Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кинетики гетерогенных каталитических реакций

    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]


    Точно т,ак же, как и в гомогенной кинетике или в кинетике гетерогенных каталитических реакций, каждую отдельно взятую реакцию можно представить определенным числом элементарных стадий. Позже мы подробно рассмотрим этот аспект химической кинетики в гетерогенных системах. [c.40]

    ОПРЕДЕЛЕНИЕ КИНЕТИКИ ГЕТЕРОГЕННЫХ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ [c.396]

    Существенной особенностью той трактовки кинетики реакций на поверхностях, которая была здесь вкратце представлена, является постулат о существовании определенного вида связи между кинетическими и адсорбционными характеристиками различных мест неоднородной поверхности, а именно связи, выражаемой уравнением [21]. Этот постулат устанавливает определенное соответствие между уравнениями, описывающими адсорбционное равновесие, и кинетическими уравнениями. Опирающаяся на него теория кинетики гетерогенных каталитических процессов дала возможность установить рациональные кинетические уравнения для важнейших контактных процессов химической технологии—синтеза аммиака, окисления сернистого газа, конверсии окиси углерода, чего не в состоянии была сделать прежняя теория Лэнгмюра — Хиншельвуда — Шваба. [c.65]

    Гл. 3 посвящена физико-химическим свойствам образующихся по газовому тракту соединений серы, в ней рассмотрено термодинамическое равновесие соединений серы при разных температурах и избытках воздуха и их последующая трансформация в кислоты и растворы, а также взаимодействие с другими компонентами дымовых газов. Много внимания уделено термодинамическим свойствам и исследованиям двухфазных газожидкостных систем, включающих в себя окислы серы и другие соединения. Поскольку многочисленные публикации о кинетике реакции доокисления сернистого газа в серный ангидрид достаточно противоречивы, в книге приводятся математический аппарат и определение порядка гомогенной реакции, а также физическая сущность и приемы расчета гетерогенного каталитического доокисления на конвективных поверхностях нагрева. [c.7]

    В настоящей монографии мы будем, однако, придерживаться данного выше определения, т. е. ограничим рассмотрение кинетики гетерогенных каталитических реакций закономерностями их скорости, обсуждая лишь в связи с этим, в виде примеров, механизмы отдельных процессов. Вопрос о промежуточных продуктах элементарных стадий каталитических реакций здесь поэтому специально рассматриваться не будет. [c.22]


    Таким образом, безградиентные методы наиболее удобны и перспективны для изучения кинетики гетерогенных каталитических реакций. Они рекомендованы Всесоюзным совещанием по методам определения [c.538]

    Каталитические реакции рассмотрены в десятой главе. Дано определение катализа, изложены причины снижения энергии активации в каталитических реакциях по сравнению с некаталитическими, рассмотрена кинетика гомогенных и гетерогенных каталитических реакций. Так как на практике каталитические реакции осуществляются в потоке, то в этой главе рассмотрена кинетика гетерогенных каталитических реакций, осуществляемых в потоке. [c.10]

    Изучение кинетики дегидратации этилового спирта с целью определения величин адсорбционного коэффициента воды производилось при температурах 415 и 450° как в присутствии продукта реакции — воды, так и с добавками инертного газа — аргона. Дегидратация этилового спирта осуществлялась на установке, описанной ранее в работе [3]. Результаты опытов обрабатывались при помощи уравнения, описываю-шего кинетику гетерогенно-каталитических реакций, протекающих на однородной катализирующей поверхности [4]. [c.161]

    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]

    Возможность выделения двух конкурирующих фаз — алмаза и графита — существенно усложняет процесс кристаллизации. В кинетике гетерогенных химических реакций широко используются понятия и определения, заимствованные из учения о гомогенных химических реакциях. Во многих случаях это вполне оправданно, например, при каталитических реакциях. Во многих же гетерогенных процессах, например, процессах роста и травления кристаллов, происходит обмен веществом между газовой и твердой фазами, что приводит к ряду принципиальных особенностей гетерогенных реакций, идущих с образованием новой фазы. Эти особенности позволяют выделить физико-химический синтез веществ в качестве отдельного направления химического (неорганического и органического) синтеза, подобно тому как в настоящее время из общих методов анализа выделился физико-химический анализ. [c.22]

    Наряду с изменением скорости реакции, необходимо исследовать характер изменений, которые вносит сама реакция в состояние системы. Такого рода исследование проводится в главе, посвященной интегрированию кинетических уравнений при постоянной температуре там же описываются способы определения кинетических констант. Характерная черта, вносящая принципиальное различие между прикладной и чистой химической кинетикой, — это исследование взаимодействия химических и физических процессов. Этому вопросу посвящена глава VI, в которой проводится анализ различных стадий гетерогенно-каталитического процесса. [c.8]

    Одним из методов получения структурных зависимостей для скоростей гетерогенных каталитических реакций и определения коэффициентов скоростей является метод, основанный на теории абсолютных скоростей реакций, которая вводит концепцию химического равновесия в область кинетики реакций с помогцью методов статистической механики. [c.20]


    Пока нет теоретического объяснения такого увеличения скорости гетерогенных каталитических реакций в жидкой фазе по сравнению с газовой. Можно предполагать, что это явление в какой-то мере связано с тем, что жидкость является полу-упорядоченной системой , к которой неприменимы принципы классической химической кинетики, базирующейся на теории столкновений и кинетической теории газов. Вследствие указанного для жидкостей существования ближнего порядка в расположении молекул, т. е. их определенной ориентации и взаимного влияния, возможно, что понижение энтропии А5 при образовании активированного комплекса реагентов с катализатором [c.60]

    Различие между гомогенными и гетерогенными каталитическими реакциями проявляется существенно в кинетике этих реакций, с точки зрения приложения закона действующих масс, определения констант скоростей, порядка реакций и энергии активации. [c.309]

    Если пренебречь 1/а1п С, то в результате получается логарифмическая изотерма адсорбции. Наконец, при определенных значениях констант а и 1 1 получаем уравнение Фрейндлиха. В связи с этим возникла острая необходимость в развитии экспериментальных методов, которые позволили бы отличать эффекты неоднородности от эффектов отталкивания. Это тем более необходимо, поскольку кинетика гетерогенных процессов описывается уравнениями, исходящими из адсорбционных изотерм. Поэтому вопрос о наличии неоднородности поверхности или сил отталкивания, возможность выбора между ними или же возможность учета обоих типов эффектов приобретает важное значение не только для теории и механизма адсорбции, но и для определения механизма каталитических реакций. [c.53]

    Существуют определенные закономерности, которые объединяют гетерогенные каталитические и электрохимические реакции. А. Н. Фрумкин, например, указывает на то, что элементарный акт всякого электрохимического процесса есть катализированная металлом химическая реакция присоединения электрона к каким-то молекулам или другим частицам, или отщепление электрона от этих частиц . Таким образом, механизм действия ПАВ и кинетика электрохимических реакций определяются не только напряженностью электрического поля и свойствами раствора, но также химической природой вещества электрода и состоянием его поверхности. [c.523]

    В гетерогенном катализе внутренняя сложность может иметь своим источником неоднородность поверхности, участие в каталитическом процессе нескольких или многих стадий и нескольких или многих направлений, выход реакций в объем и т. д. С неоднородностью нельзя не считаться. Ее значение и многообразие проявлений делается с каждым годом все более очевидным. Причем все явственнее становится большая роль качественной химической неоднородности. Неоднородность обусловливает множество характерных явлений в равновесиях и кинетике адсорбции и особенно в кинетике каталитических реакций. Неоднородность поверхности можно уменьшить, работая с модельными твердыми телами, например с монокристаллами. Но она часто появляется в результате самой каталитической реакции и может быть необходимой для осуществления ее определенных стадий. Часто полезное модифицирование обусловлено созданием особых форм неоднородности на поверхности катализатора. Но наряду с этим на поверхности твердых катализаторов обычно присутствуют нежелательные активные центры, вызывающие вредные побочные реакции и снижающие селективность катализа. В этом отношении гомогенные катализаторы имеют несомненное преимущество. [c.6]

    Этот раздел посвящен рассмотрению кинетики адсорбции на энергетически неоднородных поверхностях. Если каталитическая реакция происходит на такой поверхности, то уже становится невозможным говорить о какой-то определенной стадии, лимитирующей скорость процесса, ибо в этом случае имеется целый спектр центров, характеризующихся различными энергиями. Некоторые из этих центров могут способствовать протеканию одной стадии реакции, а другие — иной ее стадии. Одна из основных особенностей, проявляемых гетерогенным катализатором, заключается в увеличении скорости протекания данного процесса благодаря уменьшению энергии активации. Эта особенность неразрывно связана с энергией адсорбции активированного комплекса чем эта адсорбция сильнее, тем меньше энергия активации адсорбции, но при этом более значительная энергия активации требуется для десорбции продуктов. Лишь только на некоторой части поверхности энергии активации будут иметь оптимальное значение. Таким образом, энергия адсорбции активированного комплекса на оптимальном центре поверхности должна быть достаточно высокой, чтобы обеспечить протекание реакции на поверхности, но и не слишком большой, чтобы не воспрепятствовать десорбции продуктов. [c.58]

    Г. К. Боресковым установлено, что в реакциях гетерогенного катализа каждому составу реакционной смеси отвечает определенный стационарный состав катализатора, зависящий от соотношения скоростей воздействия на катализатор отдельных компонентов реакционной смеси [240]. Если скорость этого воздействия невелика и за время проведения каталитического процесса не происходит заметного изменения состава катализатора, то удельная каталитическая активность зависит от предшествующей обработки катализатора. Если же стационарный состав катализатора достигается быстро, то его изменение в результате воздействия реакционной смеси оказывает существенное влияние на кинетику каталитической реакции. Зависимость скорости реакции от концентрации компонентов реакционной смеси определяется, следовательно, не только изменением числа столкновений реагирующих частиц, участвующих в лимитирующей стадии реакции, но и изменением константы скорости реакции вследствие воздействия реакционной смеси на состав и свойства катализатора. Этим, в частности, были объяснены формы кинетических уравнений с дробными показателями, трактовавшиеся ранее с позиций влияния неоднородности поверхности [240]. Взгляды Г. К. Борескова на значение этого фактора в катализе получили за последние годы подтверждение и развитие в работах ряда советских и зарубежных ученых. [c.121]

    Механизм гетерогенных каталитических реакций. По сравнению с кинетикой гомогенных реакций кинетика гетерогенных каталитических реакций на теплозаш итных покрытиях в диссоциированном воздухе гораздо менее обоснованна и изучена количественно. Имеюгциеся результаты показывают на необходимость дальнейших тщательных исследований по определению механизма протекания каталитических реакций на теплозащитных покрытиях в высокотемпературном воздухе и определению коэффициентов скоростей элементарных стадий этих процессов. [c.49]

    Общее уравнение кинетики гетерогенной каталитической реакции позволяет рассчитывать скорость процесса, если величина будет задана как функция концентрации реаги эующих веществ в соответствии с механизмом нротекання процесса. Так как в подавляющем большинстве случаев детальный механизм реакции не известен, то мы до последнего времепи вынуждены пользоваться при определении поверхности, занятой реагирующим веществом, адсорбционной теорией Лангмюра, несмотря на ее недостатки. Эта теория во многих случаях позволяет получить кинетические уравнения, согласующиеся с опытом. Это можно объяснить тем, что уравнения кинетики, полученные из рассмотрения скоростей процесса образоватшя и разрушения поверхностных соединений, формально похожи на уравнения, полученные при помощи изотермы Лангмюра, как это было показано одним из нас на примере регенерации алюмосиликатных катализаторов [4, 5, 6]. [c.43]

    Однако использование проточно-циркуляционных систем для определения активности катализаторов не всегда удобно, в особенности, если требуются длительные испытания катализаторов из-за сложного конструктивного оформления, связанного с использованием движущихся поршней, термосифонов. Этот метод напболее удобен п перспективеч для изучения кинетики гетерогенных каталитических реакций. Поэтому для исследования газовых реакций применяются простые проточные реакторы, содержащие слой зерен катализатора. [c.94]

    Роль неоднородной пойерхйоСти в каталийё яёляйтСй гораздо менее определенной. Она обсуждается в нескольких различных точек зрения, но обоснованиями здесь служат главным образом соображения косвенного порядка. В кинетике гетерогенных каталитических реакций с помощью представления неоднородная поверхность [19] можно объяснить любые наблюдаемые на опыте закономерности. Однако главные свойства неоднородной поверхности — функция распределения по теплотам адсорбции и связь энергии активации с теплотами адсорбции реагентов — берут не из опыта или физически обоснованной теории, а только подбирают таким образом, чтобы получились необходимые кинетические уравнения. Поскольку одинаковые кинетические уравнения можно получить исходя из различных физических предпосылок, нельзя придавать большого значения полученным таким образом суждениям о типе неоднородности поверхности. [c.173]

    В дальнейшем этот метод изучения кинетики гетерогенных каталитических реакций по условиям воспламенения был применен М. Г. Слинь-ко [9] и Ю. Б. Каганом с сотрудниками для реакций нулевого [10] и высших порядков [11 — 12]. Ими предложены методы нахождения критических условий воспламенения и определения кинетических параметров процесса по минимальной температуре газа в ядре потока, при которой происходит воспламенение. Все необходимые для расчета параметры легко определяются экспериментально на проточной установке. [c.139]

    Пока нет теоретического объяснения такого увеличения скорости гетерогенных каталитических реакций в жидкой фазе по сравнению с газовой. Можно предполагать, что это явление в какой-то мере связано с тем, что жидкость является иолуупорядоченной системой , к которой неприменимы принципы классической химической кинетики, базирующейся на теории столкновений и кинетической теории газов. Вследствие существования ближнего порядка в расположении молекул, т. е. их определенной ориентации и взаимного влияния, возможно, что понижение энтропии АЗ при образовании активированного комплекса реагентов с катализатором составляет незначительную величину это резко сказывается на скорости процесса (см. раздел 1.1). Точно так же объединение молекул в сольватацион-ные комплексы может сопровождаться понижением энергии активации реакции, подобно тому, как это имеет место при интермолекулярных превращениях. [c.42]

    Сейчас еще трудно с уверенностью применить какие-нибудь общие теории к кинетике или к энергетике катализа. Как это сознает автор настоящей статьи, существует еще необходимость тщательного изучения отдельных систем с использованием соче-таипя как химической, так и физической техники эксперимента. Мало используются методы, которые 30 лет назад были применены Ленгмюром для детального изучения каталитических реакций в точно определенных условиях, однако наметилась тенденция работать со сложными поверхностями, где можно было ожидать, что важную роль играют активные центры. Концепция об активных центрах останется сравнительно бесплодной гипотезой до тех пор, пока не будут более полно исследованы особенности однородных поверхностей. Имея в своем распоряжении дополнительные данные этого рода, мы могли бы более уверенно подходить к проблемам, которые связаны с физической [127] или химической [128] гетерогенностью активированных промышленных катализаторов. Замечания в данном разделе следует рассматривать как личное мнение автора, являющегося все же преимущественно экспериментатором. [c.191]

    Согласно мультиплетной теории, реагирующие атомы должны соприкасаться с катализатором, так как радиус действия химических сил мал. Такое соприкосновение подчиняется определенным закономерностям. Кинетика в гетерогенном катализе дает возможность установить эти закономерности, позволяя получить данные о свойствах активированного и предшествующего ему адсорбционного комплексов. Образование этих комплексов является наиболее ответственными стадиями в механизме гетерогенно-каталитических реакций. Так, в активированном комплексе кинетическим методом можно определит , энергии связи реагирующих атомов с атомами катализатора [1, 2]. [c.386]

    Этот метод - наиболее старый и часто применявшийся ранее 5/. Для определения активности катализатора, а также для исследования кинетики гетерогенных каталитических процессов в замкнутый объем реакционного пространства в контакт с катализатором вводят реакционную смесь. При заданных условиях опыта (состав реакционной смеси, температура, давление) наблюдают изменение окорости процесса во времени. Этим методом удобно исследовать реакции, протеканщие с изшнением количества молекул. Течение реакции при этом может наблюдаться по измененгш давления в системе, Для тех случаев, когда в результате реакции число молекул не изменяется, для наблюдения ва скоростью процесса можно применять более сложные методы контроля кинетики, например, оптические (интерферометр) или спектроскопические, отбирать пробы и определять aнaJштичe ки или на хроматографе. [c.189]

    Возьмем такой пример. Ученый собирается проделать фундаментальное исследование определенной гетерогенно-каталитической реакции в газовой фазе пусть реакция проводится в очень малом масштабе (чтобы обеспечить отсутствие градиента температуры) при низкой степени превращения и использовании очищенных реагентов. Конечно, для исследования кинетики все это может быть вполне допустимо, но прежде чем углубиться в эти изыскания, следует хорошенько удостовериться в том, что ни одно из этих упрощений не перечеркивает самого существа реальной проблемы. А что если на практике эта реакция будет протекать в аппарате диаметром не менее двух дюймов и длиной в несколько футов (умыш-ленно исключим из рассмотрения аппараты с кипящим споем и адиабатические реакторы) Не возникнут ли при этом явления местного перегрева, радикальным образом влияюпще на ход реакции или на свойства катализатора Не приведут ли более высокие степени превращения, соответствующие реальным условиям, к получению побочных продуктов, воздействующих на катализатор Короче говоря, одинаково ли ведет себя катализатор при высоких и низких степенях превращения Не будут ли газы, которые предполагается использовать в производственных условиях, содержать незначительные примеси, способные повлиять на характер получаемых продуктов или на активность катализатора  [c.64]

    Выше были рассмотрены некоторые аспекты еще не решепно задачи экспериментального определения и теоретического расчета элементарных констант гетерогенно-каталитических реакций. Возрастающие запросы техники к количественной кинетике, с одной стороны, и усовершенствование теории и экспериментальных методов, с другой стороны, позволяют надеяться, что эта задача будет решена в ближайшее время. [c.129]

    Глава VII Цепные реакции дополнена рассмотрением роли возбужденных молекул в цепных реакциях, толуольного метода определения энергии связи в органических молекулах, количественных зависимостей от концентрации и температуры нижнего и верхнего пределов самовоспламенения написан новый 3 Обрыв цепи . Большим изменениям подверглась глава VIII Фотохимия , которая дополнена кинетическими расчетами квантовых выходов и 4—7. Глава IX Химическое действие излучений большой энергии включает новый дополнительный материал по принципам дозиметрии, радиолизу воды, новый текст 6. Сильно изменена глава X Каталитические реакции . Особенно большие изменения и дополнения сделаны в разделе Гомогенные каталитические реакции , расширен параграф, посвященный разложению перекиси водорода, кислотноосновным реакциям и их классификации. В разделе Гетерогенные каталитические реакции более подробно рассмотрены переходы реакций из кинетических областей протекания в диффузионные области, дополнен 16. В главе XI Теория активных центров в катализе написаны новые 4, 11, расширено изложение электронного механизма адсорбции и химических реакций на полупроводниках. В главе XIV Применение меченых атомов в химической кинетике написан новый 4 Изотопные кинетические эффекты . [c.13]

    Известно, что скорость гетерогенно-каталитических реакций зависит от концентраций реагирующих вещестз на поверхности. Поэтому кинетика целого ряда каталитических процессов часто описывается уравнениями, в которые входят значения адсорбционных коэффициентов. Следовательно, вычисление значений адсорбционных коэффициентов веществ, участвующих в гетерогенно-каталитическом процессе, и нахождение соотношений между ними, а также определение изменений адсорбционных коэффициентов с изменением температуры представляют несомненный интерес, поскольку помогают определить истинную скорость реакции. [c.161]

    Интерес к определению коэффициента диффузии в жидкой перекиси водорода возник впервые в связи с желанием приложить гипотезу Нойса и Уитни в том виде, как она разработана Нернстом, к рассмотрению кинетики гетерогенных реакций на примере каталитического разложения перекиси водорода. В соответствии с этой гипотезой рассматривается зависимость наблюдаемой скорости реакции от скорости переноса или диффузии реагента в растворе [c.178]

    Ионы в реальном кристалле (мы говорим о ионах только в первом приближении для солей или силикатных систем), которые находятся в непосредственном соседстве со структурными недостатками или дефектами, имеют менее прочные связи, чем масса ионов внутри блока. Поэтому дефекты вблизи ионной поверхности служат в узком смысле слова промоторами электропроводности в твердом веществе вместе с тем они же служат точками, на которых возможны определенные топохимические реакции (изложение точки зрения Кольшюттера см. А. П1, 189 С. И, 13), т. е. главным образом реакции в твердом состоянии на них же локализовано каталитическое действие на гетерогенные газовые реакции. Этот чрезвычайно важный принцип химической кинетики был продемонстрирован Хедваллем на примере сильного окисления сернистого газа на дефектах кварца. Дефектные структуры кварца были специально получены путем полиморфного превращения ->-а-кварц это один из наиболее простых примеров каталитического действия дефектов кристалла. Ниже мы специально коснемся подобных явлений превращения в качестве эффектов Хедвалля (см. D. I, 76 и ниже). [c.699]

    Рассматриваемый здесь гетерогенный катализ состоит во взаимодействии с твердыми поверхностями. В присутствии катализатора реакция протекает быстрее. Обычно считают, что катализируемая реакция протекает путем адсорбции реагирующих веществ на поверхности, реакции адсорбированных молекул или с такой же адсорбированной молекулой или молекулой из окружающей катализатор фазы и, наконец, десорбции продукта с регенерацией поверхностного центра. В большинстве случаев контроль над каталитическими процессами осуществляется при по1>ющи эмпирических методов. На основе наблюдений за составом продуктов и исследования кинетики реакции делаются предположения о структуре поверхностных промежуточных соединений. С привлечением указанных методов была получена значительная информация и созданы определенные представления о характере реакции, однако предполагаемые кинетические и поверхностные структуры редко носят однозначный характер, поскольку обычно можно предположить больше, чем один набор поверхностных структур, согласующихся со всеми наблюдаемыми данными. Многие каталитические реакции являются высокоспецифичпыми в отношении получаемых продуктов, давая главным образом один продукт, в то время как термодинамически возможно образование нескольких соединений. Любое фундаментальное понимание этих каталитических процессов должно основываться на детальном знании строения и реакционной способности поверхностных структур. [c.320]

    О кинетике химических реакции в потоке. В настоящее время одной из распространенных форм осуществления многих процессов является проведение их путем непрерывного пропускания потока реагирующих газов (или жидкостей) через слой твер- дого или жидкого реагента или просто через реакционный аппарат с определенной температурой. Так можно осуществлять, например, сушку газов или насыщение их парами жидкости, адсорбцию газов твердыми реагентами и многие химические реакции гомогенные или гетерогенные и, в частности, каталитические (реакции в потоке). Такая форма проведения обеспечивает длительную непрерывность процесса при благоприятных возможностях поддержания постоянного режима, так как каждый данный аппарат может работать при постоянных условиях температуры и пр. Эта форма проведения процесса влияет на кинетику его и приводит к своеобразной зависимости кинетики от таких условий проведения, как размеры и форма реакционного аппарата, величина свободного сечения, скорость пропускания газов. В результате кинетика их становится весьма сложной. Различным областям применения в известной степени соответствуют различные направления развития теории. В одних успешно используются методы математического моделирования, в других применяются методы, основанные на выводах гидродинамики. Однако описание их выходит за рамки этой книги. [c.698]

    Для интерпретации каталитического действия можно избрать путь искусственного создания на неактивной или малоактивной поверхности тех промежуточных соединений, которые, согласно существующим предположениям, являются существенными для протекания превращения. Например, поверхность неактивного металла может быть покрыта атомарным водородом, получаемым термической диссоциацией, с целью выяснения изменений в гидрирующих свойствах металла. Детальное изучение самого процесса адсорбции атомарного газа ( lean up) и его реакций с посторонними адсорбированными на поверхности молекулами также весьма существенно для истолкования сложной кинетики гетерогенного превращения. Оптический способ получения свободных атомов и радикалов в газообразной фазе имеет в случае двухкомпонентной газовой системы то преимущество, что с его помощью могут быть созданы атомы или радикалы определенного сорта, не затрагивая при этом второго компонента. В исследовании, проведенном в нашей лаборатории в ГОИ (опыты М. Павлюченко), подробно исследовалось поведение атомарного кислорода на различных поверхностях с целью выяснения роли этих атомов при гетерогенном окислении. Атомарный кислород получался фото- [c.161]

    РОЛЬ диффузии в порах при протекании гетерогенной каталитической газовой реакции обсуждалась рядом авторов [1] для реакций первого порядка и для двух последовательных реакций с изолируемым промежуточцым веществом, Неоколько лет назад нам удалось показать [2], что реакция изомеризации трех я-бутенов происходит обратимо между какой-либо парой из них на алюмосиликатных катализаторах (катализаторах крекинга), а также при соответствующих условиях па окиси алюминия. При этом было замечено, что признаки влияния диффузии в порах становятся более заметными при повышенных температурах, в области более высоких скоростей реакций и при использовании более крупных зерен катализатора. В последующей работе [3] этот последний эффект был проанализирован математически на основе формальной треугольной (Л) схемы реакции. Эта схема, так же как и схемы, рассмотренные в упомянутых выше работах, хотя и справедлива для описания формальной кинетики, определенно не отражает истинного механизма реакции, так как она не содержит каких-либо данных в отношении переходного комплекса на поверхности катализатора, через образование которого происходят каталитические превращения. В связи [c.238]


Смотреть страницы где упоминается термин Определение кинетики гетерогенных каталитических реакций: [c.179]    [c.129]    [c.317]    [c.404]   
Смотреть главы в:

Методы кибернетики в химии и химической технологии -> Определение кинетики гетерогенных каталитических реакций

Методы кибернетики в химии и химической технологии -> Определение кинетики гетерогенных каталитических реакций

Методы кибернетики в химии и химической технологии 1968 -> Определение кинетики гетерогенных каталитических реакций




ПОИСК





Смотрите так же термины и статьи:

Гетерогенно-каталитические реакци

Гетерогенные кинетика

Иод, определение каталитическое

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции гетерогенные

Реакции каталитические

Реакция гетерогенная, определение

Реакция гетерогенно-каталитически

Реакция определение



© 2025 chem21.info Реклама на сайте