Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, влияющие на процесс полимеризации

    При рассмотрении математической модели процесса полимеризации [И] было установлено, что на распределение молекулярных весов влияют два противоположно действующих фактора, а именно  [c.115]

    Важным фактором, способным влиять на процесс полимеризации, является давление, когда оно достигает порядка тысяч атмосфер. Влияние давления на скорость реакции может быть приближенно описано уравнением Вант-Гоффа, примененным к переходному состоянию. Константа скорости реакции К связана с разностью объемов исходных веществ и переходного комплекса [c.242]


    Еще один важный момент, связанный с реакцией роста, касается микроструктуры полимеров, образующихся в катионных системах. Имеющиеся по этому вопросу сведения находятся в соответствии с данными о зависимости скорости реакции роста от природы среды и инициатора те же факторы влияют па тип построения звена. Это явление, которое в равной мере относится и к анионной полимеризации, нетрудно попять па основе высказанных выше соображений о причинах изменения константы роста с изменением полярности среды или природы противоиона. По существу, процесс полимеризации, в котором возможны различные типы присоединения мономера к растущей цепи, характеризуется наличием нескольких констант скорости реакции роста. Мы это уже отмечали при рассмотрении зависимости микроструктуры полимерной цени от температуры при радикальном инициировании. Следовательно, измеряемая экспериментально константа роста представляет собой суммарную величину, а именно  [c.315]

    Это положение можно распространить на процесс полимеризации с участием свободных ионов. Правда, в этом случае появляется новый фактор — среда, свойства которой могут влиять на активность свободного иона. [c.54]

    Какие факторы влияют на процесс полимеризации  [c.230]

    Эмульсионные полидивиниловые каучуки и эмульсионные сополимеры дивинила и стирола содержат около 20% боковых двойных связей (соединений типа 1,2). Такие факторы процесса полимеризации, как температура, степень превращения, содержание стирола, тип инициатора, эмульгатора и регулятора, мало влияют на соотношение в полимере звеньев 1,2 и 1,4. Даже замена второго мономера в сополимерах в ряде случаев не вызывает изменения этого соотношения. [c.342]

    На процесс полимеризации влияет ряд факторов, в частности вид и количество эмульгаторов и инициаторов, pH среды и др. С увеличением концентрации эмульгатора и инициатора скорость реакции растет. [c.143]

    Для реакций полимеризации давление является одним из решающих факторов. Оно отражается не только на составе крекинг-бензина, который содержит олефинов тем меньше, чем выше было давление при крекинге. При повышении давления увеличивается удельный вес бензина. Последнее обстоятельство указывает на повышение содержания циклических углеводородов. Так, например, при крекинге газойля при 450° и 15 ат получают беизин удельного веса 0,750 и с йодным числом 128, тогда как при тех и е условиях, но при давлении 110 ат из того же газойля получают бензин удельного веса 0,770 и с йодным числом 48,5. Еще сильнее давление влияет на состав крекинг-газов, которые нас должны особенно интересовать. При одном и том же выходе бензина количество крекинг-газов и содержание олефинов в них тем меньше, чем больше давление, под которым проводили крекинг. Это объясняется вторичными реакциями, состоящими в термической полимеризации образовавшихся олефинов, которая, как известно, сильно завпсит от давления. Вместе с тем понижение выхода олефинов при увеличении давления частично вызвано процессами алкилирования. [c.233]


    На процесс полимеризации влияют различные факторы. Так, повышение температуры ускоряет процесс, уменьшает индукционный период (время до заметного образования полимера) и сокращает время до достижения равновесия. С повышением температуры молекулярная масса полимера уменьшается. [c.27]

    Специфическими радиационно-химическими факторами в радиационной полимеризации являются доза облучения (поглощенная доза) и мощность дозы. На процесс полимеризации влияют и обычные факторы температура, давление, растворители. [c.23]

    На полимеризацию, как уже указывалось, благоприятно влияет повышение давления. Это обусловлено не только термодинамическими факторами, но и значительным ускорением процесса и возможностью работы без регенерации катализатора. При низком давлении на катализаторе постепенно сорбируются высшие продукты полимеризации и осмоления при повышении давления часть продуктов полимеризации конденсируется, увлекая с собой в жидкую фазу (вымывая) соединения, дезактивирующие катализатор. Обычно работают при 3—6 МПа, что обеспечивает длительный срок службы катализатора без регенерации. [c.57]

    При полимеризации в эмульсиях мономер, водорастворимый инициатор, стабилизатор и другие добавки распределяются при интенсивном перемешивании в воде или водных растворах солей в присутствии эмульгатора, образуя эмульсию. Скорость процесса больше, чем при полимеризации в массе, а образовавшийся полимер имеет наиболее высокую молекулярную массу. Реакционные смеси, как правило, состоят из большого числа компонентов жидкого мономера (15—30% от массы всей смеси), воды (60—80%), эмульгатора, инициатора, растворимого в воде, и регуляторов (pH среды, поверхностного натяжения, степени полимеризации и разветвленности полимера). Величина pH среды влияет на скорость полимеризации, а также на качество и выход образующегося полимера. Кроме того, на кинетику процесса и степень полимеризации будущего полимера влияют температура и время процесса, количество инициатора, количество и характер эмульгатора, а также скорость механического перемешивания н другие факторы. Получив полимер с нужными свойствами, добавляют кислоты или другие электролиты для разрушения эмульсии. [c.196]

    Прочие факторы. Скорость полимеризации пропорциональна концентрации мономера и катализатора в растворе и температуре процесса. Температура и концентрация мономера в растворе влияют также на молекулярную массу получаемого полимера с понижением температуры реакции и повышением концентрации мономера молекулярная масса каучука повышается. Степень конверсии мономера не оказывает заметного влияния на свойства СКИ-3. [c.156]

    Реакционные смеси, как правило, состоят из большого числа компонентов жидкого мономера, воды, эмульгатора, инициатора, растворимого в воде, и регуляторов pH среды, поверхностного натяжения, степени полимеризации и разветвленности полимера. Величина pH среды влияет на скорость полимеризации, а также на качество и выход образующегося полимера. Кроме того, на кинетику процесса и степень полимеризации будущего полимера влияют температура и время процесса, количество инициатора, количество и характер эмульгатора, а также скорость механического перемешивания и др. факторы. [c.544]

    Как показывает опыт (рис. 66), скорость полимеризации падает в этих условиях почти до нуля, так как радикалы стирола взаимодействуют с винилацетатом чрезвычайно медленно, а мономерного стирола в реакционной смеси почти нет. Аналогичным образом и по тем же причинам небольшая добавка бутадиена резко снижает скорость полимеризации малоактивного мономера винилхлорида (рис. 67). Напротив, введение незначительного количества винилацетата в стирол не влияет на скорость полимеризации последнего, так как при этом растущие стирольные радикалы будут по-прежнему иметь возможность реагировать со стиролом. Падение скорости полимеризации, которое отмечается при дальнейшем увеличении концентрации винилацетата, является простым результатом разбавления стирола. Крайние точки на кривой, приведенной на рис. 66, позволяют ответить на вопрос, который был поставлен выше. Как следует из сопоставления данных по раздельной полимеризации винилацетата и стирола, первый из этих мономеров нолимеризуется с гораздо большей скоростью. Это указывает на решающую роль активности свободного радикала как фактора, определяющего скорость процесса рост общей скорости полимеризации совпадает с ростом реакционноспособности соответствующих макрорадикалов. Таков главный вывод из большого числа данных для различных мономеров. Отсюда вытекает, что повышение реакционноспособности мономера вследствие сопряжения с заместителем при двойной связи не может скомпенсировать понижения активности отвечающего этому мономеру радикала. [c.222]


    Наиболее распространенным катализатором для этого процесса является фосфорная кислота на твердом носителе (широкопористый силикагель, алюмосиликат). Выбор параметров процесса наряду с отмеченными ранее факторами обусловлен экономическими соображениями, особенно снижением энергетических затрат на получение пара и рециркуляцию непревращенных веществ. Температура противоположным образом влияет на равновесие и на скорость кроме того, ее повышение ведет к усиленной полимеризации олефина и уносу фосфорной кислоты с носителя. Поэтому гидратацию этилена ведут при [c.180]

    Реакционные смеси, как правило, состоят из большого числа компонентов жидкого мономера (15—30% от массы всей смеси), воды (60—80%), эмульгатора, инициатора, растворимого в воде, и регуляторов pH среды, поверхностного натяжения, степени полимеризации и разветвленности полимера. Величина pH среды влияет на скорость полимеризации, а также на качество и выход образующегося полимера. Кроме того, на кинетику процесса и степень полимеризации будущего полимера влияют температура и время процесса, количество инициатора, количество и характер эмульгатора, а также скорость механического перемешивания и другие факторы. Получив полимер с нужными свойствами, добавляют кислоты или другие электролиты для разрушения эмульсии. [c.542]

    При полимеризации в растворе отсутствуют факторы, связанные с гетерогенными условиями процесса, в то время как при полимеризации в массе эти факторы могут влиять на скорость реакции и состав сополимера. В последнем случае, вероятно, либо нет избирательной адсорбции мономеров на поверхности полимера, либо скорость пополнения используемых мономеров так велика, что предотвращает избирательную адсорбцию. Анализ сополимеризации в присутствии избытка мономера подтверждает второе предположение. [c.386]

    Выше были описаны три области полимеризации в растворе, на поверхности и внутри полимера. Внутренняя полимеризация играет важную роль при высоком содержании акрилонитрила и, вероятно, больше влияет на структуру сополимера, чем на его состав. То обстоятельство, что реакция роста контролируется диффузией, делает эту область полимеризации относительно несущественной при определении состава сополимера. Уже было показано, что в присутствии избытка мономера состав сополимера зависит от скорости пополнения мономеров и, таким образом, факторы, влияющие на скорость, будут влиять и на состав. Все, что вызывает изменение поверхности, на которой происходит сополимеризация, может влиять на вклад сополимеризации в каждой области в общий процесс и приводить к изменениям состава сополимера. Вот почему переход от сополимеризации в лабораторных условиях к работе на промышленной установке требует больших изменений в методике проведения процесса. [c.388]

    Один и тот же мономер может быть использован для получения большого числа различных полимеров. Первая группа структурных характеристик, которыми можно управлять, изменяя условия полимеризации, включает в себя молекулярную массу, степень развет-Бленности и плотность пространственной сетки. Поскольку на процесс полимеризации влияет большое число случайных факторов, совершенно невероятно, чтобы все цепные молекулы полимера имели одинаковую длину, одинаковое число ответвлений и т. д. Скорее можно ожидать существования более или менее широкого распределения этих структурных характеристик. Поэтому оказывается необходимым определять молекулярную массу, разветвленность и густоту сетки через их средние значения. При этом используются [c.36]

    Чрезвычайно важным фактором для катионной полимеризации является природа реакщ10нной среды. Наблюдаемые при этом закономерности весьма просты повышение полярности среды, благоприятствуя реакциям инициирования и роста, приводит к ускорению полимеризации. Насколько существенно это влияние, показывают данные Кокли и Дейнтона по полимеризации стирола под влиянием комплексов RSn ls в различных средах в четыреххлористом углероде полимеризация вообще отсутствует, а в нитробензоле протекает с большой скоростью [16]. Весьма важно, что изменение полярности среды влияет не только на скорость процесса, но и на кинетические зависимости, например на порядок реакции. Это является результатом различий в механизме инициирования. Приведенное выше уравнение (V-11), которое, как уже отмечалось, не является общим для всех катионных систем, справедливо для сред, отличающихся высокой полярностью. В подобных случаях образование активных центров протекает без участия мономера и общая скорость реакции имеет 1-й порядок по мономеру (V-15). Напротив, в средах с низкой диэлектрической проницаемостью возникновение активных центров, особенно для комплексов, образованных слабыми основаниями Льюиса, происходит только при участии мономера. Степень этого участия на- [c.303]

    Б процессе полимеризации диффузионные факторы могут влиять на кинетику реакций инициирования и обрыва цепи уже на начальных стадиях. Диффузионный контроль реакций инициирования свйзан с проявлением клеточного эффекта. Совокупность элементарных процессов, протекающих в полимеризационной системе, с учетом клеточного эффекта может быть представлена следующей схемой [55, с. 60]  [c.62]

    Утверждение об обратимости процесса означает только, что всякий полимер можно опять перевести в мономер. Фактически во всяком полимеризующемся веществе наряду с мономером всегда присутствуют конечные полимеры, количество которых зависит от числа образовавшихся зародыщей, а величина — от условий роста этих зародыщей. Поэтому на процесс полимеризации могут влиять катализаторы, причем ускорение процесса определяется увеличением числа зародыщей. Это сопровождается уменьшением средней степени полимеризации образующегося полимера. Следовательно, ход полимеризации существенно зависит от факторов, определяющих кинетику процесса [c.56]

    В соответствии с программой, намеченной во введепип и гл. 1, мы должны теперь приступить к систематическому рассмотрению конкретных механизмов полимеризации. При этом нас будут интересовать в первую очередь внешние физические факторы, влия-юш,пе на процесс полимеризации. Напомним в связи с этим еш,е раз, что статистический анализ, в основу которого положено исследование влияния этих факторов на отношение Г(/Гр, никоим образом не отрицает возможности одновременного учета чисто кинетических факторов. Ниже мы постараемся показать, что именно в сочетании с некоторыми, правда, ограниченными (и в этом-то и заключается основное удобство статистического подхода) кинетическими измерениями можно получить наиболее полную информацию о механизме реакции. [c.113]

    Качество полимера при производстве бутадиен-стирольных каучуков в процессе эмульсионной полимеризации оценивается показателем Дефо. Как показал статистический анализ при изучении объекта на стадии поисковых работ (с. 99), на качество в процессе полимеризации влияют следующие факторы конверсия, pH водной фазы, расходы меркаптана, гипериза, углеводородов и эмульсии. [c.125]

    Далее коротко рассмотрим еще два аспекта модели адсорбционного слоя, важных для понимания механизма элементарных стадий процесса полимеризации энергетическую неоднородность поверхности и взаимодействие адсорбированных молекул друг с другом (так называемые латеральные взаимодействия). Адсорбционный слой, в котором все участки поверхности (или адсорбционные центры) характеризуются одинаковым потенциалом взаимодействия с адсорбированными молекулами, а сами молекулы адсорбата не взаимодействуют друг с другом, принято называть идеальньп . Однако в реальных системах, как правило, проявляются оба указанных фактора, которые могут существенным образом влиять на константы скорости роста цепей на поверхности. [c.28]

    Установлено, что следующие экспериментальные факторы влияют на процесс образования стереоблок-сополимеров природа соединения, содержащего переходный металл, его кристалличность, способность этого соединения образовывать комплексы с металлоорганическими соединениями и стабильность таких комплексов [4]. Условия, способствующие более легкой диссоциации комплекса (повышение температуры или наличие громоздких бо ковых цепей), понижают степень стереорегулярности полимера, т. е. инверсия конфигурации мономерных звеньев в макромолекулах, получаемых в этих условиях, происходит более часто. Так, повышение температуры при полимеризации пропилена (см. ниже) или использование менее стереоспецифического катализатора (такого, как соединения пятивалентного ванадия) уменьшает изо-тактическую фракцию в полимере, но увеличивает коли чество образующегося стереоблок-сополимера. Для регулирования молекулярного веса образующегося продукта без изменения его стереорегулярности можно изменять некоторые экспериментальные условия реакции так добавление других алкилов металла (например, цинка) к комплексу А1(С2Н5)з—Т1С1з регулирует рост цепи [4]. [c.215]

    На процесс полимеризации влияют следующие факторы а) природа алкильной группы, связанной с атомом азота б) природа алкильной группы, соединенной с атомом алюминия в) удаленность атома азота от двойной связи. [c.43]

    Изучена зависимость крутизны и форлы кривой течения от степени полимеризации эфира, растворителя и состава боковых групп. Установлено, что все эти факторы влияют ва крутизну и форму кривой течения автора связывают ею в процессами отйгктурообразования в . [c.107]

    Присутствие стехиометрических по отношению к инициатору количеств комплексообразующих агентов часто вызывает заметное увеличение скорости полимеризации, обусловленное прежде всего образованием комплексов RMt-D и M Mt-D. Это явление, рассмотренное уже на примерах полимеризации неполярных мономеров, имеет в данном случае ту особенность, что полярные мономеры способны успешно конкурировать с независимыми электронодоно-рами, если основность последних недостаточно велика. Роль относительной основности мономера и агента D как фактора, определяющего конечный результат, усугубляется частым для таких систем условием [М] > [D]. Поэтому неудивительно, что ТГФ, который уже при отношении к бутиллитию 1 1 заметно влияет на полимеризацию бутадиена (см. стр. 58), не оказывает подобного действия на полимеризацию акрилонитрила при том же отношении реагентов. Для этого мономера существенное активирование процесса достигается при использовании в качестве агентов D таких сильных оснований Льюиса, как диметилформамид и диметилсульфоксид, что установлено на примере магнийорганических инициаторов [48]. [c.82]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Наиболее распространенным катализатором для этого процесса является фосфорная кислота на твердом носителе (широкопористый силикагель, алюмосиликат). Выбор параметров процесса наряду с отмеченными ранее факторами обусловлен экономическими соображениями, особенно снижением энергетических затрат на получение пара и рециркуляцию непревращенных веществ. Температура противоположным образом влияет на равновесие и на скорость кроме того, ее повышение ведет к усиленной полимеризации олефина и уносу фосфорной кислоты с носителя. Поэтому гидратацию этилена ведут при 260—300°С, когда для поддержания нужной концентрации Н3РО4 в поверхностной пленке катализатора требуется высокое парциальное давление водяного пара (2,5—МПа). Чтобы повысить степень конверсии водяного пара, получгть не слишком разбавленный спирт и этим снизить расход энергии, работают при некотором избытке этилена [(1,4ч-1,6) 1]. Это п11едопределяет выбор общего давления 7—8 МПа, когда рав-новес ая степень конверсии этилена равна 8—10%. Однако фактическую степень конверсии поддерживают на уровне 4%, что позволяет работать при достаточно высоких объемной скорости (2000 ч ) и удельной производительности катализатора по спирту [180—220 кг/(м -ч)], получая после конденсации 15%-ный эта но . [c.191]

    Крафтса характерны процессы передачи цепи через мономер с сохранением противоиона для, К А1С1з п доминирующую роль играет ограничение цепи при взаимодействии с фрагментом противоиона. Наблюдаемое уменьшение значений Е при изменении механизма обрыва полимерной цепи подтверждается расчетом 267]. Близость наклона прямых и расхождение в абсолютных значениях отсекаемых ими на оси ординат отрезков означает, что энергетические члены примерно равны (противоион влияет на Е и на Ер в равной степени), а стерические факторы различны (различающиеся значения A /Ap [68]). Предполагается, что различия в наклонах аррениусовых прямых обусловлены разницей в ионнос-ти растущих ионных пар. Инициаторы, обеспечивающие большой наклон прямых (большие Е формируют противоионы с низкой нуклеофильностью, что определяет вероятность полимеризации изобутилена на относительно свободных ионах. Инициаторы, для которых получается меньший наклон прямых, образуют противоионы с несколько большей нуклеофильностью. Как следствие, рост цепи может протекать на достаточно сближенных ионных парах. [c.117]

    Долгое время считалось, что магнитные поля не могут влиять на химические реакции в растворах, идущие через радикальный механизм. Опыты, свидетельствующие об этом, считались недостоверными. Тем более, что результаты их не были стабильными. Это объясняется тем, что, не зная механизма процесса, экспериментаторы не МОГЛИ учесть и стабилизировать все факторы, влияющие на реакцию. Подвергались сомнению такие важные, новые научные направления, как магнитобиология, маг-нитотерапия. Но открытие в 1967 г. явления химической поляризации ядер атомов стимулировало интерес ученых к механизму воздействия магнитных полей на некоторые жидкофазные реакции. Установлено, что при определенных радикальных реакциях магнитное поле влияет на переориентацию магнитных моментов в радикальных парах (электронные спины) и, через этот промежуточный механизм, на химические реакции. Изменяются кинетика процесса и соотношение продуктов, получаемых в результате реакции. Этот эффект может иметь большое практическое значение, например, в магнито-биологии, в реакциях радикальной полимеризации при получении пластмасс и др. [c.90]

    Таким образом, на основании данных, представленных в настоящем разделе, можно заключить следующее. Результаты большого числа экспериментальных работ во всех областях реакций полимеров (поликонденсация, полимеризация, поли-мераналогичные превращения) свидетельствуют о том, что принцип равной реакционной способности не является всеобщим. Можно полагать, что соблюдение указанного принципа вызвано компенсирующим действием различных причин. В каждом конкретном процессе полимерообразования необходимо учитывать действие на активность макромолекул как химических, так и физических факторов. Большое влияние в этом аспекте оказывают концентрация реагентов, природа растворителя, температура и степень завершенности реакции. Как следует из приведенных данных, химические факторы, связанные со взаимодействием фрагментов цепи с активными центрами макромолекул (эффект соседа, эффект дальнего порядка и т.д.), существенно влияют на реакционную способность макромолекул. В области поликонденсации роль химического фактора раскрыта еще крайне мало, что объективно указывает на целесообразность дальнейших исследований в этом направлении. [c.58]

    Технологические средства решения перечисленных задач непрерывно развиваются, но в основном они давно определились. Это известный набор процессов висбрекинг, каталитический крекинг, каталитический риформинг, гидрокрекинг, алкилирование, полимеризация, изомеризация, гидроочистка, коксование, газификация остатков. Ввод этих процессов усложняет технологическую структуру НПЗ, делает ее более гибкой н адан гируе] к рыночным условиям. Степень ее совершенства становится показателем технической подготовленности НПЗ к выпуску продукции, удовлетворяющей требованиям рынка. Вместе с тем она существенно влияет на экономическую эффективность производства нефтепродуктов. Поэтому перспективная стратегия должна разрабатываться в единстве двух аспектов технологического и экономического. Если в первом из них налицо полная определенность, то второй изучен недостаточно. Иногда наблюдается тенденция к снижению уровня рентабельности продукции и капитала по мере углубления переработки нефти, в других случаях дело обстоит наоборот. Действует сложная система взаимосвязей технологических и экономических факторов, которая может приводить к неоднозначным результатам при различных стратегиях развития технологической схемы НПЗ. Поэтому при формировании концепции структурной модернизации отрасли необходима опора на систему показателей, позволяющих оценить фактически сложившуюся технологическую структуру в сравнении с образцовым нефтеперерабатывающим комплексом, который соответствует выявленной общемировой тенденции. Они могут найти применение для выбора рациональной последовательности ввода прогрессивных процессов в схему конкретного НПЗ. Методически важно упорядочить анализ взаимосвязи структурно-технологических усовершенствований и их экономических последствий с помощью специального показателя. Желательно, чтобы он компактно, информативно, в то же время теоретически обоснованно и реалистически характеризовал экономическое преимущество той или иной технологической структуры предприятия. Очень известный емкий показатель глубины переработки нефти на эту роль не вполне подходит, поскольку различные процессы, направленные на его увеличение, неравнозначны в экономическом отношении они дают разные приросты прибыли или чистой продукции (ЧП) на каждый процент их мощности, исчисленный относительно мощности первичной переработки нефти. К тому же показатель глубины переработки нефти не отражает многих прогрессивных изменений в структуре технологических процессов. Это видно из способа его расчета  [c.446]

    Обратим внимание и на другое важное обстоятельство. При анионной полимеризации, так же как и в катионных процессах, константы сополимеризации зависят от природы среды и противоиона. Причины этого, общие для обоих ионных процессов, нами уже рассматривались (стр. 313). Для анионных систем известны примеры, где влияние указанных факторов чрезвычайно велико. Так, при сополимеризации бутадиена (М ) со стиролом (Ма) под влиянием бутиллития константы сополимеризации при комнатной температуре равны — 10.0 и Га — 0.035. В присутствии комплексообразующих агентов (эфира, ТГФ и др.) картина резко меняется происходит нивелирование реакционноспособности растущих цепей по отношению к обоим мономерам и константы сополимеризации приближаются к единице [101, 109]. При катионной сополимеризации столь значительного влияния среды никогда не наблюдалось. Более высокая чувствительность констант сополимеризации к природе среды в анионных системах обусловлена тем, что люталлорганические соединения дают с основаниями Льюиса прочные комплексы, а это меняет природу активных центров. В то же время противоион при катионной полимеризации, как правило, не претерпевает серьезных изменений и влияние растворителя ограничивается чисто сольвата-ционными эффекталш. Поэтому оно существенно только для сополимеризации мономеров, сильно различающихся по своей полярности (табл. 31). В анионных системах, напротив, растворитель перестает влиять па константы сополимеризации при значительном различии в природе мономеров. Такая мономерная пара, как стирол—метилметакрилат, пе обнаруживает чувствительности к природе среды. Для нее анионная полимеризация в любых условиях приводит к образованию полимеров, которые пр11 малой коп-версии практически не содержат стирола. Только после исчерпания более активного мономера стирол начинает входить в полимерную цепь. В результате этого в подобных системах образуются макромолекулы, состоящие из двух блоков —(М ), —(Мз) —. [c.362]

    При изучении реакции полимеризации пропилена и бутепа-1 в присутствии бромистого алюминия было выяснено, что при промотировании реакции бромистым водородом получаются продукты большой вязкости, нежели в реакциях, проводимых в отсутствии промотора. Это особенно ясно выражено в тех случаях, когда реакция проводится при температурах от О до—40° (рис. 14). Исследования других факторов, влияюгцих на процесс, показали, что, в то время как качество полимера лишь в слабой степени изменяется в зависимости от количества взятого катализатора, количество добавляемого промотора в значительной мере влияет на свойства полимерного продукта. При концентращш промотора 0,1% получены более вязкие полимеры, чем при концентрации 0,05%. Максимальное значение индекса вязкости продукта реакшти было получено нри молярном отношении бромистый волород бромистый алюминий, равном 1,5. По мере уменьшения количества загружаемого сырья возрастает вязкость получаемого продукта. В табл. 24 представлены данные, характеризующие влияние добавок полимеров пропилена различной вязкости на свойства двух образцов смазочных масел. [c.383]

    Молекулярный вес полимера в свою очередь зависит от условий полимеризации изменением отдельных параметров процесса МОЖНО влиять в сторону повышения или понижения молекулярного веса конечного продукта. К числу, факторов, влияющих на степень полимеризации, относятся среда, концентрация мономера, температура, количество катализатора и т. д. Как общее правило, можно указать, что факторы, ускоряющие полимеризацию, влекут за собой понижение молекулярного веса. Продукты с максимальной степенью полимеризации получаются, если процесс проводится в отсутствие растворителя или в среде вещества, не растворяющего мономер и полимер, а также при низкой температуре и без катализатора. Добавление к мономеру вещества, являющегося растворителем для полимера, приводит к понижению молекулярного веса и уменьшецию скорости полимеризации при прочих равных условиях. Однако действие растворителей специфично, так как различные растворители влияют не одинаково. Например, для метилметакрилата Стрейном приводятся данные, ко- [c.310]

    Точные кинетические данные необходимы для разработки оптимальных процессов привитой сополимеризации, поскольку степень прививки и расположение привитых цепей могут влиять на свойства полученного сополимера. В принципе схема обычной свободнорадикальной полимеризации должна быть применима и к радиационной прививке, поскольку в обоих случаях мы имеем дело с полимеризацией винилового мономера, инициированной полимерным радикалом. В действительности же кинетика радиационной привитой сополимеризации осложняется рядом факторов, проявляющихся в определенных условиях прививки. К ним, в частности, относятся гель-эффект, передача цепи, разделение фаз и диффузия, которые оказывают существенное влияние на кинетику реакции. [c.67]


Смотреть страницы где упоминается термин Факторы, влияющие на процесс полимеризации: [c.345]    [c.613]    [c.406]    [c.154]    [c.248]   
Смотреть главы в:

Общая технология синтетических каучуков Издание 3 -> Факторы, влияющие на процесс полимеризации

Общая технология синтетических каучуков Издание 4 -> Факторы, влияющие на процесс полимеризации




ПОИСК





Смотрите так же термины и статьи:

Факторы процесса

влияющие фактор



© 2025 chem21.info Реклама на сайте