Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серн и ее соединения применение при анализе

    Селен можно определять как в органических, так и в неорганических соединениях. Влияние мешающих веществ (большие количества Аз, 8Ь, 8 и ионы многих металлов) может быть устранено восстановлением селена до элементного состояния. Красный селен отфильтровывают на небольшом пористом фильтре из стекловолокна, фильтр помещают в полость, где и возбуждают свечение селена без помех со стороны стекловолокна. Такой прием может быть применен для определения селена в серной кислоте. При анализе органических соединений их сжигают в атмосфере кислоро- [c.355]


    Высокая чувствительность ионизационных анализаторов обусловливает возможность их применения в процессах управления и контроля производства, а также в контроле воздуха промышленных помещений и при анализе атмосферы. Этим методом можно определять содержание в воздухе таких особо токсичных соединений, как четыреххлористый углерод, хлористый водород, фтор, карбонильные соединения, тетраэтилсвинец, сернистый ангидрид, серный ангидрид и хлорсодержащие органические соединения в количествах 1 млн . [c.325]

    Часто для переведения пробы в раствор прибавляют различные лиганды, образующие с компонентом (или компонентами) пробы устойчивые комплексные соединения. Так, иногда для растворения проб рекомендуют применять смесь серной и фтороводородной кислот. При этом могут образовываться фторидные комплексы, и проба переходит в раствор. Кроме того, применение такой смеси в случае анализа образцов, содержащих кремневую кислоту, приводит к образованию летучего тетрафторида кремния, и растворение пробы ускоряется. Однако в этом случае определить кремневую кислоту нельзя. [c.643]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, компоненты которой разделяются или идентифицируются лучше, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматографических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводородов, селективно поглощая их в реакторе с силикагелем, обработанным серной кислотой. При реакционной газовой хроматографии используются также реакции гидрирования, дегидрирования, этерификации (для анализа карбоновых кислот в вйде эфиров), пиролиза высокомолекулярных соединений. [c.123]

    Для последних критериев, а также в целях общей характеристики содержания органических примесей в воде очень важным является быстрое определение углерода органических веществ. Методики прямого определения этого показателя основаны на измерении углекислого газа, выделяющегося при полном окислении органических соединений [34]. Быстрый экспресс-анализ по Некрасову [35] осуществляется без выпаривания пробы воды с применением в качестве окислителя 1-н. раствора бихромата калия с добавкой персульфата калия (40 г/л) и азотнокислого серебра или перманганата калия (1 г/л)-, кислая реакция среды создается смесью концентрированных кислот (двух частей серной и одной части фосфорной, по объему). [c.45]


    Возможности масс-спектрального анализа моноолефинов расширяются в результате, упрощения состава исследуемой фракции за счет удаления других типов углеводородов и в результате применения комбинированных схем анализа фракций с удалением олефинов и ароматических углеводородов с помощью серной кислоты или адсорбции на силикагеле, гидрированием непредельных углеводородов, удалением к-парафинов с помощью молекулярных сит и т. д. [6]. В частности, большой интерес представляет комбинация масс-спектрометрии с газо-жидкостной хроматографией и каталитическим гидрированием [195], что позволяет осуществлять разделение на индивидуальные компоненты смесей, содержащих олефины, с последующим гидрированием ненасыщенных углеводородов и идентификацией по масс-спектрам продуктов гидрирования. Идентификация по масс-спектрам разделенных газо-жидкостной хроматографией компонентов без гидрирования и после гидрирования позволяет четко отличить соединения с идентичными масс-снектральными характеристиками, например моноолефиновые и моноциклические нафтеновые углеводороды, имеющие одинаковую молекулярную массу. Идентификацию пиков на хроматограмме проводят с учетом степени водородной недостаточности (г) в разделенных компонентах (по пик 1М молекулярных ионов, определяя значение 2 в формуле С Н2п+г)- Так, неизменное значение г = 2 до и после гидрирования характерно для парафинов. Неизменность величины 2 = 0 в продуктах разделения до и после гидрирования указывает на то, [c.75]

    Основные научные работы посвящены изучению химизма дыхания растений. Первым предложил общую теорию превращения двуокиси углерода в органические соединения под действием воды н солнечного света. Применил методы количественного химического анализа при изучении дыхания растений и усвоения ими минеральных веществ. Экспериментально доказал, что растение на свету усваивает углерод из его двуокиси с выделением кислорода, а при дыхании поглощает кислород и выделяет углекислый газ. Исследовал процессы ферментации. Достаточно точно для своего времени определил (1814) состав винного спирта. Показал (1807), что серный эфир не содержит ни серы, ни серной кислоты и что его можно получить из спирта без применения серной кислоты. Проводил (1820) анализ эфирных масел. [c.473]

    Хорошие результаты получают при определении иода и брома в геохимических пробах эмиссионным методом с применением химико-термической обработки пробы [351]. Пробу испаряют из камерного электрода, работающего как печь сопротивления. Для повышения скорости и полноты выделения иода и брома использована способность серной кислоты вытеснять галогены из их соединений с образованием легколетучих галогеноводородов или свободных галогенов. В связи с нежелательностью работы с концентрированной серной кислотой при проведении спектрального анализа в качестве химически активной добавки опробованы различные сернокислые соединения, разлагающиеся при слабом нагреве (300—400 °С) с образованием серной кислоты. Из проверенных двух десятков сульфатов наиболее эффективными добавками оказались гидросульфат калия и гидрат сульфата магния. Установлено, что при химико-термической обработке искусственных эталонных смесей бром выделяется в основном в виде бромоводорода, а нод — в свободном состоянии. При этом чувствительность определения брома оказывается недостаточной. Для повышения чувствительности определения брома к пробе наряду с сульфатом добавляют нитрат калия в качестве окислителя. К 0,5 г пробы добавляют 0,4 г сульфата магния и 0,1 г нитрата калия. При этом предел обнаружения иода и брома составляет 10 мкг/г. [c.258]

    Как уже отмечалось, особенно оправданно применение реакционно-хроматографических методов при анализе реакционноспособных лабильных соединений. Содержание хлористого водорода в смеси с ацетиленом и 1,1-дихлорметаном [46] определяли по диоксиду углерода, образующемуся при реакции хлористого водорода с гидрокарбонатом натрия. Березкина с сотр. [50] предложили реакционный метод определения следов аммиака. Метод основан на предварительном концентрировании аммиака слабокислым раствором серной кислоты, окислении аммиака в щелочном растворе гипобромитом калия и газохроматографическом определении выделившегося азота. Предел обнаружения — 5-10 г аммиака в сконцентрированном растворе при 500 мл ана- [c.236]

    Другое применение метода — определение высоких содержаний свинца (3,6—84,5% РЬ) в сплавах Для анализа навеску сплава, содержащую 0,07—0,1 г свинца, растворяют при нагревании в 5—10 мл концентрированной серной кислоты, охлаждают, прибавляют 10 мл воды, 5 мл 50%-ного раствора цитрата аммония, раствор нейтрализуют аммиаком и декантируют через фильтр со стеклянной пористой пластинкой. Осадок в колбе растворяют в 10 мл кипящего раствора ацетата аммония (насыщенный раствор, разбавленный двойным объемом воды и содержащий 30 мл 80%-ной уксусной кислоты на каждый литр раствора). Полученный раствор фильтруют через тот же фильтр, промывают водой и соединенные фильтраты разбавляют до 100 мл. Фотометрируют обычно по методу добавок. [c.278]


    Метод Кьельдаля более прост и удобен, и хотя круг соединений, которые успешно анализируются этим методом без применения дополнительного восстановления, ограничен аминами, амидами и нитрилами, для анализа полимеризационных пласти--ков он пригоден и в модифицированном виде применяется чаще, чем метод Дюма. Для ускорения разложения полимерного образца при нагревании с концентрированной серной кислотой добавляется пероксид водорода и каталитическая смесь, состоящая из персульфата калия и сульфата меди (см. п. II.5.5). Этим методом при увеличении времени разложения до 90 мин получены вполне удовлетворительные результаты определения азота в поли-Ы-винилпирролидоне и его сополимерах. Однако при анализе на азот этих весьма гигроскопичных полимеров следует определять содержание воды методом Фишера и учитывать его при расчете содержания азота [186]. [c.146]

    ЛИЯ, серной и фосфорной кислот [918] не нашли широкого применения. Эти методы подготовки характеризуются значительными потерями германия при анализе легколетучих германийорганических соединений и весьма продолжительны [853, 919]. Для анализа алкильных германийорганических соединений и, возможно, германийорганических соединений, содержащих азот и кислород, предложен метод сжигания их в токе кислорода [853]. [c.327]

    Метод очень удобен для массовых определений и особенно для определения азота в водных растворах. Однако следует помнить, что сфера его применения ограничена. Беэ предварительного восстановления не всегда удается анализировать вещества, содержащие азот в окислительной форме. Нельзя определить азот в веществах, разлагающихся при взаимодействии с холодной серной кислотой с отщеплением азота и легко выделяющих азот при нагревании. Не образуется количественно аммиак и при разложении некоторых гетероциклических соединений. Хорошо анализируются этим методом амины, амиды и нитрилы. Ниже приводится метод, пригодный для анализа этих последних классов азотсодержащих соединений. С модификациями, расширяющими применимость метода, можно ознакомиться по оригинальным работам о-вг [c.91]

    Несульфированные соединения, остающиеся в алкилбензолсульфонатах различаются в зависимости от примененного сульфирующего агента. На основании результатов хроматографического и спектрального анализа японские ученые [199] установили, что в несульфированных соединениях содержатся сульфоны, углеводороды, окрашенные вещества и несульфированный алкилбензол. Диалкилбензолы, присутствующие в исходном алкилбензоле, сульфируются олеумом и серной кислотой, но не сульфируются серным ангидридом. Ди-(п-алкилфенил)-сульфон образуется, по-видимому, на ранней стадии сульфирования, он находится в количестве 0,6—0,8 г на 100 г исходного алкилбензола при сульфировании серным ангидридом и олеумом. [c.136]

    Известные методики фазового анализа для руд, содержащих самородную медь, основанные на последовательном извлечении сначала окисленных соединений меди серной кислотой и затем металлической меди методом амальгамации или извлечении сначала металлической меди раствором нитрата серебра и определении затем остальных соединений по обычной методике, в присутствии металлического железа применить нельзя. Методика фазового анализа продуктов с одной или несколькими металлическими фазами должна предусматривать извлечение любых фаз в условиях, препятствующих окислению металлов и переходу их в раствор, что достигается применением ингибиторов. В качестве ингибиторов окисления металлической меди рекомендовано несколько органических соединений, и в частности ЧМ [19]. Но значительно удобней оказалась фенилуксусная кислота, которая хорошо защищает металлическую медь от окисления в растворе серной кислоты и в присутствии которой можно выделять медь тиосульфатом для последующего ее определения, чего нельзя было делать в присутствии ЧМ . Хорошими ингибирующими действиями обладает также и цистин, однако в его присутствии снижается растворимость в серной кислоте куприта, поэтому в присутствии этого минерала применять цистин нельзя. Фенилуксусная кислота не влияет [c.58]

    Адсорбция растворенных веществ на твердом носителе приводит к асимметрии пиков вследствие размытия хвоста. Это особенно заметно при хроматографии полярных соединений или при использовании неполярной неподвижной жидкости. Размытие не столь значительно при применении полярных жидкостей, поскольку такая жидкость дезактивирует активные места твердого вещества. Для удаления железа используют соляную и серную кислоты, после чего продукт сушат и наконец обрабатывают раствором едкого натра в метаноле (см. раздел В, П1, а, 1). Для дезактивации носителей при хроматографировании полярных веществ применяют более совершенные методы (см. раздел В, П1, а 2 В, П1, б, 2). Обработка носителя щелочью уменьшает также дегидратацию и изомеризацию неустойчивых соединений в процессе хроматографического анализа. [c.43]

    Приведенные выше методы недостаточно надежны для определения малых количеств молибдена (менее 1 мг). В таких случаях целесообразно выделить молибден в виде сульфида, осадок прокалить при температуре не выше 500° и взвесить. Затем, для проверки содержания молибдена, оса док растворяют в аммиаке, раствор подкисляют соляной кислотой, прибавляют хлорид олова (II) и роданид калия после этого интенсивность появляющейся окраски сравнивают со стандартом . Применение этой реакции-для определения больших количеств молибдена не дает достаточно точных результатов и приемлемо лишь для рядовых анализов. Рений мешает колориметрическому определению молибдена с роданидом . Платина оказывает значительное влияние на реакцию, и поэтому в процессе подготовки раствора для колориметрирования не следует пользоваться платиновой посудой. Азотная кислота должна быть удалена, так как она образует с роданидом окрашенное соединение, которое экстрагируется эфиром. В тех случаях, когда при подготовке раствора для колориметрирования вводят азотную и серную кислоты, выпаривание до появления густых паров серной кислоты следует повторить по меньшей мере 2 раза, ополаскивая каждый раз стенки стакана водой. Интенсивность и устойчивость окраски соединения молибдена с роданидом в солянокислом растворе зависят от кислотности этого раствора и концентрации в нем сол.ей . [c.336]

    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    В этом случае использование кинофрагмента служит основой для более глубокого понимания сущности процессов и способствует уяснению вопросов промышленной переработки каменного угля. Кинофрагмент используют как источник новых знаний без предварительного изучения содержащихся в нем сведений на уроках, с последующим анализом и развитием полученных знаний. С таким назначением могут быть использованы фильмы Фтор и его соединения , Строение и свойства кристаллов , Стекло и цемент , Коррозия металлов (раздельно первая и вторая части), Применение кислорода в производстве стали телепередачи-экскурсии Водоочистительная станция , Производство серной кислоты , Производство алюминия и др. [c.143]

    Р " Методы газовой хроматографии позволяют успешно преодолеть трудности, связанные с определением серусодержащих соединений в сложных смесях. Основные области применения газовой хроматографии в производстве серы, серной кислоты и минеральных удобрений онисаны в работе [65], там же приведены методы анализа смесей SOj, S2, H2S, OS на различных сорбентах. Наиболее важной является проблема определения сероводорода в газовых смесях и сточных водах, которая с каждым годом становится все актуальнее [283, 366]. Метод газовой хроматографии позволяет анализировать смеси, содерн(ащие сероводород и серусодержащие органические соединения [66], [c.146]

    Разработка метода потребовала изучения ряда вопросов выбора (КИСЛОТЫ для разложения, выяснения влияния летучих примесей и добавки апротонного раство рителя. В основу метода были положены реакции разложения карбонатов кислотой и осаждания углекислоты катионами металла, дающего нерастворимую соль. Соляная кислота, используемая в аналитической практике для ра)Зложения карбонатов, в данном случае е может быть применена, так как выделяющийся при отгонке газ (НС1) взаимодействует с Ва(0Н)2. Была выбрана серная кислота. При этом выяснилось, что на точность анализа влияет концентрация кислоты. Применение ЛО—20%-ной кислоты исключается. При проведении холостошо опыта выделяются кислые газы (типа SO2), участвующие в реакции осаждения, и величина поправки превышает расход 0,1-н. Ва(0Н)2, идущего на рабочую пробу. Последнее объясняется тем, что кислые соединения образуют комплексы с органическими основаниями, имеющимися в фенолятах [2], и не попадают в дистиллят. [c.160]

    Широкое применение в практике хроматографического анализа находят реакции, упрощающие анализируемую смесь. В методе вычитания проводят два хроматографических анализа исходной смеси один — обычно анализ без применения химических реакций и второй — с применением химического поглотителя, образующего с некоторыми компонентами нелетучие соединения. На хроматограмме второго анализа пики реагирующих компонентов отсутствуют (хроматограмма второго анализа может быть получена из хроматограммы первого анализа путем вычитания пиков реагирующих соединений). Метод вычитания позволяет определить содержание не разделяемых хроматографически компонентов, если один из них реагирует с селективным поглотителем. Одновременно этот метод позволяет проводить групповую идентификацию реагирующих соединений. Метод вычитания в газовой хроматографии бы предложен Р. Мартином [3] для определения содержания непредельных соединений в различных углеводородных смесях. С целью поглощения непредельных соединений Мартин применил небольшой реактор, заполненный силикагелем, обработанным концентрированной серной кислотой. Было показано, что поглощение моноолефинов, диолефинов, циклоолефинов и ацетиленовых углеводородов (доуглеводородов составаСд) происходит в потоке газа-носителя количественно при 20—50° С. [c.12]

    Для групповой идентификации часто применяют метод вычитания [55]. В этом методе приводят два хроматографических анализа исходной смеси один — обычный анализ без применения химических реакций и второй — с применением в хроматографической схеме реактора с поглотителем (реагентом), который образует с некоторыми классами химических веществ нелетучие соединения. Поэтому на хроматограмме второго анализа пики реагирующих соединений отсутствуют (хроматограмма второго анализа может быть получена из хроматограммы первого анализа путем вычитания пиков реагирующих соединений), что является характеристикой их принадлежности к соединениям определенного класса. Впервые этот метод был нрименен для определения содержания непредельных соединений в углеводородных смесях. Непредельные соединения поглощались в реакторе концентрированной серной кислотой, нанесенной на силикагель. [c.39]

    Хотя методики с применением серной кислоты или смеси ссрнон и азотной кислот описаны как удобные для анализа летучих соединений, некоторые исследователи применяют продувание паров летучего вещ,ества в смесь ННОз — Н9504 при помощи струи инертного газа [674] или пропускают кислород над взвешенным образцом и сжигают пары на асбесте [86]. Рекомендована также предварительная обработка образца бромом в четыреххлористом углероде, дающая менее летучие бромиды, с последующим разложением серной кислотой [244]. 11редло-жено использовать разложение перекисью водорода и серной кислотой [823], но эта методика не получила распространения. [c.149]

    Хотя настоящая монография посвящена лишь одной из групп -природных фенольных соединений, она не претендует на полноту. изложения. Уже вскоре после начала своего труда автор осознал всю сложность поставленной задачи. Дело в том, что с превращениями катехинов в той или иной степени связаны многочисленные исследования в области технической биохимии (главным образом производство чая и виноделие). Значительное число работ касается также влияния экологических факторов на состав и содержание фенольных соединений в исходном растительном сырье. Многие из них были проведены с применением суммарных методов анализа (титрование КМпО по Левенталю, осаждение формальдегидом + HG1 по Стиасни, осаждение серной кислотой, осаждение сернокислым аммонием и т. п.) без выделения или идентификации индивидуальных компонентов, что в ряде случаев весьма затрудняет истолкование полученных результатов. [c.270]

    Получение этих веществ доказывает совершенно определенно протеиновую природу азота в молодых ископаемых топливах. Мичиганский торф, содержащий от 2,25 до 2,75% азота, после высушивания в шкафу при экстрагировании кипящей водой потерял очень мало азота. Посредством применения разведенных минеральных кислот (33%-пая соляная или серная кислота) при температуре кипения за 30—60 час. было извлечено от 50 до 60% азота. При исчерпывающем экстрагировании в раствор перешло до 68% присутствующего в топливе азота [29]. Количество экстрагированного азота зависело от концентрации примененной кислоты, времени экстрагирования и степени измельчения торфа. На основании анализа экстрагированные азотистые соединения были разделены на группы, как это показано в табл. 5. Выветрившийся торф, содержащий 2,69% азота, дал такие же величины, за исключением того, что не было обнаружено азота диаминокислот, а количество азота моноаминокислот соответственно увеличилось. Эта работа была распространена на угли бурые, молодые каменные, каменные и антрациты, содержавшие соответственно 0,87 1,68 1,44 и 1,36% азота [30]. Все виды топлив были шздушно сухими и экстрагировались в течение 72 час. с обраАым холодильником 33%-ной серной кислотой. Экстракт торфа был [c.109]

    Метод исключения применен, например, для анализа смесей типа ароматический углеводород — насыщенный углеводород — алифатический спирт. Анализ тройных смесей бензола и циклогек-сана с н-пропиловым, изопропиловым и изобутиловым спиртами выполняется с точностью до 0,2% (абс.) [53]. Так, при извлечении одного из компонентов смеси бензол — циклогексан — изопропиловый спирт путем встряхивания ее с 1б-кратным объемом 80%-ной серной кислоты полностью удаляются таиже представители 11-ти различных классов органических соединений метиловый, этиловый, м-пропиловый, изопропиловый, изобутиловый, диацетоновый спирты, диоксан, метилэтилкетон, ацетонилацетон, окись мезитила, уксусная кислота, диэтилацетамид, диэтилнитрозамин, анилин и др. [c.149]

    Кроме гидроксил-иона, электролитически могут быть получены многие другие реагенты. Меняя полярность генерирующих электродов (см. рис. 85), можно вызвать в растворе образование ионов водорода и титровать ими основание. Осуществимо проведение титрования различных окислителей, например бихромат -, цери - и метаванадат- (V0 ) ионов - ионами Ре +, получаемыми электролитически из ионов Ее +, Индикаторная система состоит из платинового и вольфрамового электродов,, соединенных с ламповым вольтметром. В приводимом ниже анализе 2,451 мг х. ч. бихромата калия растворены в воде и перенесены в электролизер, куда добавлено еще 2 мл 18 н. серной кислоты, 1 мл 85%-ной фосфорной кислоты и 15 мл 0,6 н. раствора железо-аммонийных квасцов. Раствор далее разбавляли настолько, чтобы он покрывал электроды растворенный кислород удаляли при помощи тока азота. Раствор подвергали электролизу при 20,00 ма течение реакции контролировали потенциометрическим способом с применением платинового и вольфрамового электродов. Значения потенциалов вблизи конечной точки показаны на рис. 86. Точка конца [c.119]

    Метод определения германия путем взвешивания GeOj нашел наиболее широкое применение при анализе сплавов и германийорганических соединений. Для этого сплав разлагают в смеси азотной, плавиковой и серной кислот, выпаривают смесь на водяной, а затем на песочной бане, добавляют концентрированную азотную кислоту для растворения сопутствующих элементов, фильтруют полученную смесь и прокаливают осадок образовавшейся GeOa, которую и взвешивают [851]. При анализе сплавов, например германия с кремнием [852], навеску растворяют (при нагревании) в смеси азотной, плавиковой (концентрированных) и лимонной кислот (на 0,1 г сплава берут 2 мл HNO3, 1 мл HF и 10 мл 1 М раствора лимонной кислоты) остаток выпаривают, а затем прокаливают при 850 или 1000 °С. Ошибка метода 1%. Фактор пересчета (0,6976) несколько больше теоретического. [c.301]

    При анализе углеродистых сталей скорость растворения зависит от содержания углерода. Образцы, содержащие меньше 0,1% углерода, быстрее растворяются в хлористоводородной кислоте, а образцы с содержанием углерода больше 0,1% быстрее растворяются в серной кислоте [18]. Однако в том и другом случае получаются сходные результаты. При растворении высоколегированных сталей остается нерастворимый осадок, состоящий из кар-бонитридов и нитридов. Для разложения таких проб применяют смесь серной и фосфорной кислот, иногда с прибавлением сульфата калия, металлической ртути или окиси ртути и других катализаторов. Иногда для окисления неразложившихся соединений применяют перекись водорода и другие окислители. При этом надо иметь в виду, что применение сильных окислителей, например хлорной кислоты, нежелательно, так как это может привести [c.14]

    Анализ литературных данных свидетельствует о попытках конструкторов шире использовать полимерные материалы при создании трубчатых теплообменников. Так, для повышения долговечности, герметичности и коррозионной стойкости узла развальцовки труб ВНИИПТхиммашем (г. Пенза) проведена работа по использованию в этих узлах эпоксидных компаундов [6]. Выявлено увеличение плотности и прочности заделки труб. Для проверки защитных свойств компаунда образцы трубных соединений, развальцованные с эпоксидным клеем и без него, испытывали в течение месяца при температуре 60— 80° С в 60%,-ной серной кислоте. При этом прочность образцов, развальцованных с клеем, не изменилась, а развальцованных Еез него снизилась в 8—10 раз. Применение этого метода ограничено температурами не выше 170—200° С из-за невысокой теплостойкости эпоксидной смолы. [c.8]

    Проникновение через устьица. Еще в 20-х годах Асландер [32], изучая гербицидные свойства серной кислоты, исследовал особенности поступления этого соединения в листья разных растений. Используя оригинальные методы анализа, он установил, что раствор серной кислоты проникал в листья либо через устьица, либо сквозь участки, находящиеся вблизи их. Согласно Крафтсу [54], открытые устьица — это ворота, через которые гербицидная жидкость поступает в ткани растений закрываясь, устьица создают для этого раствора сплошной барьер. Однако уже в первые годы применения гербицидов было установлено, что соли 2,4-Д обладали одинаковой активностью при нанесении [c.205]

    Манголдидр. [123] использовали радиоактивный диазометан для приготовления метиловых эфиров с целью их последующего применения при количественном анализе липидов. Получали они эти эфиры следующим образом. Раствор 10 мг (0,05 ммоль) /г-толилсульфонилметил- С-нитрозамида (удельная активность 0,6 мКи/моль) в 1 мл диэтилового эфира взаимодействует в микрогенераторе газа с 2 мл охлажденного льдом раствора 0,1 г гидроксида натрия в смеси этанол—вода (10 1). Диазометан и эфир отгоняют из реакционной смеси, пропуская через помещенную в баню с водой реакционную колбу при 60—70°С медленный ток азота. Раствор диазометана в эфире собирают по очереди в два приемника, в каждый из которых предварительно помещают 1—2 мл эфира. Чтобы температура в приемнике не поднималась выше О—5°С, его погружают в воду со льдом. По окончании перегонки растворы диазометана сливают вместе. Пробы эфира с растворенным диазометаном (по 0,5—1 мл) сразу вводят в растворы, содержащие от 2 до 20 мг жирных кислот (0,01—0,1 ммоль) в смеси диэтиловый эфир—метанол (90 10) [124, 126]. Липиды (по 10—20 мг), содержащие гидроксильные или аминные группы, метят реакцией с 1 10 раствором уксусного 1- С-ангидрида (СНд С0)20 (удельная активность 0,6 мКи/ммоль) в пиридине. Реакцию ведут с 20 %-ным избытком реагента в запаянной трубке размером 5/150 мм в течение 30—60 мин при 100°С. После охлаждения трубку вскрывают и разбавляют реакционную смесь 10 мл однонормальной серной кислоты ацетилированные липиды экстрагируют эфиром, промывают водой и сушат. Полученные радиоактивные соединения используют также при проведении очистки различных липидов. [c.83]


Смотреть страницы где упоминается термин Серн и ее соединения применение при анализе: [c.37]    [c.121]    [c.138]    [c.10]    [c.83]    [c.589]    [c.46]    [c.192]    [c.131]    [c.27]    [c.41]    [c.116]    [c.71]   
Перекись водорода (1958) -- [ c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ применение

Серн и ее соединения



© 2025 chem21.info Реклама на сайте