, представленные в табл. XI.3, имеют сильно отличающиеся друг от друга кинетические параметры (например, частотные факторы 2 сек для 1 ис-бутена-2,10 сек" для диметилмалеата иоколо 10 сек для г ис-изостильбена и дидейтероэтилена). Энергии активации этих реакций изменяются в направлении, обратном изменению частотных факторов, так что константы скорости изомеризации остаются примерно одинаковыми. Все эти реакции осложняются небольшими побочными реакциями и некоторой чувствительностью к поверхности реакционного сосуда. Они также инициируются свободными радикалами. По этим причинам реакции, имеющие очень малую величину частотных факторов (10 сек или меньше), являются или гетерогенными, или, возможно, цепными реакциями.  [c.229]

    Было высказано предположение- [44, 45], что реакции цис-транс изомеризации могут протекать по двум различным путям. Первый из них должен включать крутильное колебание около двойной связи. Этот путь требует больших энергий активации, но должен иметь нормальный частотный фактор. Второй путь должен включать возбуждение двойной связи, соответствующее образованию бирадикала с двумя неспареиными электронами, благодаря чему возникает возможность свободного вращения вокруг результирующей одинарной связи. Если этиленовая молекула может почему-либо совершить переход из своего нормального (синглетного) состояния в бирадикальное (триплетное) состояние, то энергия активации может быть много меньшей. Было рассчитано, что в некоторых случаях она равна лишь 25 ккал моль [46]. Однако такие переходы являются запрещенными в квантовой механике, поскольку они включают изменение мультиплетности полного электронного спина молекулы. [c.229]

    Диссоциация была изучена фотометрически по увеличению коицеитрации N63 при прохождении адиабатической ударной волны через смесь N204 в газе-носителе N3. Данный метод, как признают, является неточным, и в этой системе энергию активации (а следовательно, и частотный фактор) трудно измерить, но, по-видимому, можно ие сомневаться в том, что частотный фактор превышает величину сек 1. Эта реакция Показывает типичную зависимость от давления. Энтропия активации составляет около 10 кал моль-град, И это легко объяснить, если сопоставить указанную величину с полным изменением энтропии в реакции, составляющим около 45 кал моль -град (стандартные условия 25° С, давление 1 атм). Стандартное изменение энтропии, обусловленное поступательным движением, равно 32,4 кал моль-град, и на долю изменения, обусловлеи-ного вращением и колебанием, остается 12,6 кал моль-град. Последняя величина сопоставима с величиной энтропии активации 10 кал моль-град. Это указывает на то, что переходный комплекс подобен скорее свободно связанным молекулам N02, нежели молекуле N204. [c.232]

    Вторую стадию активации проводят раствором смеси нитратов редкоземельных металлов с целью введения в катализатор катионов лантаноидов и дополнительного удаления натрия (до 0,2%). Смесь нитратов лантаноидов растворяют в паровом конденсате и концентрированный раствор откачивают в рабочую емкость. Одновременно готовят аммиачную воду и откачивают в ту же емкость. В нее направляют и промывную воду после первого чана. В готовом растворе солей лантаноидов контролируют содержание железа (не более0,01 %), натрия (не более 0,1%) я свободной серной кислоты (не выше 20 л). Активирующий раствор из емкости прокачивают через теплообменник 27 и направляют в промывочные чаны на вторую стадию активации. Раствор проходит последовательно четыре чана 15, 16, 17 и 18) и возвращается в промежуточную емкость с паровым обогревом для использования его при приготовлении первого активирующего раствора. Продолжительность второй стадии активации 16 ч. [c.108]

    Полупроеодл-аки,. Соединения, подобные 2пО, 7пЗ и РЬ8, не являются хорошими проводниками, но они имеют электроны, которые могут быть термически возбуждены с очень низкой энергией активации (10—20 ккал), что обусловливает появление электропроводности. Поверхности и углы таких твердых тел могут служить центрами окислительно-восстановительных и, возмоншо, свободно-радикальных реакций. [c.532]

    Следующими были теории, предполагающие образование в качестве промежуточных продуктов свободных радикалов. Так, Бон и Кауорд [6] предположили образование радикалов —СНз, = СН2 и =СН ири термическом разложении этана. Эти радикалы, по мнению авторов, могли гидрироваться в метан, разлагаться до углерода или снова рекомбинироваться. Хэг и Уилер [16] утвер/кдали, что метан расщепляется при термическом разлон снии на метилен и молекулу водорода. Теория свободных радикалов нррюбрела особое значение в работах Райса [35], который рассматривал метил, этил, пропил и аналогичные высшие радикалы как единственные промежуточные продукты реакции он разработал детально этот механизм с учетом наден ных данных по энергиям активации указанных реакций. Райс подтвердил свою теорию экспериментальными кинетическими данными. [c.7]

    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    Влияние окиси азота на разложение этана являлось предметом многих исследований. Стэвли [81] нашел, что с увеличением концентрации окиси азота скорость разложения снижается до минимума, достигая величины 8% от неингибированной скорости. Изучая реакции, ингибированные окисью азота, Стэвли и Гиншельвуд установили, что средняя длина цепи значительно короче предполагавшейся на основе механизма свободных радикалов. Упомянутые авторы приходят к выводу, что в рассматриваемой реакции действуют оба механизма молекулярный и свободнорадикальный. Такой же вывод был сделан Стици и Шейном [85], которые нашли, что энергия активации полностью ингибированной реакции равна 77,3 ккал, в то время как у Стэвли последняя равна 74 ккал. Любое из этих значений превышает величину, принятую для неингибированной реакции — 69,8 ккал. Ингольд и другие [43] исследовали влияние окиси азота и пропилена на разложение этана. Пропилен действует аналогично окиси азота, хотя но является окисляющим агентом. Ингольд приходит к тому же выводу, что в рассматриваемой реакции действуют оба механизма. [c.83]

    В настоящее время известно, что нафталин и различные альфа-за-мещенные нафталины достаточно активны по отношению к свободнорадикальному замещению опи могут замещаться свободными радикалами бензойной кислоты (бензойлокси-радикалами) до распада с образованием свободных фенильных радикалов и двуокиси углерода [37а, 93]. Результаты, полученные Денлем и Гиппином, дают полуколичественные указания, что замещение происходит преимущественно в кольце, имеющем заместитель порядок активации по отношению к замещению свободным радикалом бензойной кислоты следующий ХОд > Вг > С1 > Н. [c.467]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Суммарная энергия активации равна около 29,4 ккал/моль. Экспериментально полученная величина составляет около 34 ккал/моль, что достаточно хорошо согласуется с теорией и доказывает, что взаимодействие хлора с водородом протекает через свободные радикалы. В самом деле, величина Е , рассчитанная, исходя из предположения о бимолекулярном механизме, равна около 75 ккал/моль, что сильно расходится с экспериментальными данными. Подтверждением радикального механизма образования H I является и тот факт, что реакция ингибируется кислородом. Общая скорость реакции пропорциональна содержанию хлора и обратно пропорциональна содержанию кислорода и поверхности peaктора. [c.264]

    При взаимодействии окислителя (инициатора) с восстановителем (активатором) образуется высокая концентрация промежуточных лабильных свободных радикалов, позволяюших проводить полимеризацию при низкой температуре с высокой скоростью. Как правило, наибольшая скорость полимеризации достигается при эквимолекулярном соотношении окислителя и восстановителя. Энергия активации реакции полимеризации в присутствии восстановителя понижается со 126 до 42 кДж/моль. Способность снижать энергию активации полимеризации — одно из основных и характерных особенностей окислительно-восстановительных систем, инициирующих эти процессы. [c.136]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Ц1ЯЙ подобного типа. Все они характеризуются малым (не более 10 000 кал1моль) значением энергии активации. Лишь для малоактивного радикала НОг , свойства которого близки к свойствам насыщенной молекулы, получено большее значение энергии активации. Это и понятно, ибо наличие свободной валентности в исходной системе энергетически облегчает осуще- етвление реакции. По этой же причине для многих реакций [c.135]

    Но не исключен и другой механизм протекания процесса. Скорость процесса может определяться медленными реакциями образона1И1я свободных радикалов. Если учесть, что возникающие свободные радикалы при достаточно больших давлениях (прн которых проводится крекинг) ле ко гибнут, а скорость возникновения радикалов в результате распада исходных молекул мала из за высокой энергии активации этого процесса ( ==7U ккал), то скорость крек1Н1га будет определяться скоростью этих двух процессов — процесса распада исходных молекул на свободные радикалы и процесса взаимодействия радикалов с исходными молекулами, т. е. [c.211]

    Однако действие свободных радикалов нельзя сводить просто к общему торможению предпламенного процесса они затрудняют развитие именно низкотемпературного многостадийного процесса, в то же время облегчая развитие окислительных реакций, свойственных высокотемпературному одностадийному воспламенению [8]. Именно этим обстоятельством А. С. Соколик [8] объясняет снижение антидетонационного эффекта при увеличении содержания антидетонатора в топливе и даже обращение этого эффекта, когда при очень высоких концентрациях тетраэтилсвинца последний начинает действовать как продетонатор. В этом случае, вероятно, имеет место объемное одностадийное воспламенение благодаря резкому снижению энергии активации в результате ввода в газ большого количества активных начальных центров. [c.131]

    Активацид микросфер. Для активации разбавленный раствор сернокислого алюминия (0,08—0,1 п.) пропускают через слой сырых микросфер. Для лзгчшей обработки процесс ведут при постоянном легком перемешивании воздухом. Продолжительность процесса 12 ч. В результате активации содержание натрия в катализаторе снижается с 5—6 до 0,2% и ниже, а содержание алюминия повышается с 7—9 до 12—13%. Чем полнее замещен натрий, тем выше качество катализатора. Активирующий раствор не должен содержать свободной серной кислоты, так как присутствие ее в самых незначительных количествах препятствует обменной реакции. [c.59]


Смотреть страницы где упоминается термин Свободная активации: [c.222]    [c.246]    [c.258]    [c.219]    [c.342]    [c.149]    [c.141]    [c.133]    [c.149]    [c.310]    [c.373]    [c.123]   
Кинетика и катализ (1963) -- [ c.50 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Активации свободная энергия электродной реакции

Активация стандартная свободная энерги

Взаимодействие фермента с свободная энергия активации

Диффузия свободная энтальпия активации

Избыточная свободная энергия активации, уравнение

Кальциевая АТФаза эритроцитов, активация свободным кальцием

Кеезома свободная активация

Маркуса формула для свободной энергии активации

Определение энергии активации процесса диссоциации органических соединений на свободные радикалы

Реакции диффузионно-контролируемые свободные энергии активации

Свободная активации вязкости

Свободная валентность и энергия активации

Свободная энергия (энергия Гельмгольца) активации

Свободная энергия активаци

Свободная энергия активации

Свободная энергия активации РНК-спирали

Свободная энергия активации Связь

Свободная энергия активации биохимических веществ

Свободная энергия активации вязкого течения

Свободная энергия активации для рацемизации оптически деятельных бифенилов

Свободная энергия активации уравнение

Свободная энергия, стандартная активации

Свободная энтальпия активации

Свободно-радикальная полимеризаци энергии активации и предэкспоненциальный множитель

Свободные электроны энергия активации перескока

Свободных радикалов реакции энергии активации

Скорость реакции и свободная энергия активации

Стандартная свободная энтальпия активации

Теплота активации процесса денатурации свободная энергия

Чтобы вычислить свободную энергию активации A Gf, исходя из известного значения Igk, нужно

Эволюционные изменения свободной энергии активации (заключительные замечания)

Энергия, активации свободная энергия

Энтальпия активации и свободная энтальпия активации

или или Диметил диоксан, свободная энергия активации



© 2025 chem21.info Реклама на сайте