Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты кристаллической структуры полимера

    Структурная неоднородность полимеров (кристаллиты, фибриллы, сферолиты, глобулы, пачки, различные другие микрообласти упорядоченной структуры и т. д.) и различные дефекты (исходные микротрещины, включая следы предыдущих воздействий, дефекты кристаллических областей и др.) являются причинами неравномерности распределения нагрузок по объему тел. [c.324]

    В реальных кристаллических полимерных материалах наряду с пачечными образованиями могут быть и глобулярные, представляющие собой аморфные образования. Всю аморфную часть полимера можно разделить на два типа структур. Первая — это аморфная часть, образованная сегментами макромолекул, участвующих в какой-либо мере в построении кристаллических образований. В нее входят дефекты кристаллической структуры полимера — разупорядочения при повороте пачек во время укладки ленты и аморфные области в частично закристаллизованных пачках. Второй тип аморфных структур — глобулы. [c.35]


    Таким образом, рассматривая явление сорбции низкомолекулярных веществ полимерами, в настоящее время трудно провести четкую границу между процессами поверхностной адсорбции по различным дефектам и локальным неоднородностям в аморфных областях полимеров и достаточно равномерного объемного распределения сорбированного вещества по объему аморфных участков и молекулярным дефектам кристаллической структуры. [c.25]

    При исследовании процессов проницаемости в большинстве случаев исходят из предположений, что полимер является структурно однородным и можно считать, что перенос вещества происходит в сплошной среде по простому активационному механизму. Однако совсем недавно были получены данные о микропористой структуре некоторых аморфных полимеров ниже или вблизи их температуры стеклования а также частично кристаллических полимеров выше их температуры стеклования . Присутствие микропор, мелких каналов, трещин или других дефектов в структуре полимера позволяет диффундирующему веществу свободно перемещаться через среду наряду с перемещением по механизму активированной диффузии. Одновременная диффузия и конвекция наблюдались в некоторых системах твердое тело — диффундирующее вещество , 195 210, 218 Математический анализ такого механизма переноса был проведен Фришем . [c.207]

    Другие формы искусственного углерода, не упоминавшиеся в предыдущих разделах, не представляют особого интереса для целей настоящей монографии. Поскольку все они являются полимерами углерода с грубыми дефектами, кристаллическая структура идеального графита может оказаться неподходящей моделью для их описания. Как уже указывалось ранее, при использовании твердого или жидкого [c.47]

    Общая степень кристалличности в различных полимерах колеблется от 10 до 90%. Аморфная часть может составлять поэтому половину и более от общей массы полимера. В аморфную часть входят дефекты кристаллической структуры, т. е. те аморфные области, которые показаны в качестве примера на рис. 20, а также аморфные глобулярные структуры и иные надмолекулярные структуры, не успевшие закристаллизоваться и не связанные общими макромолекулами с кристаллитами. Только глобулярные структуры и все другие не закристаллизовавшиеся молекулы и их ассоциаты могут быть физически отделены от кристаллической фазы полимера и поэтому рассматриваются как аморфная фаза. Дефекты кристаллической структуры, количество которых очень велико, обычно не считаются отдельной фазой, так как химически связаны с кристаллитами и не имеют ограничивающей их поверхности раздела. Поэтому кристаллические полимеры считаются практически однофазными, но сильно дефектными кристаллическими структурами. [c.37]


    В качестве ловушек обычно выступают различные дефекты кристаллической структуры, чужеродные атомы и т. п. Если полимер нагревать, то в интервале перехода от стеклообразного состояния к высокоэластичному происходит скачкообразное увеличение подвижности элементов структуры макромолекул-. Поэтому при разогреве полимера в температурной области перехода в высокоэластическое состояние электроны, захваченные ловушками , освобождаются и рекомбинируют с ионами. Этот процесс сопровождается свечением. Интенсивность свечения проходит через максимумы при тех температурах, при которых наблюдается переход в высокоэластическое состояние. Наблюдая радиотермолюминесценцию можно помимо определения областей переходов получить также сведения об их характере. Следует отметить, что этот метод не позволяет определить переходы в областях температур выше +80- -100° С. [c.97]

    На рис. 136 показан один из дефектов кристаллической структуры, в кристаллите одна из макромолекул образовала петлю, а петля могла бы исчезнуть, выпрямиться, не будь химических связей между образующими ее сегментами. Существует также много видов других микродефектов. Эти микродефекты не остаются неизменными. В процессе теплового движения структура кристаллического полимера меняется, так что часть дефектов из кристаллических микрообластей [c.194]

    Одновременно в кристаллизующемся материале присутствует аморфная фаза, построенная из полимерных глобул, не закристаллизованных пачек , различных дефектов, присущих кристаллическим структурам (например, области поворота пачек в лентах ), В аморфных полимерах вторичная структура характеризуется жидкостной и газокристаллической ориентацией макромолекул внутри пачек . В свою очередь, пачки образуют фибриллярные структуры, различные по форме и размерам. [c.65]

    Ориентацией называется технологический процесс, при котором пол действием внешних сил улучшается взаимное упорядочение макромолекул в аморфных и кристаллических областях полимера и устраняются дефекты в структуре цепей. Благодаря этому значительно повышается интенсивность межмолекулярного взаимодействия, вследствие чего полимер приобретает новые ценные свойства. [c.279]

    Полимеры второго типа со степенью кристалличности, близкой к 100%, рассматривают как однофазные кристаллические системы с дефектами кристаллической решетки. Процесс кристаллизации - упорядочения макромолекул - идет постепенно, по стадиям, с образованием промежуточных элементов надмолекулярной структуры. Возможны два [c.139]

    Степень кристалличности, совершенство кристаллических структур и интервал плавления полимера зависят от скорости (времени) и температуры кристаллизации. Проявление этой зависимости связано с релаксационным характером процесса кристаллизации. Так, если при заданной температуре кристаллизацию осуществлять медленно, т. е. при большой длительности протекания релаксационных процессов, образуются кристаллические структуры с меньшим числом дефектов. Форма этих структур более совершенна, значит, выше и температура плавления полимера. [c.28]

    Если полимер находится при температуре ниже температуры стеклования, то снижение прочности с уменьшением степени полимеризации связано с уменьшением способности к дополнительной ориентации в месте роста дефекта. Возрастает хрупкость полимера. Реальный полимер характеризуется наличием многообразных надмолекулярных образований, в том числе кристаллических. Поэтому разрушение реального полимера, если он не ориентирован предварительно, происходит путем скольжения ассоциатов молекул. Это существенно изменяет соотношение суммарных прочностей химических и межмолекулярных связей. Так как при этом происходит суммирование не только сил межмолекулярного взаимодействия, но и сил главных химических валентностей цепей, образующих надмолекулярные структуры, то становится при прочих равных условиях вероятнее разрыв межмолекулярных связей. [c.176]

    На рис. II. 5 представлены изотермы сорбции паров толуола полиуретаном, наполненным аэросилом, при 25 и 45 °С. Аналогичный вид имеют изотермы сорбции саженаполненными полимерами. Как видно из рис. II. 5, изотермы сорбции паров толуола полимерами, содержащими наполнитель, лежат ниже изотерм ненаполненных образцов. Это связано с тем, что введение в кристаллизующиеся полимеры наполнителей, ограничивающих подвижность цепей, неизбежно приводит к образованию дефектов в кристаллической структуре, т. е. к снижению степени кристалличности. Так как сорбционной способностью обладают не кристаллические образования, а лишь дефектные, неплотно упакованные области и константы диффузии возрастают с повышением доли аморфной части, то, казалось бы, введение наполнителя должно приводить к увеличению сорбции. Однако необходимо принять во внимание то, что наряду с увеличением содержания аморфной фазы происходит ограничение числа возможных конформации цепей в этой фазе тем более сильное, чем больше наполнителя введено в систему. Поэтому эффект конформационных затруднений превалирует над эффектом возрастания доли аморфной фазы, оказывая решающее влияние на сорбцию. [c.77]


    При меньшей скорости кристаллизации, т. е. при большем времени для протекания релаксационных процессов при данной температуре, образуются кристаллиты с меньшим числом дефектов в. их структуре. Форма кристаллитов более совершенна, а следовательно, и температура их плавления выше. Увеличение времени выдержки полимера в процессе кристаллизации, приводящее к более полному протеканию релаксационных процессов, приведет также к уменьшению внутренних напряжений в кристаллических структурах, а следовательно, и к повышению температуры их плавления. Поэтому же при медленной кристаллизации интервал плавления снижается. [c.119]

    Неравновесный характер полимерных кристаллов и наличие в них многочисленных дефектов различного характера создает большие возможности для совершенствования образовавшейся при кристаллизации структуры в процессе отжига. В книге предпринята попытка дать общую характеристику протекающих при отжиге процессов и с этих позиций проанализировать поведение при отжиге различных кристаллических полимеров. В результате этого анализа становится очевидно, что несмотря на значительный объем экспериментальных и теоретических работ, эта область физики кристаллического состояния полимеров остается, пожалуй, наименее изученной. [c.7]

    В первом томе настоящей монографии (гл. 2-4) рассмотрены кристаллическая структура, морфология и дефекты макромолекулярных кристаллов, т.е. кристаллов, образованных макромолекулами. Второй т-ом посвящен процессам, приводящим к переходу макромолекул в кристалл. Образование кристаллов, их рост и перестройка при отжиге являют ся последовательными стадиями формирования кристаллического образца полимера (гл. 5 - 7). [c.10]

    При быстрой кристаллизации из расплава в большинстве крис-таллизуюпдихся полимеров возникают кристаллические образования, не видимые в световой микроскоп. Их размеры порядка 1Ь— 100 нм. В этом случае длина и ширина ламели ненамного превышает ее толщину. Большое число дефектов в кристаллических структурах полимеров, особенно в мелких кристаллических обра зованиях, отличает их от монокристаллов. Это отличие состоит прежде всего в том, что в мелких кристаллических образованиях в расплаве не возникает очерченной границы раздела и нет строго определенной формы. Границы раздела кристаллической и аморфной части полимера размыты. Такие кристаллические образования в полимерах называют кристаллитами. [c.174]

    На рис. 28 приведены зависимости силы фототока от температуры для полидифенилдиацетилена. Видно, что с уменьще-нием длины волны света наклон прямых зависимости 1д1ф— /Т уменьшается, т. е. уменьшается энергия активации фотопроводимости. Это связывается с тем, что фотопроводимость осуществляется носителями, попадающими на уровень проводимости с уровней прилипания, куда они забрасываются при возбуждении молекул полупроводника светом. Чем меньще длина волны света, тем ближе к зоне проводимости забрасываются носители и тем, соответственно, меньше энергия активации фотопроводимости. Приведенные на рис. 28 данные свидетельствуют о наличии в полимерных полупроводниках ловушек с различной глубиной залегания относительно зоны проводимости. Обычно ловушки носителей связаны либо с примесями, либо с дефектами строения макромолекул или кристаллической структуры полимера [4, с. 47]. Зависимость фототока от освещенности L описывается формулой ф = onst L", где п изменяется от 0,5 до 1,0 [38]. [c.69]

    За счет проходных молекул или образования петлеобразных участков, выходящих из плоскости складывания, возникают дефектные (аморфные) области, связанные с кристаллитами. Но при этом полимер, как бы велико не было содержание в нем аморфных областей, остается однофазной кристаллической системой, так как физическое разделение этих областей невозможно. Поэтому неупорядоченные области на границе между ламелями можно рассматривать как дефекты кристаллической структуры. При этом в межламелярное пространство, как правило, вытесняются некристаллические компоненты (низкомолекулярные фракции полимера, примеси, боковые ответвления макромолекул и т. д.). Дефектность кристаллических структур обычно характеризуют степенью кристалличности, которая зависит как от строения полимера, так и от условий кристаллизации. Например, среднее значение степени кристалличности полиэтилена высокой плотности 80—90 %, а полиэтилена низкой плотности 50—60 %. Это снижение степени кристалличности объясняется тем, что узлы разветвлений полиэтилена низкой плотности не входят в кристаллическую решетку или, входя в нее, образуют сильно дефектные решетки. [c.17]

    Однако рентгеноструктурный анализ был и остается плодотворным методом исследования кристаллических полимеров. Примером может явиться определение параметров элементарной ячейки полимерного кристалла. Так, было показано, что разветвленность в полиэтилене не только увеличивает количество дефектов кристаллической структуры (аморфной части), но и меняет размеры элементарной ячейки кристалла. Поперечные размеры ячейки полиэтилена после образования разветвлений увеличиваются с 7,36x4,94 А до 7,68x5,08 А, длина ячейки остается при этом без изменений. [c.35]

    Используемый для этой схемы дисперсионный ПТФЭ представляет собой белый легко комкующийся порощок, который следует хранить при температуре не выше 16°С (температуры первого фазового перехода), когда полимер имеет триклинную кристаллическую структуру [33]. При температуре выше 19° С, когда кристаллическая структура полимера гексагональна, он весьма чувствителен к деформации и частицы его под воздействием внешних нагрузок легко ориентируются и комкуют-ся. Дальнейшая переработка предварительно ориентированных частиц затрудняет процесс экструзии и служит причиной образования дефектов изоляции. Транспортируют порошок в полиэтиленовых мешках, которые помещают в легкие картонные или металлические контейнеры емкостью до 5 кг. При транспортировке следует избегать резкого встряхивания, сжатия и других механических воздействий. Несоблюдение правил транспортирования и хранения приводит к резкому увеличению отходов при дальнейшей переработке. [c.94]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    Для выяснения влияния дефектов на характер рентгеновского рассеяния (т. е. на вид рентгенограмм полимеров) Хоземанном была предложена модель идеального паракристалла. Паракри-сталл получается из монокристалла путем изменения углов между единичными трансляциями в различных элементарных ячейках без изменения длин этих трансляций (рис. VI. 3). Анализ показал, что дефектность кристаллической структуры в полимерах приводит к уширению дифракционных рефлексов и изменению их [c.170]

    Несмотря на то, что моиокристагшы являются самыми совершенными кристаллическими структурами, степень кристалличности у них никогда не достигает 100%. При этом области с меньшей упорядоченностью рассматривают не как аморфную фазу, а как дефекты кристаллической решетки. Они возникают, например, в областях складок, проходных макромолекул и т. п. Размеры, форма и дефектность монокристаллов зависят от природы полимера и условий кристаллизации. Аморфную фазу с поверхностью раздела в кристаллическом пслимере можно обнаружить лишь в виде примеси, например, глобул. Следует подчеркнуть, что в случае однофазньгх кристаллических полимеров структурное и термодинамическое понятия фазы совпадают. [c.141]

    По всей вероятности, целлюлоза представляет собой сложную аморфно-кристаллическую систему, в которой обе фазы неоднородны. Результаты исследования структуры целлюлозы, полученные Иоеловичем, позволяют устранить кажущиеся противоречия. Он предложил разделить целлюлозу на кристаллическую и некристаллическую части, вьщелив в последней истинно аморфную, частично упорядоченную и паракристалличе-скую части (см. 9.4.5). В кристаллических участках целлюлозы, как и у всех полимеров, неизбежны дефекты кристаллической решетки (см. 5.3). [c.238]

    С помощью специальных методов электронно-микроскопических исследований (декорирования) удалось показать, что ориентирующее и зародышеобразующее действие подложки проявляется не по всей поверхности, а локализовано в активных центрах, которыми в случае кристаллических подложек являются места выхода дислокаций, центры вакансий, границы блоков, структурные дефекты. Дефекты обладают избыточной свободной энергией, и на них происходят поверхностные реакции. В результате структура граничных слоев, формирующихся на этих поверхностях, оказывается измененной. Так, кристаллизация полиэтилена на стекле сопровождается развитием обычной сферолитной структуры, в то время как на свежем сколе кристалла КаС1 возникает [379] двухосная текстура игольчатых кристаллов [379], расположенных под углом 82° друг к другу (рис. 111.33, см. вклейку). Аналогичные результаты получены в работе [359]. Полистирольный латекс на поверхности слюды образует равномерные небольшие скопления, а на угольной пленке возникаюг крупные агломераты [357] (рис. 111.34, см. вклейку). Дальнодействие проявляющихся в этих случаях сил оказывается весьма значительным, оно достигает иногда несколько сот и даже тысяч ангстремов [378—381]. Было установлено [221], что структурноактивные добавки, т. е. вещества, в присутствии которых преобразуется надмолекулярная структура полимеров, способны к химическому взаимодействию с макромолекулами. Так, в частности, с помощью ИК-спектров удалось наблюдать взаимодействие хлоридов меди и цинка с полиамидами, точнее, с модельным веществом форманилидом. Изменения в ИК-спектрах свидетельствовали об участии групп С= О и КН форманилида в образовании хелатных комплексов с добавками. Хлорид свинца в этих [c.141]

    Эффект стереорегулярности можно поэтому объяснить ориентацией мономера на новерхности кристаллической решетки катализатора либо в стадии образования я-комплекса с катализатором, либо в переходном состоянии. Такое представление делает понятной связь между кристаллической структурой катализатора и его стереоспецифичностью. Необходимо подчеркнуть, что образование макромолекулы изотактического строения является энергетически менее выгодным, так как в этом случае расстояния между ближайшими боковыми группами полимерной цепи оказываются наименьшими. При синтезе изотактических полимеров катализатор навязывает растущей цепи структуру, менее вероятную с термодинамической точки зрения. Поэтому для объяснения механизма стереоспецифичности недостаточно приписать твердому катализатору ориентирующую способность по отношению к растущей цепи. Детальная интерпретация этого явления требует сопоставления пространственных структур катализатора и мономера с микроструктурой полимера. Как полагает Косси [40], для системы пропилен—Ti lg—AlRg можно принять, что начало реакции происходит за счет вакантного места (дефекта) на новерхности кристаллической решетки катализатора (образование я-комплекса мономера с титаном), рост идет но связи Ti—С и снова возникает вакантное место при закреплении очередной молекулы мономера в составе растущей цепи  [c.419]

    Трудность физического описания кристаллизующихся полимеров заключается в том, что они представляют собой смесь твердых (кристаллических) и жидких (аморфных) областей. В случае низкомолекулярных соединений исследование кристаллов, в которых молекулы расположены в определенном порядке, не сопряжено с какими-либо трудностями благодаря тому, что теория твердого тела разработана гораздо лучше теории жидкого состояния. Разумеется, метод, например, дифракции рентгеновского излучения является достаточно эффективным и нри исследовании молекулярного строения полимеров, однако в этом случае на рентгенограммах уже не наблюдаются такие же четкие рефлексы, как, в частности, в случае металлов к тому же практически отсутствуют рефлексы более высоких порядков. Причина этого, естественно, заключается в том, что полимеры не сдособны закристаллизоваться нацело , в результате чего в них всегда имеются некристаллические участки. Другая причина состоит в том, что даже в закристаллизованных участках имеются дефекты, природа которых, однако, совершенно ин1я, чем дефектов кристаллической решетки металлов. В случае металлов можно говорить о монокристаллах и их агрегатах и, таким образом, вести обсуждение в терминах ноликристаллической структуры. [c.168]

    Поскольку, как уже упоминалось ранее, тонкая структура кристаллизующегося полимера в первом приближении может быть опи-сана как своего рода агрегация монокристаллов, совершенно естественно начать обсуждение с анализа влияния условий кристаллизации на свойства монокристаллов. Концы ценей и стереохимические дефекты, сходные по химической природе со связями главной цепи, могут также внедряться внутрь монокристалла, являясь дефектами кристаллической решетки, однако в силу специфичности самого явления складывания макромолекул, а также с учетом относительного содержания различных дефектов можно сделать вывод о том, что наиболее характерным дефектом монокристаллов, ответственным за образование неупорядоченных областей, являются все же участки петель на поверхности кристалла. В прошлом существовали различные мнения по поводу проблемы кристалличности, связанные большей частью с неопределенностью самого этого понятия (неупорядоченных областей), и поэтому теперь мы воспользуемся возможностью коснуться этой проблемы в ходе обсуждения явления образования полимерных монокристаллов. [c.223]

    Случай АН (рост предела с ростом температуры) отвечает отрицательной энергии активации цепной деструкции напряженных макромолекул и скорее может быть истолкован поэтому на основе гипотезы заготовок . Возможен, правда, и вариант нредэкспоненциального уменьшения Р с ростом температуры за счет появления побочного стока энергии возбуждения напряженных полимерных цепочек без их деструкции. Некоторое развитие гипотезы Каргина — Кабанова — Паписова может дать объяснение и уменьшению молекулярного веса полимера с ростом дозы излучения. Рост Цапряженных полимерных цепочек происходит, согласно этой концепции, до какого-либо дефекта кристаллической решетки. Поэтому молекулярный вес полимера может падать за счет возникновения радиационных дефектов или создания дефектов при самом образовании макромолекул в структуре мономера, а также вследствие частичной гибели напряженных цепочек (например, при наличии частичного отжига их в ходе облучения). [c.11]

    В наше время трудно назвать вце один такой класс веществ, как полимеры, в котором кинетические факторы играли бы столь же важную роль. Это в полной мере относится и к процессу образования кристаллической структуры в полимерах. Исследования кинетики зарождения и роста кристаллов в полимерах стали развиваться особенно интенсивно в конце 50-х - начале 60-х годов, после того как было установлено, что характерная особенность кристаллизации полимеров состоит в образовании кристаллитов, содержащих сложенные макромолекулы, и что рост таких кристаллитов определяется именно кинетическими факторами. Прогресс в установлении закономерностей и выяснении молекулярных механизмов кристаллизации полимеров к настоящему времени очевиден и несомненен.- Второй том монографии Б. Вундерлиха "Физика макромолекул является попыткой систематического рассмотрения и обобщения огромного, накопленного главным образом за последние 15 лет,экспериментального и теоретического материала, относящегося к кристаллизации полимеров. Это издание — логическое продолжение первого тома, в котором дано описание структуры, морфологии и дефектов в полимерных кристаллах. [c.5]

    В первом томе этой книги, состоящем из четырех глав, образованные макромолекулами кристаллы охарактеризованы на молекулярном уровне степенью сохранения дальнего порядка в положении атомов и самим положением атомов макромолекулы в кристаллической решетке (разд. 2.4). Показано, что факторами, определяющими образование различных кристаллических структур, являются потенциальные барьеры вращения вокруг ковалентных связей, существование поворотных изомеров и соблюдение принципа плотнейшей упаковки (разд. 2.3). Морфология кристаллов, как было обнаружено, тесно связана с макроконформацией молекул полимеров (разд. 3.2), а ла-мелярная и фибриллярная формы кристаллов являются наиболее общими и наиболее хорошо сформированными габитусами полимерных кристаллов (разд. 3.3 и 3.8). В разд. 4.2 и 4.3 также показано, что детальная характеристика кристаллического состояния линейных макромолекул в большой степени осложняется наличием кристаллических дефектов. [c.15]

    Таким образом, сферолиты представляют собой сложные поликристаллические образования, составленные из простейших структурных форм. Наличие сферолитов неизбежно влечет за собой увеличение степени дефектности кристаллической структуры по сравнению с возникающей в простейших структурных элементах. При этом сферолитам, естественно, присущи все виды дефектов, характерные для простейших структурных форм, — локальные искажения кристаллографических рещеток, неупорядоченные поверхности складывания макромолекулярных цепей и т. п. Кроме того, в сферолите даже после завершения кристаллизации часть материала может остаться аморфной и пе войти в кристаллические образования. Эта часть материала тем или иным способом (например, путем травления полимера) может быть выделена из вещества, и, таким образом, она представляет собой истинно аморфную фазу. Макромолекулы в таких областях находятся преимущественно в форме глобул. [c.92]

    В табл. 3 приведены значения межплоскостных расстояний для атактических сополимеров А-16 с ИПА и МА-16 с МАК. Как видно из этих данных, при введении до 50—60 мол. % сомономера сополимеры сохраняют кристаллическую структуру гексагонального типа и величину большого периода, свидетельствующую о сохранении слоевой упаковки макромолекул. Значения температур и теплот плавления для сополимеров уменьшаются с увеличением содержания ИПА. Снижение температуры плавления сополимеров происходит медленнее, чем должно быть по теории Флори, что связано с кристаллизацией сополимеров за счет боковых ответвлений. Теория Флори применима для кристаллизации линейных полимеров и не учитывает особого случая кристаллизации гребнеобразных полимеров за счет упаковки боковых цепей. Таким образом, для сополимеров гребнеобразного строения кристаллизация за счет упаковки боковых цепей осуществляется легко и в широком интервале составов, т. е. введение посторонних звеньев вносит сравнительно небольшой дефект в упаковку гребнеобразных молекул. Наоборот, при введении даже небольших количеств А-16 (4—6 мол. %) в нолинзопронил-акрилат изотактического строения последний становится аморфным, а при увеличении содержания А-16 до 10% сополимер обнаруживает все признаки гексагональной упаковки цепей, что наглядно демонстрирует влияние длинных боковых групп на способность полимеров к кристаллизации и открывает перспективы возможного регулирования этих процессов за счет введения длинноцепных мономеров в линейные полимеры путем сополимеризации. [c.147]

    Изучение монокристаллов полимеров. Метод ЯМР использовали для изучения структуры так называемых монокристаллов полиэтилена, получаемых при охлаждении разбавленных растворов полимера в ксилоле или других растворителях. Слихтер показал, что монокристалл полиэтилена, пе подвергнутый термической обработке, дает простую линию ЯМР (спектр снимался при комнатной температуре). Линия ЯМР препарата после его прогрева до 120—140 °( и последующего охлан-едения состоит из двух компонент широкой и узкой, причем интенсивность узкой компоненты тем больше, чем выше температура прогрева. Для появления узкой компоненты в спектре ЯМР достаточно нескольких минут прогрева образца, равновесная интенсивность узкой компоненты устанавливается после 30 мин термообработки. Петерлип и Пиркмайер также наблюдали появление узкой компоненты в линии ЯМР монокристаллического препарата полиэтилена после нагревания его выше 70 С. Был сделан вывод о том, что узкая компонента сигнала ЯМР соответствует областям с дефектной кристаллической структурой. К такому же выводу пришли Одадзима, Зауэр и Вудворд изучившие ЯМР препаратов кристаллов полиэтилена и ряда нормальных парафинов. Так, дефекты решетки, дающие узкую линию [c.158]


Смотреть страницы где упоминается термин Дефекты кристаллической структуры полимера: [c.47]    [c.238]    [c.17]    [c.187]    [c.191]    [c.61]    [c.173]    [c.191]    [c.181]    [c.228]    [c.43]   
Основы технологии переработки пластических масс (1983) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура



© 2025 chem21.info Реклама на сайте