Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливиниловый спирт пространственные

    При дегидратации поливинилового спирта в зависимости от условий реакции образуются продукты, аналогичные продуктам дегидратации многоатомных низкомолекулярных спиртов, — звенья, содержащие двойные связи, а также циклические эфиры. Одновременно происходит отщепление воды от двух молекул поливинилового спирта с образованием межмолекулярных связей, и получается полимер пространственного строения [c.234]


    При этерификации поливинилового спирта ангидридами соответствующих кислот в присутствии безводного уксуснокислого натрия или пиридина образуются сложные эфиры поливинилового спирта. Этим путем поливиниловый спирт может быть снова превращен в поливинилацетат. В результате полимераналогичных превращений получены формиаты, пропионаты, бутираты, фторацетаты, сульфаты, бензоаты и другие сложные эфиры поливинилового спирта. Интересные оптически активные эфиры поливинилового спирта получены с производными оптически активных аминокислот, например Ь-валином. Из продуктов этерификации поливинилового спирта в иромышленности применяются только эфиры поливинилового спирта, образованные двухосновными кислотами и имеющие, следовательно, пространственное строение. Для получения таких полиэфиров, обладающих хорошей водостойкостью, применяют, например, щавелевую или малеиновую кислоту. [c.235]

    Анализ представленных экспериментально полученных данных приводит к заключению о весьма слабом структурировании исследуемой системы. Если трехмерная пространственная сетка и пронизывает всю систему 10% раствора поливинилового спирта в воде, подобно тому как это обычно имеет место в жидкообразных структурированных системах типа гелей нафтената алюминия в органических растворителях, подробное изучение реологических свойств которых нами было проведено в более ранних работах [11], то локальные связи ее, обеспечивающие структуру сцепления, очень слабы, вследствие чего кривые кинетики нарастания напряжения во времени с включением начальной стадии деформирования отвечают монотонной зависимости, без максимумов, соответствующих прочности системы, даже в области высоких градиентов скоростей. Возможно, что пространственная сетка в водных растворах поливинилового спирта низких концентраций (до 10%) отсутствует совсем. Область же эффективной, падающей вязкости в среднем диапазоне напряжений сдвига связана скорее с ориентационным эффектом в стационарном потоке, чем с разрушением структуры системы. [c.181]

    Кроме гидроксилсодержащих смол пространственного строения, в качестве селективных сорбентов испытывались пленки поливинилового спирта и ПВГ, представляющий собой линейный нерастворимый полимер [c.314]

    В этих исследованиях использовались гели поливинилового спирта и полиакриловой кислоты, а водная фаза распределялась в макромолекулярной соединении в виде тонкой пространственной решетки. Процесс замораживания подобной системы схематически представлен на рис. 154. [c.208]


    В. А. Каргин с сотрудниками предложил новый способ оценки степени упорядоченности по ширине рефлексов, согласно которому сравниваются ширины линий на рентгенограммах и электронограммах одних и тех же полимеров. Если расширение линий вызвано размерами кристаллитов, то на основании уравнения (3) следует ожидать, что на электронограмме ширина линий будет приблизительно в 30 раз меньше, поскольку при прочих равных условиях длина волны рентгеновских лучей в 30 раз больше, чем длина волны электронов. Было показано, что для некоторых полимеров (например, поливиниловый спирт,, поливинилхлорид) ширина линии на электронограмме уменьшается всего в несколько раз. В то же время для коллоидных частиц золота, которые являются заведомо кристаллическими, совпадение теории и эксперимента вполне удовлетворительное. Если расширение линий не подчиняется уравнению (3), это означает, что в исследованных полимерах не имеется кристаллических областей, обладающих строго регулярной пространственной решеткой. В то же время, например, полиэтилен, судя [c.117]

    По отношению к минеральным маслам и бензину, которые состоят в основном из предельных углеводородов, нестойки неполярные полимеры. Даже при наличии пространственной сетки они набухают в этих средах. Поэтому натуральный каучук, синтетический полиизопрен, полибутадиен, бутадиен-стирольные каучуки нестойки к действию масел и бензина. Изделия из них нельзя эксплуатировать в маслах или в бензине. Очевидно, для этого следует применять каучуки, содержащие полярные группы. К числу масло- и бензостойких каучуков относятся полихлоропрен и бута-, диен-нитрильные каучуки. Стойкость последних к маслам повышается с увеличением содержания нитрильных групп. Высокой масло- и бензостойкостью обладают поливиниловый спирт и политетрафторэтилен, не растворяющийся и не набухающий ни в одном из известных растворителей. [c.298]

    Рассмотрим подробнее, какие типы взаимодействий могут возникать при образовании прочных межфазных адсорбционных слоев белков и полимеров. Проведенные исследования показывают, что прочность межфазных слоев поливинилового спирта и желатины уменьшается с повышением температуры и при добавлении салицилата натрия это означает, что основными типами связей, скрепляющих пространственную структуру, оказываются водородные связи. В случае глобулярных белков (вторая группа полимеров), у которых прочность межфазных адсорбционных слоев обусловлена в основном гидрофобными взаимодействиями, повышение температуры упрочняет возникающую структуру. Подобное влияние температуры и денатурирующих агентов наблюдалось и при исследовании объемного структурообразования в водных растворах рассмотренных полимеров. Таким образом, наблюдается полная аналогия механизмов образования прочных межфазных адсорбционных слоев и трехмерных (объемных) структур этих же высокомолекулярных поверхностно,-активных веществ. [c.53]

    При комнатной температуре отверждаются также материалы, которые получают растворением в воде сухих красок на основе продуктов деструкции поливинилового спирта или сольва-ров [114]. Пленкообразующая система, содержащая кроме пленкообразователя окислители и активаторы, при формировании покрытия в естественных условиях переходит в пространственно сшитый полимер с межмолекулярными ацеталь-ными и сложноэфирными связями. Лакокрасочные материалы такого типа могут быть использованы для внутренних покрытий в строительстве. [c.125]

    Надо полагать, что ацетатные группы (—О—СО—СНз) поливинилацетата, как и гидроксильные группы поливинилового спирта, должны располагаться в положениях 1,3. Однако пространственное расположение ацетатных групп не упорядочено, чем и объясняется отсутствие кристаллической структуры у поливинилацетата. [c.74]

    Все более важное место в лакокрасочной технологии занимают полиме-ризационные пленкообразующие вещества, многие из которых, обладая хорошей водостойкостью, твердостью и другими ценными свойствами, пригодны для получения защитных пленок и покрытий без перевода в пространственно-сшитое состояние. Для создания рецептур для покрытий пониженной горючести наибольшее применение находят поливинилацетат и другие производные поливинилового спирта, различные со- [c.82]

    Высокие технические результаты достигаются при применении поливинилового спирта при изготовлении фильтрующих элементов для очистки органических жидкостей и в особенности для очистки жидкого моторного топлива (С. Ушаков, Е. Лаврентьева, Р. Васина, Авт. свид. СССР 109591). Изготовление фильтрующих элементов осуществляется путем смешения волокнистого материала минерального или органического происхождения с водным раствором (8—10%-м) поливинилового спирта, получаемого путем сернокислотного гидролиза поливинилацетата и содержащего от 0.05 до 0.3% связанной (в виде кислого сернокислого эфира поливинилового спирта) серы. Такой поливиниловый спирт (являющийся по структуре сополимером винилового спирта и его кислого сернокислого эфира) легко дегидратируется при нагревании с образованием сшитого пространственного полимера, устойчивого против действия органических растворителей и достаточно гидрофобного, что имеет особое значение ввиду наличия некоторого количества воды в обычных моторных топливах. Пропитанная раствором поливинилового спирта масса наполнителя используется для формования фильтрующих элементов в специальных формах. Отформованные элементы подвергаются сушке при 105—120° и дополнительной обработке при 210—220°. Получаемые фильтры отличаются водостойкостью, высокой [c.163]


    Протекание реакции ацеталирования зависит от пространственного строения молекул поливинилового спирта [63, 64]. Это можно объяснить тем, что ацеталь образуется при взаимодействии с двумя гидроксильными группами, поэтому эта реакция зависит от стерических факторов. [c.287]

    Преобладание 1,3-структуры полностью подтверждается рентгенограммами волокон из поливинилового спирта, которые обнаруживают высокую степень кристалличности величина периода идентичности вдоль оси волокна 2,52 к [31] равна длине одного зигзага углеродной цепи, следовательно, группы ОН должны располагаться у чередующихся атомов углерода. Одно время считали [32, 33], что эти данные свидетельствуют также о том, что все группы ОН занимают соответствующее пространственное положение  [c.212]

    Др. вариант метода внеш. гелеобразования-гель-поддер-живающее осаждение - также включает массообмен на границе раздела двух фаз и отличается от описанного выше тем, что процессы получения золя и геля в объеме капли осуществляются без временного и пространственного их разделения. К р-ру соли металла (напр., нитрата Th) добавляют р-р полимера (напр., поливинилового спирта) и формамид в качестве модификатора пов-сти. Полученный р-р капельно диспергируется в ванну с р-ром NHj, где происходит образование частиц твердой фазы высокой дисперсности в объеме капли. Прочность частиц обеспечивается структурой, состоящей из переплетенных молекул поливинилового спирта. После отверждения гель-сферы промывают водой, сушат и прокаливают до требуемой плотности. Разработано неск. вариантов этого процесса для получения оксидов элементов III-VI и VIII групп с использованием разл. полимеров естеств. и искусств, происхождения, а также разл. ПАВ. [c.174]

    Иммобилизация ферментов путем включения в гель. Способ иммобилизации ферментов путем включения в трехмерную структуру полимерного геля широко распространен благодаря своей простоте и уникальности. Метод применим для иммобилизации не только индивидуальных ферментов, но и мультиэнзимных комплексов и даже интактных клеток. Иммобилизацию ферментов в геле осуществляют двумя способами. В первом случае фермент вводят в водный раствор мономера, а затем проводят полимеризацию, в результате которой возникает пространственная структура полимерного геля с включенными в его ячейки молекулами фермента. Во втором случае фермент вносят в раствор уже готового полимера, который впоследствии переводят в гелеобразное состояние. Для первого варианта используют гели полиакриламида, поливинилового спирта, поливинилпирролидона, силикагеля, для второго — гели крахмала, агар-агара, каррагинана, агарозы, фосфата кальция. [c.89]

    Полимераналогачные превращения происходят в результате химических реакций, обычно функциональных групп, а иногда других реакционноспособных центров полимеров, приводящие к получению полиме-раналогов приблизительно с той же длиной макромолекул и прежним химическим строением основной их цепи. Эти реакции часто используют на практике для модификации свойств полимеров. В результате полимераналогичных превращений образуются новые функциональные боковые группы, сложные фуппировки в виде циклов и других структур, а также, наоборот, происходит раскрытие боковых циклических группировок. Очень часто невозможно достигнуть полного превращения исходного полимера в целевой продукт из-за сложности конверсии функциональных групп, являющихся частью всей макромолекулы, которые имеют сложное пространственное строение. Типичным примером полимераналогичных превращений с образованием новых функциональных фупп является получение поливинилового спирта из поливинилацетата [c.99]

    Процесс стеклования сводится к скреплению соседних макромолекул между собой в пространственную сетку, в узлах которой находятся полярные группы. Сила притяжения между полярными группами значительно больше, чем между остальными участками цепей. При увеличении температуры узлы распадаются, чтобы снова возникнуть прн охлаждении. Непосредственное подтверждение этого механизма стеклования было получено Журковым при изу.чении инфракрасных спектров полимеров, содержащих группу ОН (поливиниловый спирт, фенолоформальдегидная смола), где узлы сетки образуются за счет водородных связей. Ниже Тст нагревание не вызывает заметных изменений в спекгре, выше Та закономерно падает интенсивность полосы, отвечающей водородным мостикам (связям), и одновременно возрастает интенсивность полосы, соответствующей свободным гидроксильным группам. [c.513]

    Об аналогичных пространственных затруднениях при модификации поливинилового спирта, полиакриловой кислоты и амидоксима полиакрилонитрила с помощью олово- и кремнийорганических соединений, а также различных хлорацильных производных сообщалось в серии работ Ч. Каррахера [37]. [c.20]

    Описан суспензионный метод полимеризации винилформиата с использованием в качестве инициатора органических борсодержащих соединений в присутствии кислорода или его соединений °° . В качестве инициаторов полимеризации винилформиата предложены цинкорганические соединения Кристаллический поливинилформиат получен трех типов. Полимер первого типа получен методом свободно-радикальной полимеризации при низких температурах, имеет синдиотактическую структуру полимер второго типа получен из изотактического эфира поливинилового спирта, он обладает ромбоэдрической элементарной ячейкой пространственной группы НЗс или КЗс с параметрами а = Ь = 15,9 с = 6,55 А и плотностью 1,49 третий тип— кристаллический поливинилформиат получен методом свободно-радикальной полимеризации в присутствии альдегидов, по мнению авторов, обладает синдиотактической структурой Полимеризацию винилформиата предложено проводить в среде винилформиата или его смесей с другими органическими растворителямиПолучены сополимеры винилформиата с винило- [c.583]

    Согласно литературным данным, в США и Англии изготавливаются в промышленных масштабах для использования в дозиметрии окрашенный полиметилметакрилат и бумага, покрытая поливинилхлоридом, содержащим краситель 1427, 437]. По изменению их окраски можно определять дозы в пределах от 0,1 до Ъ Мрад. В США для измерения доз различных видов излучения широко применяются выпускаемые промышленностью пленки из целлофана, содержащего некоторые красители [312, 352, 353]. Эти пленки обесцвечиваются под действием излучений. Степень обесцвечивания находится в линейной зависимости от величины дозы при ее изменениях от 0,1 до 10 Мрад. Все эти системы характеризуются независимостью показаний от изменений мощности дозы и температуры во время облучения, а также отсутствием эффекта последействия. До облучения они могут храниться в темноте в течение длительного времени. Эти системы используются для определения доз электронов и пространственного распределения поглощенной энергии в облучаемой среде. С их помощью контролируются процессы радиационной обработки различных материалов в производственных условиях. Для решения аналогичных задач в Институте физической химии им. Л. В. Писаржевского АН УССР был разработан метод химической дозиметрии, основанный на применении пленок из окрашенного поливинилового спирта [94]. Кроме того, был тщательно проверен и усовершенствован [40, 41 ] предложенный в свое время Гебелем [345] способ дозиметрии при помощи пленок из непластифицированной триацетилцеллюлозы. [c.56]

    Пленки из окрашенного поливинилового спирта применялись для определения пространственного распределения поглощенной энергии в образцах различных размеров и формы. Было показано, что благодаря независимости величины радиационного выхода от вида и энергии излучения их можно использовать для измерения доз уней-тронного излучения в ядерном реакторе, а также для измерения доз протонов, дейтронов и а-частиц с различной энергией при проведении опытов на циклотроне. [c.60]

    Лредварительными опытами было показано [14], что проницаемость геля определяется не только количеством сшивающего агента и соотношением компонентов в реакционной среде, но и длиной продольных цепей в пространственной полимерной сетке. При одной и той же концентрации раствора поливинилового спирта в воде, равной 1,2.10 г/мл, и одном и том же количестве диглицидного эфира диэтиленгликоля (0,2 моля на элементарное звено полимера) коэффициент набухания геля из поливинилового спирта с молекулярным весом 30000 равен 3,1 мл1мл, с молекулярным весом около 70000—12 мл мл. Было показано [15], что в разбавленных растворах высокомолекулярного поливинилового спирта реакции с бифункциональными веществами проходят преимущественно интрамолекулярно, т. е. внутри молекулярных [c.493]

    Химич. свойства М. связаны с природой функциональных групп, входящих в состав М. Специфическими химич. реакциями М. являются 1) деструкция полимеров, приводящая к разрыву цепей и снижению мол. веса 2) структурирование (см. Вулканизация), т. е. возникновение химич. связей между различными М., приводящее к возрастанию мол. веса и в пределе к образованию сплошной сетчатой структуры (см. Структурирование полимеров пространственное), 3) реакции присоединения и отщепления пизкомолекулярных веществ без изменения степени полимеризации, приводящие к образованию поли-мераналогов (напр., этерификация целлюлозы с получением простых и сложных эфиров целлюлозы, омыление поливипилацетата с получением поливинилового спирта, внутримолекулярное отщепление воды от полиакриловой кислоты с получением полиангидрида и т. п.). [c.518]

    Ацетали поливинилового спирта, свойства которых приведены в табл. 1.17, также существенно повышают прочностные характеристики клеевых композиций [35]. Взаимодействие ацеталей с эпоксидами, по-видимому, протекает главным образом за счет реакций между гидроксильными группами, в небольщих количествах присутствующих в макромолекулах ацеталей с гидроксильными и эпоксидными группами эпоксидного олигомера с образованием пространственных систем. [c.31]

    На рис. 72 представлены кривые рекомбинации радикалов -ЫзНз в различных матрицах. Данные показывают, что в матрице из поливинилового спирта радикалы МгОд значительно более устойчивы, чем в матрице гидразина. Радикалы поливинилового спирта начинают заметно рекомбинировать при еще более высокой температуре. Эти различия, очевидно, обусловлены неодинаковой подвижностью радикалов в разных матрицах и связаны с их пространственным смещением [142]. [c.323]

    Растворить полярные аморфные и аморфно-кристаллические полимеры со средней гибкостью цепей удается достаточно легко в полярных растворителях прн сравнительно невысоких температурах. К таким полимерам относятся поливиниловый спирт, поливинилхлорид, полиакрилонитрил н другие. Их растворимость молено менять, вводя некоторое количество друлих мономерных звеньев или снижая их химическую й пространственную регулярность другим путем. Из-за незначительной термической стойкости эти полимеры обычно де удается расплавить либо их пла вление сопровождается термическим разложением. Поэтому вполне понятно, что переработка х проводится только через растворы. [c.34]

    На основании реологических, теплофизических, физико-механических и структурных исследований было установлено, что при получении покрытий из олигомерных систем, расплавов и растворов полимеров на первой стадии процесса их формирования наблюдается образование локальных связей в пределах небольшого числа молекул или между отдельными ассоциатами, что сопровождается образованием надмолекулярных структур или агрегацией имеющихся структурных элементов. На второй стадии между этими структурами возникают связи, что приводит к резкому торможению релаксационных процессов и нарастанию внутренних напряжений. Такой характер структурообразования наблюдался при формировании пространственной сетки из ненасыщенных полиэфиров [46, 90], эпоксидов [118, 119], олигоэфируретанов [102, 120, 121], кремнийорганических олигомеров разного химического состава [122], фенолоформальдегид-ных и алкидных олигомеров [123], олигоэфиракрилатов, [96, 124, 125], растворов полиуретанов и эпоксидов [103, 126, 127], растворов поливинилового спирта и его производных [128], по-листирольных [129—131] и других пленкообразующих. Для предотвращения образования при формировании покрытий из растворов и расплавов полимеров и олигомерных систем неоднородной структуры, состоящей из крупных агрегированных структурных элементов, на начальной стадии их формирования осуществляется модификация пленкообразующих поверхностноактивными веществами с определенной структурой молекул. Изучение структурообразования в присутствии поверхностно-активных веществ свидетельствует о том, что они блокируют часть полярных групп пленкообразующего, изменяют конформацию молекул и препятствуют агрегации структурных элементов. Показано [42], что введение таких поверхностно-активных веществ в состав ненасыщенных полиэфиров позволяет создать упорядоченную структуру в покрытиях с более высокими прочностными и адгезионными свойствами и меньщими внутренними напряжениями как на начальной стадии формирования, так и после завершения процесса полимеризации. Такая структура [c.81]

    Вторая группа включает полимеры, проявляющие склонность к интромолекулярному отщеплению соответ ствующих атомов или групп, к реакциям циклизации конденсации, рекомбинации и другим типам реакции которые приводят к образованию нелетучих карбонизи рованных продуктов. К этой группе полимеров относят ся поливиниловый спирт и его производные, хлорсодер жащие полимеры винилового ряда полиакрилонитрил целлюлоза, фенолоформальдегидная, эпоксидная смолы полиамид, полиуретан. Общей чертой пиролитического процесса полимеров этой группы являются образование в макромолекулах участков с сопряженными кратными связями, переход от линейной структуры к пространственной— сетчатой. Как показывают данные, разложение органического связующего в этих материалах сопро- [c.38]

    Интересным примером анализа элементарной ячейки служит анализ поливинилового спирта [83]. Этот полимер не характеризуется единообразной структурой цепи, так как группы ОН беспорядочно распределены выше и ниже плоскости, на которой располагается хребет молекулы в виде плоского зигзага. Можно полагать, что цепь является сополимером изотактических и синдиотактических звеньев. По этой причине рассмотрение только единич-> ного звена С — С — О может оказаться недостаточным для предсказания скелетных типов колебаний. Поскольку нельзя различить типы колебаний, характерные для изотактических и синдиотактических участков полимерной цепи, приближенный анализ спектра может основываться на анализе группы элементарной ячейки полимера [84]. Такого рода анализ имеет два преимущества, а именно он позволяет правильно предсказать число ожидаемых типов колебаний и их поляризационные свойства. Пространственная группа элементарной ячейки поливинилового спирта изоморфна с точечной группой Сгл-Классы симметрии, характеры, число нормальных типов колебаний и поля- )изационные свойства приведены в табл. 11. Типы колебаний Аи должны [c.69]

    Объясняя аналогию зависимости АТ=Кп с законом Рауля, Журков полагает, что полярные полимеры (к которым относятся поливиниловый спирт и его производные), содержащие диполи, расположенные вдоль цепей, вследствие взаимодействия этих диполей представляют собой в застеклованнол состоянии пространственную сетку. При поглощении таким полимером полярных растворителей каждая его молекула взаимодействует только с одной полярной группой полимера и выключает ее при этом из взаимодействия с соседней полярной группой, что и приводит к снижению температуры стеклования. Таким образом, последнее должно быть пропорциопально только числу молекул растворителя, независимо от их формы и величины. Следует, однако, учитывать межмолекулярное действие за счет всей макромолекулы в целом. Если пластификатор совместим с полимером, то его действие заключается в экранировании дипольных групп и снижении энергии межмолекулярного притяжения за счет действия не только дипольных групп молекул пластификатора, [c.61]

    Термообработанное (З мин. при 220°) волокно (со степенью полимеризации поливинилового спирта 1030) подвергалось ацеталированию масляным, изовалериановым, энантовым, лауриновым, нафтальдегидом. По сравнению с формализованным волокном эти волокна несколько менее теплостойки во влажном и сухом состоянии, почти одинаковы по прочности и удлинению в сухом состоянии, но значительно превосходят формализованные волокна по прочности во влажном состоянии и имеют более высокие модули упругости. Более высокая степень ацеталировання высшими альдегидами обеспечивает больший процент упругой деформации при малых растяжениях, но меньший процент упругой деформации при большем растяжении, что, по-видимому, объясняется пространственным эффектом боковых цепей, вводимых в аморфные зоны волокна, при ацеталировании. [c.216]

    В случае поливинилацетата есть некоторые косвенные указания на вид нерегулярности. Поливиниловый спирт, который получается при гидролизе поливинилацетата, имеет регулярную структуру. Следовательно, в эфире боковые группы определенно принадлежат чередующимся углеродным атомам полимеризация, очевидно, происходит по схеме голова к хвосту . На первый взгляд кажется также (с точки зрения несомненной молекулярной структуры поливинилового спирта), что зфирные-группы должны занимать положения, соответствующие гидроксильным группам спирта. Однако на самом деле это не так если при гидролизе отщепляется вся группа — О — СО — СНз, то левый углеродный атом цепи (в данный момент) несет только один атом водорода, а другая связь свободна атом водорода может перейти из одного пространственного положения в другое под действием некоторого локального возбуждения, например группа ОН, принадлежащая соседнему углеродному атому цепи, может реагировать с водородом и таким образом становится возможным, что регулярно построенный поливиниловый спирт может произойти от нерегулярного поливинилацетата. Доказательство согласуется с той точкой зрения, что некристаллическая природа поливинилацетата обусловлена тем, что боковые группы вдоль цепи расположены в нерегулярном чередовании слева и справа относительно главной цепи. [c.180]

    Были проведены исследования влияния стереорегулярности полимерной цепи на механизм реакций, активируемых соседними гидроксильными группами в макромолекуле. Было усановлепо, что кислотный гидролиз поливинилацетата протекает значительно быстрее, если исходный полимер получен на основе синдиотактического поливинилового спирта [76а], равновесие при реакции ацеталирования зависит также от типа пространственной регулярности цепи макромолекул [766]. При омылении поливи-нилацетатов синдиотактический полимер обладает большей реакционной способностью, чем изотактический [76в] активирующая роль соседних гидроксильных групп в этом случае может быть отчетливо установлена на основании кинетических данных [76в, 76г]. Следует упомянуть также об исследовании щелочного гидролиза сополимера винилацетата и ма-леинового ангидрида, в котором звенья этих мономеров попере1 енно чередуются [76д]. Поведение этого сополимера при гидролизе таково, как было бы в том случае, если 50% эфирных групп имело бы реакционную способность в 10 раз больше, чем остальные группы. Этот факт трудно объяснить, так как звенья винилацетата отстоят сравнительно далеко друг от друга и разделены звеньями малеинового ангидрида, которые не затрагиваются в данной реакции. Авторы работы считают, что на реакцию гидролиза эфирных групп каталитическое влияние могут оказывать карбоксильные группы, которые перестают оказывать это влияние при образовании водородных связей между ними и гидроксильными группами. [c.37]


Смотреть страницы где упоминается термин Поливиниловый спирт пространственные: [c.513]    [c.190]    [c.304]    [c.171]    [c.87]    [c.366]    [c.136]    [c.137]    [c.146]    [c.142]    [c.258]    [c.255]    [c.178]   
Поливиниловый спирт и его производные Том 2 (1960) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поливиниловый спирт



© 2025 chem21.info Реклама на сайте