Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра фосфоре

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Среди других физико-химических методов определения мышьяка можно упомянуть кинетические методы [110, 252, 479]. По одному из них [252] микроколичества мышьяка определяют по реакции восстановления ионов серебра железом(П), катализируемой арсенат-ионами. В другом методе [479] используют каталитическое действие арсената на реакцию окисления иодида перекисью водорода. Этот метод применен для определения мышьяка в фосфоре. Чувствительность метода 10 нг As в 15 мл раствора. [c.91]

    Предложен избирательный метод определения микрограммовых количеств фосфора [852]. Ионы РО/ переводят в фосфоромолибдат, который экстрагируют изобутилацетатом и реэкстрагируют раствором аммиака. В полученном водном растворе Mo(VI) восстанавливают металлическим серебром и титруют Mo(V) раствором e(S04)2 индикатором ферроином до исчезновения розовой окраски. Определению фосфора не мещают As, Sb, Ge и Si. [c.44]

    Серебряно-медно-фосфорные припои. Методы определения массовой доли фосфора, свинца, железа и висмута [c.587]

    В препарате КС1 после распада обнаруживается у-примесь с периодом полураспада 36—37 ч. Период полураспада, вычисленный по изменению интенсивности пиков у-спектра примеси, а также форма спектра и энергия у-линий указывают на присутствие примеси Бг 2. Для окончательной идентификации и для определения количества примеси проводилось химическое выделение брома путем осаждения еге с хлором азотнокислым серебром в присутствии удерживающих носителей серы и фосфора с последующим четырехкратным переосаждением. Примесь радиоактивного Вг составила 0,3% от активности [c.280]

    Большой интерес вызывают предложенные в институте оловоорганические экстрагенты. Они особенно удобны для извлечения фосфора и мышьяка с их использованием разработаны различные методы определения указанных элементов в разнообразных пробах. Любопытны спин-меченые экстрагенты это соединения, содержащие комплексообразующую группировку и стабильный свободный радикал. Использование таких реагентов позволяет расширить возможность ЭПР как метода анализа. В последнее время широко изучаются макроциклические соединения, главным образом азот-и серосодержащие. Среди них обнаружены очень избирательные экстрагенты на серебро, медь и ртуть. На основе одного из краун-эфиров предложен ионселективный электрод на свинец. [c.8]

    В литературе опубликованы амперометрические методы определения некоторых гетероэлементов в растворах после разлон ения органических соединений. Так, фосфор в виде фосфата титруют, используя реакции осаждения этого аниона солями различных металлов — свинца [22], урана [23], железа [24]. Для индикации точки эквивалентности служит диффузионный ток избытка осади-теля. Аналогичным же методом находят содержание и мышьяка (осаждением арсената железа) [24]. Описан также способ последовательного титрования трех галогенов нитратом серебра в одном растворе плава после восстановительного разложения органического веш ества с металлическим калием [25]. Тот же прием применен и к определению азота в виде цианида [26]. [c.160]


    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    Для отнесения активаторных полос поглощения щелочно-галоидных фосфоров, активированных серебром, к определенным электронным переходам сравним эти полосы со спектрами по- [c.164]

    Определение фосфина. Для определения фосфина, выделяющегося при растворении навески ферросилиция в кислоте был предложен метод, аналогичный методу для определения арсина Авторы этого метода отмечают, что когда фосфин поглощается 25 мл 0,1 н. раствора нитрата серебра, выпадает осадок, содержащий не только серебро, но и фосфор, но что все же на 1 моль фосфина расходуется 6 молей нитрата серебра. Избыток серебра определяют в фильтрате, нейтрализуя его окисью магния, прибавляя в избытке титрованный раствор хлорида натрия и обратно титруя этот избыток по Мору. [c.359]

    Мешающие ионы. В кислой среде вместе с кобальтом осаждаются железо (П1), медь, уран (VI), хром (III), цирконий, серебро, висмут, титан, ванадий (V), олово (IV), вольфрам, молибден, палладий (П). Остаются в растворе никель, цинк, алюминий, марганец, фосфор (V), аммоний, бериллий и щелочноземельные элементы. Мещают определению нитрат-ионы. [c.835]

    Для экстракционно-фотометрического определения серебра его извлекают диэтилдитиофосфатом, содержащим радиоактивный фосфор Комплекс полученного серебра экстрагируют ССЦ, активность которого измеряют. В холостом опыте активность U была 125 имп мин. Эталонная проба, содержащая 50 мкг серебра в 50 мл, после экстракции 10 лг. U показала активность 3820 имп/мин. Из навески исследуемого материала 1,2 г после соответствующей обработки было получено 25 мл раствора, из которого комплекс серебра с диэтилдитиофосфатом был извлечен 10 мл ССЦ. Активность экстракта оказалась равной 1220 uMnjMUH. [c.241]

    Анализ тиомочевины и солей свинца на содержание серебра производится полярографическим методом после накопления на платиновом катоде [53] регистрируют волну анодного окисления осадка. Минимальная определяемая концентрация серебра составляет 5-10 моль л. Соизмеримые количества железа, ртути и меди не мешают. Для определения серебра в ZnS-фосфорах применяется [1085] спектрофотометрический га-диметиламинобензилиденрода-ниновый метод. Серебро в нитрате и в окиси тория определяют фотометрированием га-диметиламинобензилиденроданинового комплекса после предварительного отделения экстракцией раствором дитизона в I4 [444, 978]. [c.192]

    При определении углерода и водорода в органических соединениях, содержащих фосфор и другие элементы, исследуемый образец перемешивают в лодочке для сожжения с окисью вольфрама ШОз, а в качестве окислителя помещают в трубку для сожжения слой окиси кобальта С03О4. Мешающие определению окислы фосфора поглощаются слоем пемзы, покрытой серебром При определении кислорода в соединениях, содержащих фосфор и фтор, образец смешивают с порошкообразным никелем и хлоридом серебра Пиролиз можно проводить в никелевой трубке при 900 °С над катализатором — платиной на газовой саже. В качестве инертного газа через систему пропускают смесь, состоящую из 98% N2 и 2% Н2. Фторсодержащие продукты после сожжения поглощают в трубке, aпoлнeннoй аскаритом (едкий натр на асбесте). [c.35]

    Рекомендованные В. Г. Горюшиной и другими (в Гиредмете) фотометрические методики определения микропримесей основаны главным образом на использовании известных ранее высокочувствительных и избирательных цветных реакций, образуемых примесными элементами с различными органическими и — реже — неорганическими реагентами. В качестве примера можно назвать дитизон, использованный для определения серебра, золота, ртути и других элементов, диэтилдитиокарбами-нат свинца — для меди, а-фурилдиоксим — для никеля, батофенантро-лин — для железа. Большое значение имели реакции образования восстановленных гетерополикислот, используемые при определении фосфора, мышьяка и кремния, или реакция образования роданида железа, удобная для определения данной примеси в некоторых материалах высокой чистоты (галлий, индий, их соединения и др.). Чувствительность всех этих методов в фотометрическом или спектрофотометрическом вариантах лежит, как правило, на уровне 10 %. [c.12]

    Количественное определение фосфор а. Для количественного определения элементарного фосфора вместе с фосфорно-I ватистой и фосфористой кислотами перегонку с водяным паром продол-5 жают до тех пор, пока перегоняющиеся пары не перестанут давать потем-1 нения на полоске фильтровальной бумаги, смоченной раствором нитрата I серебра. Дистиллят сливают в колбу с восходящим холодильником, при-I бавляют избыток насыщенной бромной воды и нагревают, а затем, уда-I лив холодильник, выпаривают жидкость досуха. Остаток растворяют I в 10—20 мл воды и определяют фосфорную кислоту в виде пирофосфорно-I кислого магния Mg P20,. [c.141]


    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Диэтилдитиокарбамат серебра в GI4 окрашен в желтый цвет, а экстракция комплексного соединения происходит в пределах pH 4—11. Молярный коэффициент погашения соединения при 340 нм равен 5,4-10 [620, 1533]. Закон Бера соблюдается в пределах концентраций серебра 2—40 мг мл. Тартрат-, цитрат-, борат-, фосфат-ионы, гликоль и комплексон III в пределах pH 4—11 экстракции не мешают. В присутствии цианида калия экстракция неполная, вместе с серебром экстрагируется ргуть. Экстракция внутрикомплексного соединения диэтилдитиокарбамината серебра используется для прямого экстракционно-фотометрического определения >10 мкг серебра [1533], для определения примесей в фосфоре высокой чистоты [182]. [c.113]

    В случае, если проба содержит фосфор, то рекомендуют применять методы Розе [716] или Коха [542]. Если проводить разделение, как указано в предыдущем ходе анализа, то фосфаты (и хроматы, если присутствуют) будут оставаться с фторидами идо некоторой степени влиять на весовое определение. Мешающие осаждению анионы можно выделить в нейтральном растворе ионами серебра (AgNOa). При этом обработку кремнекислоты ведут азотной кислотой, чтобы исключить введение в раствор иона хлора. [c.76]

    К малорастворимым соединениям фосфора относится также фосфат серебра, образованием которого можно воспользоваться для индикации конечной точки при кулонометрическом определении фосфат-иона при помощи генерированного серебра. Очевидно, этот метод может быть использован и для прямого титрованияфосфат-иона в ацетатной среде в присутствии 80% спирта. Определению будут мешать галогениды, осаждающиеся серебром. [c.328]

    Анализу методом изотопного разбавления с использованием масс-спектрометра [307] подвергаются любые элементы, обладающие двумя стабильными или долгоживущими изотопами [1009], т. е. большинство элементов, рассматриваемых в органической химии, за исключением фтора, фосфора, натрия и мышьяка иод, который обладает одним стабильным изотопом, может быть проанализирован при помощи изотопного индикатора Такой индикатор известен под названием совершенного , так как использование его позволяет работать с изолированными пиками. Метод широко применялся для определения европия, самария, гадолиния [840], никеля, цинка, селена, криптона [1687] и ксенона [841], кальция и аргона [1004, 2133], рубидия [1870] истрон-ция [434, 1039, 2037], осмия [906], серебра[883], висмута [205], свинца [332, 1572, 1734], урана [2027] и тория [2028.  [c.111]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Предложен также способ осаждения висмута в виде соли иодовис-мутовой кислоты с хинальдином СвНвКСНд НВ114. Осадок можно затем растворить и определить содержание иода титрованием раствором иодата калия. Этим способом в разбавленном (1 9) сернокислом растворе можно осадить даже такое малое количество висмута, как 0,3 мг, в присутствии свинца, меди, кадмия, сурьмы, олова, мышьяка, марганца, никеля, кобальта, цинка, железа, хрома, урана, алюминия, бериллия и фосфора. Определению мешают ртуть, серебро и большие количества хлорид-ионов. [c.280]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]

    Введение [1—9,16]. а-Частицы вызывают в подходящем фосфоре вспышки света, которые в результате размножения вторичных электронов превращаются в импульсы тока и, наконец, могут быть зарегистрированы пересчетным прибором с механическим счетчиком. Например, в качестве фосфора хорошо подходит активированный серебром сульфид цинка, поступающий в продажу (завод светосоставов в Бад Либенштайне) в виде тонкого кристаллического порошка. Этот порошок осаждается из чистой воды на стеклянный носитель и после высушивания плотно пристает к нему. При выборе толщины слоя следует принимать во внимание, что в очень тонких слоях фосфора а-частица не сможет потерять всю свою энергию (амплитуда импульсов становится слишком малой), а в очень толстых слоях часть света люминесценции поглотится в самом фосфоре (амплитуда импульсов становится меньше, чем следовало бы ожидать при поглощении всей энергии а-частицы). При подходящей толщине слоя фосфора легко могут быть проведены исследования а-излучения, такие, как измерение интенсивности, поглощения и определение величины пробега а-частиц. Преимущество измерения а-излучения сцинтилляционным счетчиком состоит в том, что при использовании подходящего фосфора можно регистрировать только а-частицы на фоне Р- и у-излучения. Поглощенная в тонком слое-2п5 —Ag энергия р- и у-излучения недостаточна для того, чтобы вызвать сцинтил-ляционную вспышку, сравнимую по величине со вспышкой от а-частицы. По этой же причине не дают измеримых сцинтилляций в а-фосфорах и космические лучи. Фон, помимо случайно возникающих импульсов теплового шума, практически отсутствует, поэтому можно измерять очень малые а-активности. [c.125]

    Gunther предложил использовать выделяющиеся при растворении цинка в разбавленной серной кислоте газы для определения мышьяк а,, сурьмы и серы путем пропускания их через последовательно расположенные промывалки с растворами уксуснокислог кадмия и азотнокислого серебра. Метод этот неправилен, так как выделяющийся сероводород может образоваться не только из содержащейся в цинке серы, но и вследствие побочных восстановительных реакций, например, при действии водорода на сернистую кислоту, образующуюся, в свою очередь, из серной кислоты под влиянием содержащихся в и инке примесей. Вследствие этого определение серы по количеству выделившегося сернистого кадмия может повести к слишком высоким результатам. Точно также и осадок в промывалке с азотнокислым серебром не соответствует выделившимся мышьяковистому и сурьмянистому водородам. 2 Наконец, восстанавливать азотнокислое серебро может и фосфористый водород, образующийся за счет небольшого содержания, фосфора. [c.585]

    Подобно сере и фосфору хлор, бром и иод имеют свои атомные резонансные линии в ультрафиолетовой области. Обычные методики определения галогенидов пламенными методами основаны на косвенном определении, при этом к раствору, содержащему галогеиид, добавляют известное количество ионов серебра, осадок отфильтровывают и в фильтрате определяют избыток Ag+ методом ААС или пламенной эмиссионной спектроскопии. Этими методами определяют сумму хлоридов, бромидов и иодидов. Дагнал, Томпсон и Вест [94], продолжая свои исследования [c.307]

    Гравиметрический метод можно перевести в титриметрический, если к анализируемому раствору добавить избыток раствора нитрата серебра, который затем можно оттитровать [6] стандартным раствором роданида. Палмер [1] для определения гипофосфата рекомендовал использовать методы, основанные на окислении последнего иодистой кислотой при 100°С в 40%-ной H2SO4 или водным раствором брома при pH = 6—9. Первый метод довольно прост, но определению мешают все окисляющиеся оксианионы фосфора. В методе окисления бромом не мешают фосфит и гипофосфит, которые окисляются в более кислых растворах. [c.424]

    Свинцовый селективный электрод применен для титрования сульфатов в минеральных и морских водах [178]. Образцы первоначально пропускают через ионообменную колонку с катионитом в Ag-форме для удаления хлорид-ионов, а затем через такую же колонку, заполненную катионитом в Н-форме для удаления избытка серебра. Этот метод позволяет определить 20—3000 ррт сульфатов. Упомянутый электрод использован для мнкро- и полумикроопределений серы в органических соедииеинях [179]. В этой работе присутствующий фторпд отделяют либо прибавлением борной кислоты, либо кипячением с хлорной кислотой. Другие галогены и азот не мешают определению серы, по фосфор должен отсутствовать. Результаты анализа 10 различных соединений показывают, что погрешность определения не превышает 0,3% (абсолютные значения). Свинцовый селектигпый электрод применен для определения серы в нефти [180] и в растворах, используемых для никелирования [181]. [c.550]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    КАРИУСА МЕТОД — способ количественного определения содержания нек-рых элементов, преим. галогенов и серы, в органич. соединениях. Метод основан на окислительном разложении оргапич. вещества при нагревании его в течение неск. часов до 250— 350° с конц. HNO3 в запаянной трубке. При этом галогены количественно образуют галогеноводородные К Ты, а сера окисляется до серной к-ты. Ионы галогена или сульфат-ион могут быть определены различными способами, применяющимися в неорганич. анализе весовым, титриметрич., потенциометрич., нефелометрич. и др. Галогены часто определяют весовым способом в виде солей серебра, а серу — в виде сульфата бария. Нри определении галогенов в трубку вводят до ее запаивания необходимое количество кристаллич. нитрата серебра. Осаждение галогенного серебра происходит в процессе разложения органич. вещества. После вскрытия трубки ее содержимое разбавляют водой и определяют образовавшееся галогенное серебро. Метод более надежен для определения хлора и брома, чем иода неприменим для анализа полигало-генных соединений. Разложение по Кариусу используют также для определения в органич. веществах мышьяка, селена, теллура, фосфора. В настоящее время К. м. в значительной мере вытеснен другими более совершенными способами. См. Галогенов определение. Впервые метод был опубликован Л. Кариу-сом в 1860. [c.226]

    В восстановительном варианте для титрования применяется та же ячейка, что и д.чя определения НС1 в окислительном. Ионы серебра осаждаются в виде Ag l, Ag2S, AgsPH. При титровании фосфора в электролит добавляют поверхностноактивные вещества для улучшения перемешивания раствора газом-носителем. [c.90]


Смотреть страницы где упоминается термин Определение серебра фосфоре: [c.34]    [c.33]    [c.204]    [c.36]    [c.97]    [c.465]    [c.180]    [c.690]    [c.189]    [c.195]    [c.475]    [c.150]    [c.111]   
Аналитическая химия серебра (1975) -- [ c.197 , c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите



© 2025 chem21.info Реклама на сайте