Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическое разложение под действием поверхности

    Процесс образования покрытия включает ряд последовательно протекающих реакций. В первой стадии процесса происходит разложение гипофосфита водой, которому способствует каталитическое действие поверхности никеля. Эту реакцию можно предста- [c.410]

    Кинетика реакции разложения метана на никелевом катализаторе. Каталитическое разложение метана на элементы является очень интересным объектом исследования кинетики гетерогеннокаталитических реакций. Своеобразие этой реакции состоит в том, что один из ее продуктов (углерод) накапливается на активной поверхности катализатора, влияя на его активность. Скорость реакции и отложения углерода связаны стехиометрическим соотношением, что облегчает изучение механизма отравления катализаторов отложившимся углеродом. Исследования кинетики разложения метана на никелевом, кобальтовом и железном катализаторах показали, что отложение углерода снижает их активность лишь на первом этапе науглероживания [53]. На втором этапе этого процесса отсутствует какое-либо влияние отложений углерода на активность катализаторов. В связи с этим было принято, что на активной (металлической) поверхности катализатора имеются активные каталитические центры, блокирующиеся и не блокирующиеся отложившимся углеродом АКЦ-1 и АКЦ-2. В этом случае число свободных (действующих) АКЦ-2 остается постоянным, а количество таких АКЦ-1 уменьшается в результате блокирования их углеродом по следующему закону  [c.107]


    Термическое разложение газообразных соединений углерода проходит весьма своеобразно. Надо рассматривать пневматолиз на нагретых твердых поверхностях и в газовой среде. При разложении на твердых поверхностях различают два крайних случая разложение на поверхностях, не оказывающих каталитического действия, и разложение на катализаторах. [c.99]

    Различают промоторы структурирующие (способствующие получению и сохранению активного компонента катализатора в диспергированном состоянии) и активирующие (повышающие каталитическую активность единицы поверхности активного компонента катализатора). В настоящее время принято считать, что во многих случаях структурирующая и активирующая функции катализатора совмещаются. Произведенная нами проверка показала, что такие широко распространенные промоторы металлических катализаторов, как окислы алюминия, хрома, бериллия, магния, кальция и других металлов, трудно восстанавливаемых из окислов, проявляют исключительно структурирующее действие по отношению к никелю, использованному в качестве катализатора в реакции разложения метана на элементы. При этом промоторы образуют следующий ряд (в порядке понижения эффективности)  [c.60]

    На основании кинетических измерений и исследований спектра поглощения сделано заключение, что необходима определенная концентрация водородных ионов (рН=4,6 и 5,8) для эффекта промотирования при каталитическом разложении перекиси водорода [244]. Также признано, что скорость термического разложения аммиака в большом диапазоне температур на смешанной поверхности вольфрама и платины, рассматриваемых как промотированный катализатор, больше, чем на равной поверхности каждого из металлов в отдельности. Действие промотированного катализатора на понижение теплоты активации [69] видно из табл. 92. [c.371]

    Известен ряд процессов, приводящих к безоСтаточной переработке нефти, в том числе процессы коксования, гидрогенизационные методы переработки нефтяных дистиллатов и остатков и др. Однако применение гидрогенизационных методов приводит к значительному усложнению и удорожанию процесса производства моторных топлив. Предлагаемый процесс непосредственного каталитического крекинга нефти имеет ряд особенностей, и прежде всего, к числу их относится осуществление интенсивного каталитического разложения высокомолекулярных углеводородов, сернистых и смолистых соединений в присутствии легких, бензиновых и керосиновых фракций, облегчающих испарение и десорбцию продуктов разложения с поверхности катализатора. Легкие фракции нефтей, присутствующие в реакционном пространстве, оказывают-благоприятное действие на процесс вследствие значительного понижения концентрации смолистых веществ в реагирующем сырье. Эти условия позволяют осуществить за однократный пропуск нефти через катализатор полное превращение фракций, кипящих выше 500° С. Тем самым отпадает необходимость в весьма сложной, переработке тяжелых смолистых остатков. [c.136]


    Перекись водорода может быть получена в заметных количествах путем пропускания смеси водорода и кислорода через нагретую пирексовую трубку [33]. Заслуживает внимания тот факт, что покрытие стенок хлористым калием оказывает двоякое влияние на реакцию заметно замедляет ее скорость и предотвращает образование даже следов перекиси. В этом отношении хлористый калий ведет себя аналогичным образом и при окислении углеводородов, описываемом далее. Действие его обусловлено, вероятно, таким каталитическим разложением перекиси, при котором не образуется активных центров. Ранее было отмечено, что, кроме торможения реакции зарождения цепи, хлористый калий может благоприятствовать увеличению способности стенки разрушать перекисные активные центры типа НО.,. Некоторые из опытов Пиза были проведены при температурах, значительно превышающих 560 С, причем в этом случае для неподвижной смеси заметного действия хлористого калия не отмечалось. В его же опытах со струйной методикой действие хлористого калия было еще очень сильным даже при температурах вплоть до 650 С. Движение газа оказывает, очевидно, двоякое действие. Во-первых, оно облегчает удаление активных центров с поверхности и, во-вторых, увеличивает зависимость скорости реакции обрыва цепи от активности поверхности по сравнению с той зависимостью, которая имела место, когда транспорт носителей цепи к стенке определялся исключительно диффузией. Поэтому влияние стенки гораздо более резко выражено в опытах со струйной методикой, нежели в опытах с неподвижной смесью. В последнем случае, если зарождение происходит в газовой фазе, такое влияние, как это было показано теоретически, играет второстепенную роль до тех пор, пока вероятность обрыва цепей е больше, нежели отношение длины свободного пробега к диаметру сосуда. [c.53]

    Обезжиривание в парах имеет очевидное преимущество деталь располагается в бачке над кипящим трихлорэтиленом или другим растворителем, который конденсируется на поверхности и стекает вниз, захватывая растворенные жиры конденсация прекращается, если деталь нагревается до температуры кипения растворителя, так что система менее пригодна для легких деталей, чем для тяжелых, если не приняты меры для охлаждения детали в любом случае целесообразно применять змеевик с водяным охлаждением, чтобы уменьшить испарение. Одной из серьезных опасностей является коррозия соляной кислотой, образующейся из трихлор-этилена при действии на него влаги, особенно в присутствии света. На сегодня трихлорэтилен обычно слегка подщелачивается, а, кроме того, в качестве дополнительной предосторожности добавляются иногда летучие ингибиторы. Однако некоторые сплавы могут вызывать каталитическое разложение, выделяя НС1 (газ), и поэтому лучше всего время от времени жидкость проверять на щелочность этот процесс описан в статье [79]. Другим затруднением является образование серной кислоты при реакции растворителя с серусодержащими соединениями, образующимися из некоторых масел и смазок. Подробности процессов очистки приведены в статьях [80]. Полная информация о практических испытаниях дана в сообщении [81 ]. [c.570]

    Установлено, что каталитическое разложение сероводорода сульфидами имеет место и в процессах электрохимической коррозии. Таким образом, интенсивное наводороживание металла в Н25-содержащих средах как по механизму электрохимической коррозии, так и по химическому механизму является результатом действия двух взаимосвязанных между собой процессов - химической или электрохимической коррозии и каталитического разложения сероводорода на поверхности металла сульфидами, при этом сероводород в электрохимических процессах оказывает каталитическое воздействие на анодную и катодную реакции. [c.32]

    Во всех случаях действие катализатора проявлялось в понижении температуры, при которой начинается пневматолиз, и ускорении роста карбоидных частиц и кристаллов графита. Нижняя температурная граница каталитического пневматолиза лежит около 400—500° С. Катализаторами чаще всего служат металлы, способные образовывать карбиды, наиболее известный катализатор — железо. Специфично разложение ацетилена на меди. Понижение температуры пневматолиза указывает на то, что катализатор облегчает диссоциацию и этим способствует цепному реагированию. Однако это не объясняет образования специфических структур и кристаллов графита. Нарастание происходит на самом образующемся угольном теле. Форму нароста можно объяснить или тем, что частицы катализатора сохраняются на растущей поверхности и перемещаются по мере ее роста, или тем, что катализатор только задает расположение точек роста, которые дальше передаются, как бы по эстафете. [c.103]

    При анализе в статическом режиме с использованием системы прямого ввода пробы термическая десорбция образца может проводиться с инертной или каталитически активной поверхности. Десорбция с инертного носителя в зависимости от термической устойчивости анализируемого вещества приводит либо к его испарению (разрыв межмолекулярных связей), либо к разложению (разрыв внутримолекулярных связей). Приближение образца к зоне ионизации, сочетание высокого вакуума с относительно невысокой температурой (150-350 С) позволяет сократить продолжительность пребывания ионов в зоне десорбции до 10" с и регистрировать масс-спектр крупных фрагментов, образующихся в результате разложения образца [8]. При десорбции с активной поверхности хемосорбированные молекулы под действием температуры подвергаются химическим превращениям, и объектами масс - спектрометрического анализа становятся продукты реакции и непрореагировавшие исходные соединения. [c.142]


    Уже упоминалось, что в некоторых случаях компоненты образца разлагаются в системе ввода. Разложение может происходить не только при контакте с разогретым металлом испарителя, но также из-за вторичных эффектов. Последние связаны с наличием на внутренней поверхности инжекционного блока перегретых участков либо с каталитическим действием твердых обуглившихся частиц, отложившихся на стенках испарителя. Твердые частицы могут аккумулироваться в зоне испарения в результате разных причин. Природные образцы часто содержат во взвешенном состоянии следы нелетучих веществ или высококипящие примеси, не испаряющиеся при температуре испарителя. В некоторых методиках анализа предусмотрено испарение лишь части введенной жидкой пробы, как, например, при определении содержания растворенных газов в биологических жидкостях. Наконец, при прокалывании иглой шприца мембрана выкрашивается, и кусочки силиконовой резины также собираются в горячей зоне испарителя. Все это указывает на то, что при конструировании систем ввода необходимо предусмотреть возможность их периодической чистки. Эта операция облегчается при использовании в стальных испарителях стеклянного вкладыша, который также исключает контакт испаряющегося образца с разогретой поверхностью металла. [c.138]

    Распад по схеме (XXIV. 1) идет со значительной скоростью в присутствии веществ, способных окисляться выделяющимся кислородом. Ускоряющее действие на разложение перекиси водорода оказывают также твердые катализаторы (стекло, многие металлы, в частности, платина, соли и окислы металлов, уголь и т. п.). На течение каталитической реакции разложения перекиси водорода влияют состояние поверхности катализатора, pH среды и каталитические яды, Сильными ядами ири разложенин перекиси водо-юда на платине являются СЗг, С2Н5ОН, Ь, Р, СО, РН3, АзНз, 32820,3. [c.287]

    Особенно чувствительным становится ускоряющее действие поверхности на разложение перекиси водорода тогда, когда стенки сосудов, в которых она хранится, являются шероховатыми. Например, 38%-ная Н2О2 может быть нагрета в полированной платиновой чашке до 60 °С, тогда как в исцарапанной разложение уже наступает при обычной температуре. Ускоряющее влияние твердой ловерхности на разложение перекиси возрастает при прибавлении солей тяжелых металлов, например сульфатов марганца или меди. Особенно активными являются азотнокислое серебро, сернокислая медь и уксуснокислый свинец. Уголь также действует разлагающе на перекись водорода. Прп этом каталитическая актив-юность его зависит от пористости п величины его поверхности. [c.122]

    Ускоряющее действие на разложение пероксида водорода оказывают свет, температура, твердые катализаторы (платиновая чернь, стекло, многие металлы, соли, оксиды металлов). Каталитическое разложение Н2О2 на платиновой черни является примером гетерогенного катализа. Видимо, лимитирующей стадией в данном случае является диффузия молекул Н2О2 к поверхности платины. Стадии адсорбции и десорбции, а также отвод продуктов в глубину фазы протекают быстро и не определяют скорость процесса. [c.154]

    Многие нержавеющие стали устойчивы к коррозии под действием перекиси водорода в широком интервале р1Н[, но даже при тш,ательной очистке и полировке скорости разложения перекиси водорода на поверхностях из нержавеющей стали несколько выше, чем на соответствующих алюминиевых поверхностях. Нержавеющая сталь дает превосходные результаты при применении в качестве обкладки или материала для изготовления баков, чанов и другого оборудования для хранения разбавленных отбеливающих растворов перекиси [30]. Коррозионная устойчивость и пассивность этой стали обычно приписываются образованию на поверхности пленки из окиси хрома или хеми-сорбированной пленки кислорода, выполняющей функцию механического барьера между перекисью водорода и металлом. Так же как и для алюминия, очень важно, чтобы поверхности были тщательно очищены, например азотной кислотой, и были возможно более гладкими. Так, для нержавеющих сталей типа 300 (хромоникелевых) сравнительно удовлетворительны поверхности, подвергнутые проковке или механической обработке, тогда как шероховатые поверхности, образовавшиеся при литье, непригодны. Шероховатая поверхность может способствовать выщелачиванию каталитически активного хрома перекисью водорода, что снизит ее стабильность. Литая поверхность может содержать включения материала изложниц, который может обладать каталитической активностью. Если поверхность нержавеющей стали нельзя очистить простой обработкой азотной кислотой из-за шероховатости, наличия окалины, включений, брызг сварочного металла и т. д., можно пассивировать ее путем протравливания (после предварительного обезжиривания) выдерживанием в растворе с 3% плавиковой и 10% азотной кислоты в течение 30 мин. при 38° или 2—3 час. при 18—2Г. Затем поверхность тщательно промывают водой и там, где это возможно, очищают жесткой щеткой. После этого поверхность необходимо еще раз обработать азотной кислотой. Если некоторую часть изделия нельзя протравить, например детали, подвергнутые механической обработке, можно нанести пасту из кислотной смеси с графитом только на те места, которые должны быть обработаны [26]. Для получения гладкой и пассивной поверхности нержавеющей стали можно использовать и метод электрополировки, например описанный Улигом [39]. Как и в случае с другими поверхностями, электрополированную поверхность можно сделать более стойкой по отношению к перекиси водорода путем предварительной обработки, состоящей в выдерживании ее в перекиси водорода той концентрации, которая намечается для употребления. [c.146]

    Оно выражает соотношение между константой скорости реакции К и температурой Т. В этом уравнении 7 и Ь — константы, а зс = 2К1 Т/тУ, где Е — энергия активации, а. ти V — масса и скорость электрона. Уравнение Срикан-тана было подтверждено данными, полученными Гиншельвудом для каталитического разложения аммиака на вольфраме и разложения закиси азота на платине. В узком интервале температур выражение 3/2 lg Т можно рассматривать как константу, и тогда уравнение превращается в уравнение Аррениуса. Сравнивая термоэлектрическую эмиссию для различных поверхностей (табл. 7), Срикантан пришел к выводу, что каталитическая активация газов должна быть приписана электронной эмиссии каталитической поверхности. В активности катализатора могут быть стадии его действие может изменяться постепенно или импульсообразно, в результате изменения динамического состояния [166]. [c.68]

    Опыт действительно показывает, что наблюдаемые зависимости часто не согласуются с законом действующих поверхностей. Этот зако . как известно, предусматривает независимость энергии активации каталитических реакций от степени заполнения поверхности. На опыте оказывается, что энергия активации может зависеть от степени заполнения поверхности катализатора, как это, например, наблюдалось для реакций разложения метанола на ZnO (от 18,8 до 28,2 ккал моль) [443] или дегидратации спирта на А Оз- ZnO (от 8,9 до 18,8 ккал1моль) [396, 397]. [c.169]

    Slater исследовал каталитическое влияние целого ряда веществ на термическое разложение метана. Он пришел к заключению, что химическая природа катализатора, а также величина действующей поверхности имеют очень большое значение. [c.121]

    В этих опытах было установлено также гомогенное каталитическое влияние ацетилена на реакцию, вследствие чего пиролиз метана представлял собой автокаталитическую реакцию. Прн степенях превращения ниже 30% реакция дополнительно ускорялась действием поверхности. Хотя опыты по пиролизу метана в ударной трубе не позволили с достоверностью выявить, образуются ли первично метильные или метиленовые радикалы, но они показали, что высокотемпературное разложение метана не тормозится гомогенно водородом и, вероятно, имеет кинетически первый порядок, а энергия активации реакции равна 85— 101 кка,11М0ль. [c.316]

    Шелтон и Викэм [935] выясняли роль сажи в окислении вулканизатов бутадиенстирольного каучука. По мнению авторов, сажа может ускорять окисление каучука вследствие каталитического действия поверхности (ускорение разложения перекисей, адсорбция антиоксиданта, повышение растворимости кислорода) и одновременно замедлять окисление, действуя как акцептор радикалов, переводя перекиси в стабильные продукты и дезактивируя поливалентные металлы. Соотношение обоих [c.659]

    Одним из наиболее ранних и наиболее широко используемых методов анализа поверхности является оценка хемосорбционной емкости адсорбента. Трепнел [19] показал, что количество водорода, хемосорбированного при температуре жидкого воздуха, представляется вполне удовлетворительным критерием оценки стенени чистоты поверхностей ряда металлов. Робертс и Сайкс [20] использовали, но существу, тот же самый критерий для оценки чистоты поверхности порошка никеля. В другом методе, позволяющем обнаруживать поверхностные загрязнения, составляющие незначительные доли монослоя поверхности, используется дифракция медленных электронов [21—24]. Ряд методов основан на изучении автоэлектронной эмиссии или ионизации иод действием электрического поля таких газов, как гелий [25, 26], фотоэффекта [27], работы выхода вторичных электронов [28], работы выхода электронов Оже [29]. Кроме того, изучение самой каталитичес1 ой активности твердого тела может служить для оценки степени чистоты его поверхности. При ознакомлении с дальнейшими разделами книги для пас будет все более очевидным, что каталитические свойства пленок, полученных испарением металлов, зависят от чистоты их поверхности. Робертс показал [30, 31], что низкотемпературное каталитическое разложение этана на пленках из родия и иридия в значительной стенени ингибируется в присутствии адсорбированного кислорода или окиси углерода. [c.69]

    Первая и главная особенность этого процесса — осуществление интенсивного каталитического разложения высокомолекулярных углеводородов, сернистых и смолистых соединений в присутствии низкомолекулярных жидких углеводородов, облегчающих испарение и десорбцию продуктов разложения с поверхности алюмосиликатного катализатора. Присутствие легких фракций нефгей в реакционном пространстве оказывает благоприятное действие вследствие значительного понижения концентрации смолистых и полициклических соединений на поверхности катализатора. [c.163]

    Единственным путем к пониманию любор области науки, столь сложной, как катализ, является полный анализ всех действующих факторов и исследование каждой переменной возможно более независимо от влияния всех других переменных. Гетерогенный катализ всегда связан с адсорбцией. При высокотемпературных реакциях каталитического разложения адсорбционный комплекс может существовать в течение очень короткого времени. При бимолекулярных реакциях для образования продукта часто должны быть адсорбированы оба реагирующих вещества иногда бывает достаточно адсорбции одного из них. Стадией, определяющей скорость гетерогенных реакций, может быть скорость адсорбции реагента (или реагентов) поверхностью или скорость десорбции с нее продукта (или продуктов) реакции. Только в редких случаях определяющим фактором является скорость поверхностной реакции. По определению, катализатор понижает энергию активации реакции в гетерогенном катализе это достигается путем образования активированного адсорбционного комплекса с катализатором. Указанное отнюдь не означает, что сильная адсорбция эквивалентна высокой каталитической активности. В действительности слишком сильная адсорбция может просто привести к тому, что поверхность окажется покрытой любым из реагентов или продуктов реакции, сильно отравляющих ее для любой дальнейшей реакции. Это показывает, что энергию активации, необходимую для образования активированного адсорбционного комплекса, следует рассматривать в связи с энергией активации, необходимой для соответствующей реакции внутри активированного адсорбционного комплекса. Например, автор настоящей статьи со своими сотрудниками [1] показал, что для гидрирования этилена при температуре, близкой к комнатной, и при обыкновенном давлении водород должен быть адсорбирован в виде атомов. Далее в этой работе [2] показано, что сам этилен не адсорбируется поверхностью, а что он просто отрывает от нее два атома водорода. Разумеется, это не значит, что в акте отрыва двух атомов водорода этилен не образует на мгновение [c.198]

    Каталитический крекинг нефти. По данным А. В. Агафонова и других [3] при крекинге нефти в присутствии алюмосиликатных катализаторов высококипящие углеводороды, главным образом нафтеновые и ароматические с боковыми парафиновыми цепями, а также смолистые и сернистые сиединения, разлагаются с высокой Скоростью. Присутствие в крекируемой смеси низкомолекулярных углеводородов способствует десорбции продуктов разложения и оказывает благоприятное действие вследствие значительного понижения концентрации смолистых и полициклических соединений на поверхности катализатора [3]. Ниже приведен баланс (в % вес. на нефть) однократного крекинга сернистой смолистой нефти (плотность = 0,867, содержание серы 1,6% вес., коксуемость 5,8% вес., содержание фракций ло 350° 48,5% вес.) в присутствии природного катализатора с индексом активности И—14. Условия процесса температура в реакционной зоне 450 , объемная скорость подачи сырья 1,2—1,5 час. , весовая кратность циркуляции катализатора 5. [c.215]

    Бон и Ковард исследовали каталитическое влияние извести на разложение меп"ана. Действие извести они приписывают исключительно действию увеличенной поверхности [c.337]

    В процессе работы смазка подвергается воздействию повьпценньк температур, скоростей и нагрузок, а также воздействию различных факторов окружающей среды (кислород воздуха, вода, пары коррозионно-активных соединений, радиация и др.). Это сопровождается термическим разложением, термоокислительными процессами и полимеризацией, которые интенсифицируются деформацией сдвига и каталитическим действием ювенильных поверхностей трения. Все это в совокупности приводит к старению смазок и соответственно к ухудшению их эксплуатационных свойств. Расход смазок в процессе работы обусловлен также испарением дисперсионной среды, механической деструкцией дисперсной фазы, вьщелением масла из смазки и вытеканием его из узла трения. [c.357]

    Среди гетерогенных процессов принято отдельно рассматривать топохимические (от греч. topos — место) реакции, характеризующиеся тем, что в них процесс происходит на границе раздела между исходным и полученным твердыми телами. К ним относится переход аквакомплексов в обезвоженное состояние, металлов в оксиды, термическое разложение веществ, обжиг, хлорирование руд, фотографический процесс, приготовление катализаторов. Вначале топохимические процессы связаны с образованием зародышей новой фазы и последующим ростом их поверхности не исключено и их каталитическое действие на процесс (автокатализ). Значительное влияние на скорость этих реакций помимо температуры и концентрации могут оказать и дефекты в кристаллической решетке. [c.154]

    Наконец, громадную (можно сказать, основную) роль в каталитических процессах играет методика получения или предварительной обработки катализатора. Высокая каталитическая активность наблюдается, как правило, только при рыхлой и неустойчивой структуре его поверхности и при достаточной ее величине. В связи с этим катализаторы окисного типа готовят обычно обезвоживанием соответствующих гидроокисей или термическим разложением нитратов, металлические катализаторы — восстановлением окислов водородом. Во всех подобных случаях катализатор получается именно в рыхлом и неустойчивом состоянии (так как расположение его частиц отвечает условиям устойчивости не для него самого, а для того соединения, из которого он получен). Вместе с тем приготовление катализатора стараются вести при возможно более низкой температуре, чтобы не дать возможности образовавшимся частицам перегруппироваться в более устойчивые формы. Если позволить последнему процессу пройти, то активность обычно снижается нли даже теряется. Например, полученная высушиванием гидроокиси при сравнительно низких температурах окись алюминия (AljOs) яв- яется прекрасным катализатором процесса дегидратации винного спирта, тогда как после нагревания выше 400 °С она перестает действовать. Точно так же выделенная в виде менее устойчивых кубических- кристаллов РеаОз каталитически активна, а при ее перегруппировке в более устойчивую ромбоэдрическую форму активность теряется. В отдельных случаях прокаливание катализатора ведет к изменению самого характера его,действия. Например, aSO<, полученный обезвоживанием гипса при невысокой температуре, разлагает винный спирт на 94% с образованием 2H< и на 6% — Н2, тогда как на предварительно прокаленном докрасна aSO реакция идет более чем на 80% с образованием водорода. Как правило, наилучшие результаты дает приготовление твердого катализатора в атмосфере той газообразной системы, для реакции в которой он предназначен. [c.349]

    Катализаторы обладают специфическим действием. Вещество, значительно ускоряющее одну реакцию, часто оказывается совершенно неэффективным для другой. В то же время для данной реакции может существовать целый набор катализаторов. Так, термическое разложение хлората калия ускоряется не только в присутствии МпОг, но и некоторых других оксидов (РегОз, СггОз). Существуют катализаторы, обладающие так называемой групповой специфичностью. Она проявляется в том, что при помощи их ускоряется целая группа однотипных реакций. Например, никель Ренея (мелкодисперсный никель с сильно развитой поверхностью) служит специфическим катализатором реакций гидрирования, а иентоксид ванадия ускоряет многие реакции окисления (ЗОг, N1 3 и т. д.). Многие катализаторы, в частности ферменты, обладают сугубо индивидуальным каталитическим действием. Такие катализаторы называются индивидуально-специфическими. По образному выражению Э. Фишера, реакцию, катализируемую ферментом, можно сравнить с замком, а сам фермент — с ключом. Как не каждый ключ может открыть замок, так не каждый фермент способен ускорить реакцию в данном направлении. Например, один фермент способствует сбраживанию сахара до спирта и диоксида углерода, другой — до молочной кислоты. [c.234]

    Получение аммиака за счет азота каменного угля зависит в значительной мере от характера проведения процесса коксования. Образующийся при коксовании аммиак под действием высокой температуры печи разлагается на свои составные части. На скорость разложения температура влияет таким образом, что чем выше она, тем больше скорость, и тем больше, конечно, доля разложившегося аммиака. По Майеру и Альтмайеру, предельная оптимальная температура образования аммиака в печи—около 800 С. Но разложение аммиака зависит также от каталитических свойств поверхности раскаленного угля, внутренней поверхности железной печи, в которой уголь подвергается нагреву, а также от продолжительности нахождения аммиака в соприкосновении с ними и присутствия в газовой смеси окиси углерода, двуокиси углерода—СО и СОг и других газов и паров воды. [c.20]

    Хорошо известно, что такие показатели процесса, как срок службы катализатора, интенсивность углеотложения и т. п. в значительной мере зависят от чистоты применяемого сырья [79, 100]. Для удобства рассмотрения влияния примесей на показатели процесса целесообразно разделить их на две группы. Первую группу составляют примеси, содержащиеся в исходном (или -г дрямом ) метаноле. Эти же соединения могут образовываться % ходе превращения метанола в формальдегид. К примесям этой группы относятся формиаты, карбонаты и бикарбонаты натрия, а .з-акже соединения серы, свинца, железа и других элементов. Хо-т содержание их не превышает Ю -10" °/о, длительное использование сырья, загрязненного указанными примесями, приводит к снижению активности катализатора. Для удаления указанных соединений рекомендуется установка разделительных перегородок, отбойных тарелок на пути спиртовоздушной смеси к реактору [101]. Наиболее активным каталитическим ядом является легколетучий пентакарбонил железа, молекулы которого сорбируются на поверхности активных центров и разлагаются с образованием свободного или оксидного железа, ускоряющего разложение формальдегида. Отмечено также, что оксиды железа катализируют гидрирование метанола до метана [19, 95]. Пентакарбонил железа, содержащийся в метаноле — сырце, можно удалять ректификацией [102]. Поскольку пентакарбонил железа может образовываться при действии оксида углерода при высоких температурах на углеродистые стали, основная аппаратура формалиновых производств изготовляется из легированных сплавов. Очистку ог органических примесей (диметиловый эфир, метилформиат) так-46 [c.46]

    Факторами, влияющими на процесс термического разложения, являются в первую очередь температура и продолжительность на- гревания. Чем меньше продолжительность нагревания, тем выше должна быть температура для достижения, той же степени разложения [11]. В то же время, большая продолжительность нагревания способствует протеканию побочных реакций. Важным фактором является и давление, которое влияет в меньшей степени на мономолекулярные реакции разрыва молекул н в значительно большей степени яа реакции синтеза, являющиеся бимолекулярными реакциями. Существенную роль может играть также поверхность приемника или трубки железо и никель ускоряют разложение путем инициирования гетерогенных реакций на поверхности. Стекло, кварц, хром и выоокохромированные стали не обладают таким поверхностным каталитическим действием. Чем выше тей- пература и ниже давление, тем сильнее возрастает выход газс 1й [ >, разных продуктов [11]. - [c.156]


Смотреть страницы где упоминается термин Каталитическое разложение под действием поверхности: [c.308]    [c.74]    [c.271]    [c.302]    [c.407]    [c.231]    [c.163]    [c.163]    [c.46]    [c.117]    [c.62]    [c.272]    [c.34]    [c.284]    [c.85]    [c.188]   
Физическая химия силикатов (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Действующих поверхностей

Разложение каталитическое



© 2025 chem21.info Реклама на сайте