Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение компонентов неорганических веществ

    Способ разделения (концентрирования) веществ путем выпаривания широко применяется в технологии неорганических веществ, пищевой промышленности. Он заключается в отделении летучих компонентов (чаще всего воды) от высококипящих остатков в аппаратах барботажного типа. Выпаривание - достаточно энергоемкий процесс. Для снижения энергозатрат обычно организуются многоступенчатые технологические установки, работающие под различным давлением с целью использования вторичного парового потока. Математическое описание такого процесса должно содержать все элементы, свойственные массообменным процессам кинетику массопереноса, гидродинамику потоков, фазовое равновесие, а также алгоритмы решения системных вопросов, связанных с рациональным выбором давлений в отдельных аппаратах и перераспределением потоков продукта и вторичного пара. Ниже приведено сравнение различных способов разделения  [c.36]


    Ионнообменная хроматография (применение ионитов в анализе). Большинство описанных выше адсорбционных методов дают особенно ценные результаты при анализе смесей органических компонентов. Кроме того, многие из этих методов пригодны главным образом для разделения и анализа микроколичеств, причем содержание отдельных компонентов должно быть приблизительно одного порядка. Для разделения неорганических веществ, находящихся обычно в растворе в виде ионов, а также для разделения больших количеств применяют специальные ионообменные вещества, или иониты. Иониты способны обменивать содержащиеся в их зернах ионы на другие ионы, находящиеся в растворе. Этот процесс довольно хорошо обратим и может быть направлен в сторону разделения тех или других ионов подбором соответствующей кислотности раствора и введением различных комплексообразователей. [c.72]

    Граница между этими двумя категориями очень не ясная. Например, минеральные вещества, которые отложились в торфяных болотах одновременно с растительным материалом, могли вступить в контакт с органическими веществами во время метаморфизма и включиться, таким образом, в состав минеральных компонентов материнского вещества угля. На практике при решении проблемы обогащения породы разделяются на два класса согласно их податливости к разделению породу, которую невозможно отделить, включающую компоненты — неорганические вещества растений, связанные, как полагают, с органическим веществом, и породу, которая весьма тонко распределена. [c.41]

    Подобно экстракции, метод дистилляции можно применить для разделения в системах с близкими константами распределения, однако при этом необходима операция фракционирования. Фракционную дистилляцию особенно широко применяют для разделения компонентов органических систем. Для разделения неорганических веществ фракционирование, как правило, не применяют тем не менее разделение многих неорганических веществ можно-осуществить простой дистилляцией, как это следует из табл. 29-4. [c.253]

    Бумажная хроматография как метод микроанализа применяется для эффективного разделения сложных смесей компонентов. Пятна неизвестных компонентов идентифицируют, сравнивая с пятнами эталонных образцов, полученных в таких же условиях. Таким способом можно просто и быстро провести анализ неорганических веществ. [c.246]

    Низкомолекулярные вещества принадлежат к самым разнообразным классам химических соединений и поэтому практически невозможно дать четкую исчерпывающую систему классификации. Наиболее простая классификация заключается в их разделении на органические и неорганические вещества (см. схему 3.1). Органические вещества обычно называют экстрактивными веществами. Неорганическую часть древесины можно выделить в виде золы. Что касается химического анализа древесины, полезнее проводить различия между экстрактивными веществами на основе их растворимости в воде или в органических растворителях, о чем будет сказано ниже. Сначала кратко рассмотрим основные группы химических соединений, относящихся к низкомолекулярным компонентам древесины. [c.19]


    Органические компоненты водных растворов. Во многих случаях промышленные сточные воды содержат одновременно неорганические и органические загрязнения. Оценить результаты очистки таких вод обратным осмосом в настоящее время невозможно, так как установленные при разделении растворов неорганических или органических веществ закономерности могут не соблюдаться в смешанных системах. [c.194]

    Мембранная дистилляция протекает при наличии разности температур по разные стороны от микропористой мембраны. Жидкости не должны смачивать мембрану, а разность давлений по разные стороны от мембраны должна быть меньше капиллярного давления. В этом случае жидкость не заполняет поры мембраны, а через мембрану проходит только пар. Жидкость испаряется с той стороны мембраны, где температура более высокая, и пар конденсируется со стороны жидкости с более низкой температурой. Мембрана в процессе разделения непосредственно не участвует. Она играет роль барьера, разделяющего две жидкости. Селективность процесса определяется условиями равновесия в системе жидкость — пар. Процесс мембранной дистилляции применяется в основном к водным растворам, содержащим растворенные неорганические вещества. Однако данный метод может применяться и к водным растворам с низкими концентрациями летучих компонентов, например для разделения смеси вода— этиловый спирт. [c.33]

    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]

    Простота, эффективность и универсальность хроматографического метода дали возможность широко использовать его в различных областях науки, промышленности и техники. , С помощью хроматографического метода возможно разделение сложных смесей органических и неорганических веществ на отдельные компоненты разделение и выделение растительных и животных пигментов, изотопов, редкоземельных элементов и других веществ  [c.275]

    Принципы переработки сырья, содержащего платиновые металлы. Выделение, разделение и очистка платиновых металлов — сложнейшая задача технологии неорганических веществ. Рассмотрим один из возможных путей переработки самородной, так называемой шлиховой, платины. В состав шлиховой платины входят следующие компоненты. [c.159]

    Разделение сложных смесей органических и неорганических веществ на отдельные компоненты разделение и выделение растительных и животных пигментов обогащение изотопов, редкоземельных и других веществ. [c.5]

    Метод ионных подвижностей — ионофорез применяют для разделения и очистки неорганических веществ. Он основан на использовании различий в числах переноса ионов отдельных компонентов раствора в электрическом поле. При сочетании достаточно высокого градиента потенциала с противотоком растворителя замедляется движение менее подвижных ионов, в то время как более подвижные проходят навстречу растворителю. Эффективность разделения ионов возрастает с уменьшением диффузии и различных конвекционных потоков, вызываемых тепловым движением ионов и молекул. Поэтому специальные разделительные трубки заполняют мелкозернистым инертным материалом либо применяют кассеты из параллельно расположенных крупнопористых мембран, ограничивающих тепловое движение ионов и молекул вдоль потока растворителя. Применяемые в разделительных трубках крупнопористые мембраны легко проницаемы и для анионов, и для катионов. [c.106]

    Способ отстающего электролита и описанный в предыдущей главе способ опережающего электролита во многих отношениях подобны друг другу. В обоих процессах в основе разделения растворенных компонентов лежит их различная степень сорбируемости смолой, в обоих процессах для элюирования используют воду, и. наконец, оба процесса можно применять для разделения смесей органических и неорганических веществ. [c.137]


    Осадочную хроматографию используют главным образом для разделения электролитов (ионов) применительно к анализу неэлектролитов метод мало изучен. Однако он имеет свои преимущества перед другими хроматографическими методами. Каждая зона осадочной хроматограммы часто представляет собой осадок только одного компонента, а не их смеси. Границы между зонами на хроматограммах выражены достаточно четко. Иногда зоны осадков бывают разделены зонами чистого носителя, что свидетельствует о полноте разделения компонентов и облегчает их количественное определение. Осадочную хроматографию применяют в аналитической химии для разделения неорганических веществ, выделения некоторых соединений в чистом виде. [c.443]

    Одним из методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод анализа (хроматография). При хроматографическом разделении используются различные физико-химические свойства отдельных компонентов смеси. Например, разница в растворимости образующихся осадков, в распределении компонентов смеси между двумя несмешивающимися жидкостями, в адсорбции компонентов смеси на поверхности твердой и жидкой фазы и т.д. Во всех случаях разделения, как правило, участвуют две фазы — твердая и жидкая, твердая и газообразная и т. п. Процессы сорбции, осаждения, ионного обмена, распределения между фазами различного состава протекают непрерывно, при последовательном многократном повторении. Такой процесс осуществляется в хроматографической колонке (рис. 157). Анализируемая смесь в виде раствора (жидкая фаза) фильтруется через колонку, содержащую слой сорбента (твердая фаза). Каждое из растворенных веществ адсорбируется на определенном участке и образуются зоны адсорбции (первичная или фронтальная хроматограмма). При последующем промывании колонки чистым растворителем получают проявленную хроматограмму, т. е. разделение компонентов смеси. [c.298]

    В процессах экстрактивной ректификации наиболее удобно применять в качестве разделяющих агентов вещества, являющиеся при обычных условиях жидкими. Поэтому в практике наибольшее распространение получили жидкие органические разделяющие агенты, и из неорганических веществ — вода и в значительно меньшей степени аммиак, двуокись серы и некоторые другие соединения. Однако не во всех случаях удается подобрать подходящие разделяющие агенты. Например, в качестве последних в процессах абсолютирования этилового спирта путем азеотропной ректификации используются вещества (углеводороды или их производные), повышающие относительную летучесть не спирта, а воды, причем в такой степени, что в процессе ректификации она становится более летучим компонентом. Между тем температура кипения воды значительно выше температуры кипения этилового у спирта. Поэтому весьма желательно изыскание таких разделяющих агентов, которые повышали бы его относительную летучесть. Однако подобрать жидкий разделяющий агент, удовлетворяющий этому требованию, не удается. Подобные обстоятельства побудили исследователей обратиться к изысканию твердых растворимых веществ, улучшающих разделение смесей методами дистилляции и ректификации. [c.93]

    Рост масштабов производства нефтехимических продуктов и,. в частности ПАВ, обусловливает необходимость интенсивной разработки чувствительных и точных методов анализа и контроля вод, содержащих кроме углеводородов самые разнообразные классы других органических соединений. В связи с этим возрастает роль не только селективных методов прямого определения не чувствительных к сопутствующим примесям других органических и неорганических веществ, но и роль эффективных методов разделения на классы веществ в воде, количественного выделения из воды, дальнейшего их концентрирования, разделения на группы и компоненты. Перспективными для этих целей являются методы ионообменной, жидкостной адсорбционной (на неполярных адсорбентах), тонкослойной и газожидкостной хроматографии. [c.272]

    При разделении методом испарения один из компонентов смеси неорганических веществ переводят в такую химическую форму, которая [c.70]

    Экстракция-И хроматография — наиболее распространенные и эффективные методы разделения. и концентрирования веществ как органического, так и неорганического происхождения. В сочетании с другими, особенно физико-химическими методами, они могут быть применены для идентификации отдельных компонентов сложных систем. Экстракционный и хроматографические методы разделения универсальны их используют для большого числа элементов и веществ, при различных концентрационных соотношениях разделяемых компонентов, а также для сложных многокомпонентных систем. К преимуществам методов "относятся простота, экспрессность, экономичность, большая скорость достижения равновесий, отсутствие побочных явлений, неизменность основного состава отдельных фаз, что позволяет проводить в этих фазах последующие испытания. [c.36]

    Фракционированная конденсация [543] представляет собой метод разделения, который является гораздо более эффект и в-н ы м, чем фракционированная перегонка. Правда, он менее удобен и точное соблюдение различных температур ванн вызывает часто затруднения. Метод не подходит также для больших количеств веществ, так как U-образные трубки вскоре забиваются в таком случае лучшие результаты получаются с колонкой. Применение фракционированной конденсации особенно уместно, если вещества являются твердыми при температурах, используемых при высоковакуумной перегонке она дает более эффективные результаты, чем перегонка таких веществ при высоком давлении. Причина этого заключается в том, что многие, особенно неорганические вещества, которые полностью или частично смешиваются в жидком состоянии, в твердом состоянии при низкой температуре не смешиваются, так что давления паров компонентов в смеси совершенно не зависят друг от [c.479]

    Хроматографические методы анализа широко применяют в количественном анализе для разделения и выделения отдельных компонентов сложных смесей неорганических и органических соединений. Выделенные компоненты определяют обычными химическими, физическими и физико-химическими методами анализа. Наиболее широко в количественном анализе неорганических веществ применяют ионообменную хроматографию для разделения составных частей анализируемых веществ, выделения примесей и получения химически чистых препаратов определения общей концентрации электролитов в растворе концентрирования ионов из разбавленных растворов и т. д. [c.317]

    Неподвижные фазы на органической и кремнийорганической осн ве, используемые для газохроматографического исследования высококипящих органических и летучих неорганических соединений, имеют предельную рабочую температуру, определяемую их давлением пара и началом процесса разложения. Температуру выше 350 °С выдерживают в течение длительного времени лишь неорганические соли. Их можно применять в качестве неподвижных фаз при температуре выше точки плавления индивидуальной соли или смеси часто в соответствии с химическим составом они обладают исключительной селективностью. На расплавленных хлоридах, нанесенных на обычные носители, можно разделять большое число летучих галогенидов металлов, образующих в расплавах более или менее стабильные хлорокомплексы с доступными ионами хлора эвтектики. Соотношение устойчивостей двух таких комплексов в общем отличается от относительной летучести обоих подлежащих разделению галогенидов металлов, вследствие чего можно разделять компоненты с одинаковыми или близкими температурами кипения. Следует проявлять осторожность при исследовании неорганических веществ с анионами, которые отличны от анионов, входящих в состав эвтектики, из-за опасности протекания нежелательных химических реакций в колонке. [c.170]

    Основная задача в оценке потенциальной эффективности того или иного процесса разделения веществ состоит в априорном вычислении коэффициентов разделения (сокристаллизации), исходя из данных о свойствах чистых компонентов. Таким образом, задачу можно сформулировать как определение свойств компонентов в различных фазах при их совместном присутствии через разность свойств чистых компонентов применительно к случаю кристаллизации неорганических веществ из растворов. [c.236]

    Цели анализа и химические реакции, используемые при исследовании капельным методом органических соединений и неорганических веществ, совершенно различны. Капельный аналиа органических соединений основан на обнаружении отдельных соединений или характерных функциональных групп этого соединения, причем в функциональных группах обычно известны составляющие их компоненты. Реакции обнаружения в отличие от реакций неорганических ионов редко сопровождаются характерными явлениями. Для реакций органических соединений специфичность и селективность не характерны, а методы разделения не практикуются. Большинство методов обнаружения основывается на взаимодействии определенных функциональных групп с реагентами. К сожалению, многие функциональные группы мало реакционноспособны, и их выявление позволяет судить только [c.85]

    Было бы неправильно предполагать, что в основе хроматографического разделения на бумаге лежит только механизм распределения. Чаще всего при этом происходит несколько процессов, сочетающих распределение, адсорбцию, ионный обмен. О механизме разделения компонентов на бумаге было много дискуссий. Однако большинство случаев разделения неорганических ионов основываются на принципе распределения их между двумя жидкими фазами. Поэтому основные принципы теории распределительной хроматографии на колонке были использованы в 1944 г. А. Мартином, Р. Конс-деном и А. Гордоном в хроматографии на бумаге. В хроматографии на колонке, согласно уравнению (1) (стр. 67), распределение вещества между жидкими фазами описывается уравнением [c.80]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935— 1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, окраска которых соответствует природной окраске разделяемых компонентов смеси. При анализе бесцветных веществ пятна проявляют, опрыскивая бумагу реактивом, образующим с разделяемыми компонентами окрашенные соединения. Например, при определении аминокислотного состава белков после их гидролиза бумагу опрыскивают раствором нин-гидрина, в результате чего на поверхности бумаги появляются пятна розового цвета, соответствующие индивидуальным аминокислотам (см. рис. 1.2). Если разделяемые бесцветные вещества обладают способностью к флуоресценции, бумагу облучают ультрафиолетовыми лучами (кварцевой или ртутной лампой) и тогда хроматограмма становится видимой. Этот случай можно наблюдать при разделении смеси антрахинонов, пятна которых в ультра- [c.9]

    Количественный анализ в ТСХ складывается из нескольких этапов введения пробы в тонкослойную хроматографическую систему, разделения компонентов на тонком слое сорбента, качественной и количественной оценки результатов анализа. Количественное детектирование может быть одностадийным (например, с использованием оптических, ядерно-физических, электрохимических методов) и двухстадийным. В последнем случае анализируемые вещества либо переводят в газовую фазу и затем количественно оценивают образовавшиеся газообразные продукты газовыми детекторами, либо извлекают их из сорбента с помощью растворителей и затем определяют одним из инструментальных методов. При исследовании сложных смесей органических и неорганических веществ перспективно [c.6]

    Тонкослойная хроматография как метод разделения и концентрирования ультрамикроколичеств веществ имеет особенно большое значение в случае рационального его сочетания с количественными методами определения разделенных компонентов. В то время как неорганическая ТСХ широко применяется для качественной характеристики смесей, количественный аспект этого метода представлен еще в сравнительно небольшом числе работ, причем в основном эти работы появились в последние годы. [c.106]

    Расширение областей применения особо чистых материалов выдвинуло В число важнейших химических проблем разработку методов глубокой очистки элементов или их соединений. В связи с тем, что процессы разделения смесей, протекающие с участием жидкой или паровой фазы, более эффективны, чем методы разделения компонентов твердых растворов, общие требования к очищаемым материалам сводятся к возможности перевода их в летучие соединения и к работе с такими соединениями в технологически доступном интервале температур. Химическое соединение, очищаемое с целью последующего получения из него простого вещества, должно дополнительно удовлетворять требованию возможно длительного хранения при обычных условиях. Всем указанным требованиям удовлетворяют летучие неорганические гидриды, за небольшими исключениями [1]. [c.70]

    В сложной смеси соединений различных классов, составляющих экстрактивные вещества дерева, многие являются ценными химическими продуктами. Поэтому вьще-ление экстрактивных веществ из исходного растительного сырья и разделение их на отдельные компоненты имеют важное практическое значение. Однако задача разработки универсального растворителя для экстрактивных веществ практически неосуществима. Невозможно подобрать индивидуальный органический растворитель, который бы полностью экстрагировал все экстрактивные соединения (полярные и неполярные, органические и неорганические, низкомолекул5фные и высокомолекулярные). Смешанные органические растворители более эффективны, но и они не извлекают всю массу экстрактивных веществ. Вследствие этого применяют последовательную обработку растительного материала разными растворителями. Количество экстрагируемых фракций и их состав будут при этом определяться не только используемыми растворителями, но и последовательностью их применения. Обычно исследуемый материал с целью лучшего разделения компонентов экстрактивных веществ между отдельными фракциями обрабатывают серией растворителей с увеличивающейся полярностью, например, диэтиловый эфир, этанол, вода. Из материалов с высоким содержанием летучих веществ перед экстрагированием отгоняют с паром эти вещества. Однако из приведенной на рис. 14.2 схемы видно, что получаемые фракции имеют сложный состав. Кроме этого представители одного и того же класса соединений могут попасть в различные фракции. [c.502]

    Жидкостная распределительная хроматография используется для разделения как органических, так и неорганических веществ. Она основана на разнице в растворимости компонентов анализируемо смеси в двух жидких фазах - подвижной и неподвижной - и является аналогом газожидкостной хроматографии. Возможны две системь фаз неподвижная водная фаза (силикагель с нанесенным на него слоем воды) - подвижная орга1Шческая фаза органическая неподвижная фаза (гранулированные полимеры - полистирол, тефлон и дру  [c.84]

    Элюентная хроматография получила наибольшее распространение для разделения смесей неорганических ионов. вследствие высокой эффективности и возможности количественного разделения смесей на индивидуальные компоненты. Недостатком этого метода является ограниченное количество анализируемого вешества. При разделении элементов этим методом используется не более 5% общей обменной емкости колвнки при наличии больших количеств веществ разделение неэффективно вследствие перекрывания зон с разделенными компонентами. [c.42]

    Одним из важных методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод (хроматография). Метод основан на распределении веществ между двумя фазами, из-которых одна неподвижная (стационарная), а другая продвигается относительно первой (подвижная фаза). Для разделения смесей используют различные механизмы сорбции и различные физико-химические свойства компонентов смеси абсорбция и адсорбция компонентов смеси твердой или жидкой фазами различная растворимость осадков реакции ионного обмена раслре-деление между двумя несмещивающимися жидкостями. Во всех случаях разделения участвуют две фазы — твердая и жидкая, твердая и газообразная, две несмешивающиеся жидкости. Процессы сорбции, осаждения, ионного обмена, распределения между различными фазами протекают непрерывно, при последовательном многократном повторении. Такой процесс осуществляется в хроматографической колонке (рис. 12.1). [c.195]

    Полное разделение двух летучих веществ удается при помощи не очень эффективной колонны лищь тогда, когда на кривой кипения смеси отсутствует максимум или минимум [567—570] , который часто наблюдается у смеси многих неорганических веществ и даже у смеси углеводородов. В таких случаях, помимо азеотропной смеси, можно получить только один компонент в чистом виде. Однако иногда можно создать более благоприятные предварительные условия для разделения веществ за счет добавления подходящего третьего компонента. В системе С2Н5ОН (т. кип. 78,30°) — Н2О, в которой образуется азеотропная смесь, содержащая 4,43% HgO (т. кип. 78,15°), после добавления бензола вначале отгоняется третичная азеотропная смесь (т. кип. 64,85°) таким путем (или же за счет добавления трихлорэтилена) можно легко удалить всю Н2О азеотропная перегонка), последующее отделение добавленного вещества не вызывает затруднений. Кроме того, при образовании азеотропной смеси можно использовать перегонку при пониженном давлении так, С2Н5ОН и Н2О не образуют азеотропной смеси при давлении ниже 75 мм рт. ст. В некоторых случаях эффективного разделения можно достигнуть при помощи особого метода экстрактивной перегонки [572]. Любой труднолетучий экстрагент, смешивающийся при температуре перегонки во всех соотношениях с другими компонентами, вводят в процессе перегонки в колонну сверху. Благодаря этому соотношение давления паров внутри ректификационной колонны смещается в благоприятную сторону, а сам экстрагент в большинстве случаев отделяют повторной перегонкой часто также при охлаждении происходит расслаивание. В некоторых случаях азеотропные смеси можно разделить дробной кристаллизацией, методами адсорбции или термодиффузии [573]. [c.482]

    Задача газовой хроматографии — разделение и анализ смесей летучих веществ. При применении этого метода разделение достигается за счет многократно повторяющегося процесса распределения компонентов смеси между движущейся газовой и неподвижной твердой или жидкой фазами. Процесс разделения основан на различии в упругости паров и растворимости анализируемых компонентов. Тот компонент, растворимость которого в неподвижной фазе меньше, а упругость пара при дайной температуре больше, будет двигаться через колонку быстрее. Таким требованиям удовлетворяют многие системы, компоненты которых достаточно летучи и достаточно термостойки. Метод газовой хроматографии весьма успешно применяется для разделения органических веществ, поскольку свойства большинства из них именно таковы. Но не меньший интерес представляет использование газовой хроматографии для разделения нелетучих органических и неорганических веществ. Чтобы проанализировать нелетучие вещества, биохимики преврахцают их в летучие, например, высшие жирные кислоты переводят в метиловые эфиры. Эти производные в большинстве случаев имеют достаточную летучесть, что позволяет подвергать их газохроматографическому разделению, причем различие свойств делает такое разделение возможным. [c.9]

    Масс-спектрометрический метод применяют для анализа твердых, жидких и газообразных проб. Значительное распространение он получил в органической химии для анализа многих классов соединений, в нефтехимии, где масс-спектрометрическим методом анализируют сложные многокомпонентные смеси углеводородов, в технологии неорганических веществ и других областях химической промышленности. Небольшой объем газа, требующийся для анализа, возможность определения всех компонентов смеси без разделения и другие достоинства масс-спектрометрии позволили успешно использовать ее для определения газов в металлах (после вакуумного плавления). Метод применим для анализа металлов, полупроводников и других неорганических и органических веществ. Он позволяет определять примеси на поверхности и по всему объему пробы. Большие перспективы открывает метод, сочетающий хроматографическое разделение и масс-спектрометриче-ское определение полученных продуктов. [c.282]

    Проведены сравнительные количественные испытания лабораторных и опытных образцов двуокиси кремния, силикагеля КСК, силохрома и зарубежных образцов силикагелей методом ТСХ на микропластинах. Сравнение проведено на смесях красителей и смеси хлоридов кобальта и никеля. Показано, что разделение в тонких слоях в большей степени зависит от типа силикагеля и способа его получения. По возрастанию величины Rf наиболее сорбируемого компонента смеси составлены ряды силикагелей для каждой смеси. Полученные ряды силикагелей указывают на резко выраженную взаимосвязь результатов разделения с пористой структурой сорбента и слоя при одинаковой химически чистой поверхности испытанных силикагелей. Предложено проводить оценку качества сорбента по совокупности характеристик разделения величинам Rf, числу теоретических тарелок, коэффициентам разделения и воспроизводимости. Установлена возможность использования модификаций особо чистой двуокиси кремния в качестве сорбента в ТСХ. Показано, что разделение смеси красителей и смеси неорганических веществ резко отлично на разных образцах силикагелей. Табл. 4, рис. 3, библ. 10 назв. [c.292]

    Одна из причин, по которым газовая хроматография неорганических веществ отстает от газовой хроматографии органических соединений, заключается в том, что при анализе неорганических систем часто возникают трудности, связанные с алрессианостью многих неорганических веществ по отношению к м атериалам, применяемым для хроматографического анализа — сорбентам, неподвижным фазам и материалам, из которых изготовляется аппаратура. Другая причина состоит в том, что для анализа неорганических систем разработаны клас-оичеокие методы, значительно превосходящие по скорости и точности большинство методов органического анализа. Это объясняется тем, что химические свойства неорганических компонентов сложных смесей различаются в достаточной степени для того, чтобы на этом различии могли быть ошованы методы разделения. Для разделения же смесей органических веществ, часто мало различающихся по химическим свойствам, трудно было найти соответствующие методы анализа. Поэтому в большинстве областей неорганической аналитической химии газовая хроматография смогла конкурировать с другими методами лишь после того, как было доказано ее преимущество в отношении чувствительности анализа и возможности его автоматизации. [c.7]


Смотреть страницы где упоминается термин Разделение компонентов неорганических веществ: [c.404]    [c.404]    [c.7]    [c.24]    [c.339]    [c.120]    [c.35]    [c.316]    [c.47]    [c.22]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение веществ

Разделение компонентов

Разделение неорганических веществ

неорганических веществ



© 2025 chem21.info Реклама на сайте