Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография как метод анализа сложных смесей

    Тонкослойная хроматография. Тонкослойная хроматография — эффективный метод анализа сложных смесей веществ различных классов — углеводородов, спиртов, кислот, белков, углеводов, стероидов и т. д. Она заключается в следующем. На одну сторону небольшой стеклянной пластинки с помощью специального валика наносят тонкий слой сорбента. На стартовую линию слоя сорбента наносят пробы веществ и их смесей край пластинки ниже стартовой линии погружают в систему растворителей, налитую в широкий сосуд с пришлифованной крышкой. За счет капиллярных сил растворитель продвигается по пластинке. По мере продвижения жидкости по пластинке смесь веществ разделяется. Границу подъема жидкости или линию фронта отмечают, пластинку сушат и проявляют. Отмечают, как указано на рис. 85, положение пятен, соответствующих исследуемым веществам и находя- [c.73]


    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]

    При отделении кальция методом тонкослойной хроматографии в качестве носителя преимущественно используют силикагель 422, 1097, 1245]. Растворителем служит раствор лимонной кислоты (нри анализе сложных смесей), молочная кислота (при разделении Са и Ва) [505], смесь 0,8 М раствора NH NS и этанола (5 3) при разделении Са и Sr [1246[. [c.187]

    Одним из методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод анализа (хроматография). При хроматографическом разделении используются различные физико-химические свойства отдельных компонентов смеси. Например, разница в растворимости образующихся осадков, в распределении компонентов смеси между двумя несмешивающимися жидкостями, в адсорбции компонентов смеси на поверхности твердой и жидкой фазы и т.д. Во всех случаях разделения, как правило, участвуют две фазы — твердая и жидкая, твердая и газообразная и т. п. Процессы сорбции, осаждения, ионного обмена, распределения между фазами различного состава протекают непрерывно, при последовательном многократном повторении. Такой процесс осуществляется в хроматографической колонке (рис. 157). Анализируемая смесь в виде раствора (жидкая фаза) фильтруется через колонку, содержащую слой сорбента (твердая фаза). Каждое из растворенных веществ адсорбируется на определенном участке и образуются зоны адсорбции (первичная или фронтальная хроматограмма). При последующем промывании колонки чистым растворителем получают проявленную хроматограмму, т. е. разделение компонентов смеси. [c.298]


    Анализ сложной смеси можно проводить двумя методами. В первом методе смесь анализируют дважды с адсорбционным реактором и без реактора. Во втором методе применяют хроматограф с двумя независимыми детекторами, которые располагают следующим образом первый— после хроматографической колонки (регистрация всех компонентов) и второй — после реактора (регистрация насыщенных углеводородов). Нарис.У-1 приведены две хроматограммы— с абсорбером и без абсорбера. При анализе с применением сернокислотного реактора поглощаются все непредельные соединения и детектор регистрирует только насыщенные углеводо- [c.138]

    Газоадсорбционная хроматография может также использоваться для группового анализа сложных смесей нафтеновых углеводородов после предварительного разделения исходной смеси. Авторы работы ([204], применив предколонки, заполненные катализатором гидрирования олефинов на основе Pt/Al, а также перхлоратом ртути для удерживания ароматических соединений и олефинов, провели разделение группы соединений парафины — олефины — нафтены — ароматические соединения на разделительной колонке, заполненной молекулярным ситом 13Х. Сравнивая хроматограммы, полученные при разделении на системе распределительная колонка — катализатор гидрирования — молекулярное сито и смесь перхлорат ртути — молекулярное сито, можно выявить алкены и циклоалкены. После прохождения через предколонку содержащиеся в смеси парафины и нафтены хроматографируют при 450 °С на колонке с молекулярным ситом 13Х. Суммарная доля ароматических соединений определяется на распределительной колонке методом обратного потока .  [c.355]

    В течение нескольких последних лет в ряде лабораторий начаты работы по выяснению возможностей использования газовой хроматографии для анализа металлов. В первую очередь для этого было необходимо перевести смесь металлов пли их соединений в летучие производные, которые можно подвергнуть хроматографическому разделению и анализу. Наибольшую трудность представляет отыскание подходящих летучих соединений, отвечающих определенным требованиям. Если эту трудность удастся преодолеть, то хроматографический анализ успешно заменит многие из существующих методов анализа смесей металлов, так как он позволяет быстро разделять сложные смеси и определять очень малые количества компонентов. Характерной и важной особенностью этого метода является весьма высокая чувствительность. При использовании одного из ионизационных детекторов усовершенствованного типа можно легко определять количества вещества от нанограмм до пикограмм. [c.18]

    К настоящему времени разработано и используется несколько схем хроматографического анализа бензиновых фракций с различными пределами выкипания и разного происхождения. В нащей стране щироко используют схему и методику анализа прямогонной бензиновой фракции н. к.— 150 °С, разработанные Ал. А. Петровым с сотрудниками в середине 70-х годов. Эта фракция представляет собой очень сложную смесь, в нее входят алканы нормального и изостроения, циклоалканы и арены (гомологи бензола) — всего около 200 различных углеводородов. Для анализа из исходной нефти отбирают фракцию н. к. — 200 °С, затем с помощью жидкостной адсорбционной хроматографии на силикагеле (марки АСК) отделяют алкано-циклоалкановые углеводороды от аренов. Индивидуальный состав последних определяют методом газожидкостной хроматографии на капиллярной колонке. Алкано-циклоалкановую часть фракции на ректификационной колонке эффективностью 25— 50 теоретических тарелок разгоняют на фракции н. к.— 125 °С и 125—150 °С, которые затем раздельно анализируют на капиллярной колонке. Схема анализа приведена на рис. 4.1. [c.130]

    Метод газо-адсорбционной и газо-жидкостной хроматографии широко применяется в промышленности, особенно для анализа сложных смесей, компоненты которых обладают с-ходными свойствами, в частности смесей углеводородов. Эти-м методом с достаточной точностью анализируют смеси углеводородов, получае-мые при переработке нефти. Метод газо-жидкостной хроматографии и.меет большое значение при анализе сырья, идущего на производство полимерных материалов (этилена, пропилена и их смесей, дивинила, изопрена и т. д.). Этим методом анализируют различные смеси органических соединений смесь моно-, ди- и триметиламина в присутствии аммиака, смесь жирных кислот от. муравьиной до додека-новой, смесь хлорпроизводных метана, смесь фенилхлорсиланов, смеси алкилфенолов и др. [c.288]

    Для достижения воспроизводимого разрешения и удерживания при анализе сложных проб методом высокоэффективной газовой хроматографии необходима высокая стабильность температуры в термостате [4, 5]. В табл. 4-1 приведены данные о воспроизводимости времен удерживания стандартной смеси метиловых эфиров жирных кислот. При проведении анализа использовали три различных выпускаемых промышленностью термостата. Поскольку эта смесь используется в качестве стандарта для идентификации микроорганизмов путем распознавания образов, наблюдаемые расхождения во временах удерживания и низкую воспроизводимость [c.137]


    Сырая нефть, как и смазочные масла, представляет собой сложную смесь парафинов, нафтенов и ароматических углеводородов, однако интервал молекулярных масс составляющих ее компонентов значительно шире от 16 (метан) до 800 и выше (асфальтены). В разд. 16.4 говорилось о разделении извлекаемых из нефти смесей углеводородов с низкой молекулярной массой (вплоть до Сз), а разделение высокомолекулярных компонентов, газохроматографический анализ которых невозможен, можно осуществить при помощи методов жидкостной хроматографии [61]. Обычный газохроматографический анализ применим только для углеводородов, содержащих до 42 углеродных атомов, однако их выход составляет лишь 80—90%. Поскольку добиться количественного выхода, как правило, невозможно, в пробу, как и при анализе смазочных масел, необходимо вводить внутренний стандарт. Практическое применение такой методики анализа сопряжено со значительными трудностями, которые обусловлены тем, что на хроматограмме сырой нефти отсутствуют достаточно протяженные пробелы, и подобрать такой [c.397]

    Современная высокоэффективная жидкостная хроматография — один из эффективных методов анализа и разделения многокомпонентных сложных смесей. В адсорбционной хроматографии разделение веществ, входящих в смесь и движущихся по колонке в потоке растворителя, происходит за счет их различной способности адсорбироваться на поверхности и десорбироваться с поверхности адсорбента. Достигаемое при этом разделение зон компонентов обусловливается их различным взаимодействием как с растворителем, так и с адсорбентом. Если подвижная фаза менее полярна, чем используемая [c.555]

    Методы хроматографии преимущественно применяют при анализе смесей и определении (а также выделении) примесей. Общий метод разделения газовых смесей, открытый русским ботаником М. С. Цветом (1903 г.), получил в настоящее время очень широкое применение и называется хроматографией. М. С. Цвет, изучая окраску различных растительных вытяжек красящим веществом хлорофиллом (сложный растительный пигмент), впервые применил для разделения окрашивающих пигментов растений своеобразный метод, который назвал хроматографией (греческое хромое — цвет, графо — пишу). В этом методе смесь (жидкий раствор, смесь газов) движется под влиянием какого-либо воздействия по адсорбенту. Так как различные [c.195]

    Фронтальный анализ можно проводить на обычных хроматографах без исиользования дозирующего устройства. Если определяемые компоненты в анализируемой смеси в достаточной степени разбавлены инертным газом, то смесь может непосредственно подаваться на колонку. В этом случае в отличие от проявительного анализа отсутствуют ошибки, связанные с дозированием. Однако в большинстве случаев такое условие не выполняется и требуется специальное приспособление для разбавления анализируемой смеси газом-носителем. Если имеется непрерывный поток анализируемой смеси, что часто бывает при контроле производственных процессов, то такое разбавление не вызывает затруднений. Оно достигается соответствующей регулировкой скоростей потоков анализируемой смеси и газа-носителя, поступающих в смеситель. Значительно более сложные устройства требуются при наличии жидких проб. В этом случае применение фронтального метода едва ли сулит какие-либо преимущества. [c.430]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, компоненты которой разделяются или идентифицируются лучше, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматографических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводородов, селективно поглощая их в реакторе с силикагелем, обработанным серной кислотой. При реакционной газовой хроматографии используются также реакции гидрирования, дегидрирования, этерификации (для анализа карбоновых кислот в вйде эфиров), пиролиза высокомолекулярных соединений. [c.123]

    Методы разделения занимают в аналитической химии особое место. Окружающий нас мир — мир сложных смесей, а известные методы количественного анализа, как правило, эффективны только для определения индивидуальных веществ или смесей известного состава их применение для анализа многокомпонентных смесей в общем случае ограничено. Поэтому в аналитической химии в последние десятилетия широкое распространение получили гибридные методы [1], сочетающие методы разделения и количественного определения. Одним из наиболее ярких примеров такого сочетания является хромато-масс-спектрометрия, в которой анализируемую смесь вначале разделяют на газовом или жидкостном хроматографе на отдельные компоненты, а затем проводят качественную идентификацию и количественное определение на масс-спектрометре. Большой вклад в развитие этого метода внесли В. Л. Тальрозе и его сотрудники [21. [c.5]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Интересное применение двумерной хроматографии описано Блю-мером [4], который произвел анализ смеси порфиринов, содержащих сложные эфиры и комплексы металлов, а также свободные кислоты. Сначала сложные эфиры и комплексы отделялись при помощи четыреххлористого изооктанового углерода, не оказывающего влияния на свободные кислоты. Затем смесь кислот этерифицировалась диазометаном методом капельной обработки непосредственно на листе фильтровальной бумаги. Образовавшиеся эфиры разделялись после второго проявления под прямым углом к первому в одном и том же растворителе. [c.259]

    Тонкослойная хроматография. Тонкослойная хроматография — эффективный метод анализа сложных смесей веществ различных классов — углеводородов, спиртов, кислот, белков, углеводородов, стероидов II т. д. Она заключается в следующем. На одну сторону небольшой стеклянной пластинки с помощью специального валика наносят тонкий слой сорбента. На стартовую линию слоя сорбента наносят пробы веществ и их смесей край пластинкн ниже стартовой линии погружают в систему растворителей, налитую в широкий сосуд с пришлифованной крышкой. За счет капиллярных сил растворитель продвигается по пластинке. По мере продвижения жидкости по пластинке смесь веществ разделяется. Границу подъема жидкости, илп линию фронта, отмечают, пластинку сушат и проявляют. Отмечают, как указано па рнс. 77, положение пятен, соответствующих исследуемым веществам и находящихся между линией старта и линией фронта жидкости. Для этого измеряют расстояние от центра пятна до стартовой линии (отрезок а). Далее определяют расстояние от линии фронта жидкости до стартовой точки (отрезок Ь). Отношение отрезка а к отрезку Ь обозначают через константу / /, характеризующую положение вен1ества на данной хроматограмме. [c.70]

    Современные исследования группового состава нефти построены на последовательном удалении отдельных классов углеводородов. Ароматические вполне надежно могут быть выделены методами хроматографии, поело чего остается смесь нафтеновых и метановых углеводородов. Нормальные метановые углеводороды более или менее точно опредедяются при помощи карба-мидного метода, т. е. по образованию соединений включения. Оставшаяся смесь может содержать изометановые углеводороды и нафтеновые разных классов (моно- и нолициклические). Эту смесь можно разделить методом термодиффузии, но самая методика не вышла еще из рамок сложных и трудоемких специальных исследований. Исследование крайне затрудняется тем, что нам совершенно неизвестны типы полиметиленовых углеводородов и характеристики индивидуальных соединений этого класса, что лишает возможности воспользоваться методами графического анализа, а также в значительной степени и спектрографического. [c.24]

    Таблица показывает, что данные, полученные хроматографически, находятся в хорошем соответствии с величинами, полученными обычно применяемой методикой. Радиохимический анализ позволяет шире использовать микрокаталитическую методику, когда при кинетических исследованиях в статических или динамических условиях требуется нро-анализировать сложную смесь продуктов, общее количество которых чрезвычайно мало и иногда не превосходит нескольких миллиграммов, и даже долей миллиграмма. Чувствительность метода в этом случае может быть увеличена в 10—30 раз при использовании для продувки газов с больпюй теплопроводностью, например Нг [10], Не, СН в комбинации с проточными пропорциональными счетчиками (11). Более широкое использование хроматографии меченых молекул в кинетических исследованиях позволит в ближайшие годы проверить механизм ряда основных каталитических процессов и, возможно, откроет новые пути для их контроля и регулирования. [c.398]

    Несмотря на наличие специалистов в области физических и химических методик, оператору, работающему на масс-спектрометре, иногда приходится проделать некоторую работу по подготовке образцов к анализу. Часто, если анализу подвергается сложная смесь, эта предварительная работа включает разделение смесей на компоненты. В других случаях бывает необходимо получить масс-спектр эталонного соединения и тем самым подтвердить идентификацию это иногда сопряжено с необходимостью очистки малого количества эталонного соединения или проверки его чистоты. Для проведения работы подобного рода особенно важны методы газо-жидкостной хроматографии и зонной плавки. Овладение этими двумя методиками облегчает работу масс-спек-трометриста и позволяет достигнуть больших успехов в масс-спектрометрическом анализе. [c.195]

    Во ВНИЙНП для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов С1 — Сд и некоторых неуглеводородных компонентов, применяется метод газовой хроматографии в различных его вариантах газо-жидкостный метод с применением полярных и негго-лярных неподвижных фаз и адсорбционный метод с применением природных, синтетических и модифицированных адсорбентов. Сочетание этих методов дает возможность анализировать газовые смеси, содержащие 20—25 компонентов, за 30—35 мин. Для анализа используется хроматограф ХЛ-3 с дифференциальным катарометром с термисторами в качестве чувствительных элементов [1]. [c.162]

    В экспресс-методе [23] эта трудность устранена тем, что подвижная фаза представляет собой смесь растворителей с определенной элюирующей силой. Для того чтобы понять поведение смешанной подвижной фазы достаточно сложного состава в хроматографической колонке, мы должны вернуться к фронтальному методу анализа, рассматривая сложную подвижную фазу как анализируемый образец, i aлизиpyeмaя смесь растворителей имела следующий состав [в % (объемн.)] изооктан — 92,0 1,2-дихлорэтан - 1,15 изопропиловый эфир - 1,15 этилацетат - 1,15 этиловый спирт - 4,55. На выходе из колонки отбирали фракции равного объема, в которых определяли состав растворителя методом газовой хроматографии. Результаты анализа представлены соответствующими кривыми на рис. 14. Видно, что в отличие от классической схемы фронтального анализа каждый растворитель дает четкий фронт с достаточно большим максимумом, концентрация растворителя в котором превьппает его концентрацию в исходной смеси. При этом зона предьщущего растворителя находится шфронте последующего. Как и следовало ожидать, эффект расслоения растворителей проявился здесь достаточно чежо. [c.43]

    Анализ сложной смесп можно производить двумя метода пг В первом случае смесь анализируется дважды с абсорбционным реактором и без него во-втором случае используют хроматограф с двумя независимыми детекторами, которые располагают след5 ющим образом один — после хроматографической колонки для регистрации всех кo июнeнтoв и другой — после реактора, для регистрации насыщенных углеводородов. [c.93]

    В настоящее время математическая теория препаративной хроматографии в самом общем виде построена быть не может, да и, по-видимому, она была бы практически бесполезной вследствие своей громоздкости. Поэтому мы ограничимся здесь рассмотрением относительно простой модели, которая позволяет выяснить основные принципы, лежащие в основе метода. Во-первых, мы ограничимся колоночной хроматографией (метод непрерывной хроматографии обсуждается в гл. 10). Во-вторых, для описания эффективности разделения мы выберем относительно простой параметр, а именно массу данного компонента заданной чистоты, получаемого в результате разделения, в расчете на единицу времени. Теория процесса элюирования рассматривается в наиболее простых условиях двухкомпонентная эквимолярная смесь, прямолинейная изотерма распределения, изотермический, изобарический режим работы колонки и т. д. Более сложные случаи более или менее качественно рассматриваются в разд. V как вариации этой простой модели. В разд. VI приведен краткий обзор методов фронтального анализа, при этом в качестве аналога используется процесс элюирования. [c.9]

    Хроматографический метод, разработанный известным русским ученым М. С. Цветом, является одним из наиболее быстрых, точных и простых приемов анализа сложных смесей веществ. Сущность этого метода состоит в том, что при движении через пористую среду смесь веществ разделяется под действием различных факторов. Такими факторами являются 1) различная адсорбируе-мость компонентов смеси 2) обмен между ионами раствора и ионами на поверхности адсорбента 3) различная растворимость образующихся труднорастворимых осадков 4) различное распределение компонентов между двумя несмещивающимися жидкими фазами и т. д. В соответствии с этим хроматографию обычно подразделяют на адсорбционную, ионообменную, осадочную, распределительную и др. В последнее время особенно большое развитие получил метод распределительной хроматографии на бумаге, который сейчас очень широко ИС пользуется в биохомии, физиологии, микробиологии, химии для определения самых разнообразных веществ. [c.25]

    Еще В. И. Вернадский считал, что нафтеновые кислоты представляют сложную смесь различных органических кислот, в том числе и гуминовых. Исследованиями было установлено присутствие нафтеновых кислот в подземных водах, не связанных с нефтяными залежами. В то же время в ряде случаев подземные воды, контактирующие с нефтью, не содержат нафтеновых кислот. Все это заставило задуматься о химической природе нафтеновых кисло г и методах их исследования. М. Я. Дудова, использовав метод тонкослойной хроматографии, исследовала органические кислоты, выделенные из вод нефтяного месторождения Норио в Восточной Грузии, а также кислоты, извлекаемые петролейным эфиром и хлороформом из болотной воды. Установлено, что кислоты нефтяных вод Норио относятся к кислотам нафтенового ряда, а кислоты болотной воды — гуминового. Этот факт привел М. Я. Дудову к выводу о том, что существующие методы определения нафтеновых кислот в подземных водах не являются методами избиратель-, ного определения именно нафтеновых кислот, а распространяются и на другие кислоты, в частности жирного ряда и гуминового характера. В соответствии с результатами элементарного анализа, тонкослойной хроматографии и с представлениями о строении нафтеновых кислот, выделенных из нефти, структурная формула кислот, выделенных из подземных вод нефтяного месторождения Норио, представляется в следующем виде  [c.55]

    Разделить с помощью одной лишь хроматографии эту сложную смесь продуктов частичного расщепления цепи — аминокислот, дипептидов, трипептидов, тетрапептидов и т. д. — было очень трудно. Зангер и Туппи применили другие методы разделения (электрофорез и адсорбцию на угле и на ионообменных смолах), с помощью которых они разделили пептидные обломки на группы. Теперь они подвергали анализу уже эти более простые смеси с помощью хроматографии на бумаге. Им удалось выделить из разрушенной цепи 22 дипептида, 14 трипептидов и 12 более крупных обломков (см. фиг. , А). Хотя эти вещества были получены лишь в микроскопических количествах, тем не менее специальными методами они были идентифицированы и была установлена последовательность расположения образующих их аминокислот. [c.97]

    При разделении определяющим фактором в выборе аналитического метода является природа образца. Если состав пробы относительно несложен, то ее можно эффективно разделить с помощью таких нехроматографических методов, как экстракция, осаждение, дистилляция. Однако если проба представляет собой сложную смесь или ее компоненты характеризуются близкими физическими и химическими свойствами, то для полного анализа обычно необходима хроматография. Выбор хроматографической системы в каждом случае зависит от различных факторов, таких как природа пробы, доступность оборудования, цель анализа и предпочтительный вид анализа. [c.44]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

    При разделении менее сложных смесей (10—15 пептидоа) часто опускается стадия ионообменной хроматографии. Выбор схемы разделения проаодится на основании анализа так называемых пептидных карт. Для получения пептидной карты (рис. 10) смесь пептидоа, образовавшаяся в результате ферментативного или химического гидролиза белка, наносится в анде небольшой полоски на лист хроматографической бумаги или пластинки с тонким слоем целлюлозы и подвергается электрофорезу или хроматографии во взаимно перпендикулярных направлениях. После проявления пептидной карты специфичным реактивом иа бумаге или пластинке образуется характерный для данного белка набор пятен, их взаимное расположение позволяет оценить эффективность использованных методов разделения и выбрать оптимальный вариант. [c.53]

    Ароматические углеводороды представляют собой смесь углеводородов, разделение которых является сложной аналитической задачей. Поэтому одной из задач при их изучении является полнота и четкость их выделения из нефти. В основу выделения ароматических углеводородов из нефти положен хорошо известный метод элюептной адсорбционной хроматографии на силикагеле [3—5]. Изменение условий проведения анализа позволяет добиться высокой эффективности извлечения моноциклических ароматических углеводородов. [c.33]

    Ионообменная хроматография карбоновых кислот в растворах ацетата натрия и уксусной кислоты имеет широкое использование. Этим методом оказывается возм[ожным разделять даже очень сложные смеси оксикислот, что особенно важно для химии сахаров. Раствор ацетата натрия является подходящим элюентом для разделения ионов различных монокарбоновых кислот. Альдоновые и уроновые кислоты элюируются в порядке увеличения молекулярной массы. Если сравнить поведение при элюировании кислот с равным числом углеродных атомов, но с различным числом гидроксильных групп, то оказывается, что силы взаимодействия со смолой увеличиваются с уменьшением числа таких групп. Это дает возможность разделять ряд стереоизомеров, различающихся по степени гидратации и по силе ионного взаимодействия. Однако некоторые изомеры кислот не разделяются путем элюирования раствором ацетата натрия, и в таком случае более выгодно использовать уксусную кислоту. При элюировании уксусной кислотой наиболее важным фактором является кислотность разделяемых кислот. Слабые кислоты элюируются легче, чем сильные кислоты. Если кислоты элюируются буферными смесями, составленными из уксусной кислоты и ацетата натрия, влияние состава элюирующей смеси на удерживаемые объемы легко оценить, применив закон действующих масс. Было найдено также, что элюционную хроматографию органических кислот на анионообменных смолах в ацетатной среде можно успешно использовать для анализов некоторых кислот, содержащихся во фруктовых соках. Гуди и Риман [27] количественно разделили смесь 4—9 мг яблочной, винной и лимонной кислот, находящихся в фруктовых соках, и отделили их от сахаров с помощью 2,0 М раствора уксусной кислоты и 0,4 М [c.160]

    В целевых альдегидах и а-изонропил-р-изобутилакриловой кислоте присутствуют примеси побочных продуктов, такие как изомерная смесь амиловых спиртов, изовалериановая кислота, простые и сложные эфиры амиловых спиртов и изовалериановой кислоты и др. (рис. 4 и 5). Эти смеси из-за резкого различия температур кипения и химической природы не удается проанализировать методом газо-жидкостной хроматографии на одной неподвижной фазе. Для анализа таких смесей нами была применена газо-адсорбционная хроматография на пористом полимере с удельной поверхностью 200 м /г. Смеси указанных выше веш еств на пористом полимере проявляются в порядке повышения температуры кипения. [c.223]


Смотреть страницы где упоминается термин Хроматография как метод анализа сложных смесей: [c.68]    [c.162]    [c.306]    [c.43]    [c.306]    [c.92]    [c.334]    [c.301]    [c.3]    [c.159]    [c.13]    [c.114]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ сложных смесей

Хроматография анализ

Хроматография методы



© 2025 chem21.info Реклама на сайте