Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение Растворы для химического покрытия

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]


    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Металлические электроды, покрытые пленкой малорастворимого электролита, в состав которого входит ион металла электрода, или опущенные в насыщенный раствор этого электролита, в присутствии другого иона, входящего в его состав, относятся к электродам второго рода. Они обратимы относительно аниона, являющегося составной частью малорастворимого электролита, и их потенциалы связаны косвенной зависимостью через величину его произведения растворимости (ПР) с активностью данного аниона. Например, хлорид-серебряный (уравнение (1.6)) и каломельный электроды являются электродами второго рода. Электроды второго рода находят применение в методе прямой потенциометрии для определения величин Л" вн химических реакций, а также как электроды сравнения. [c.31]

    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]

    Вопрос стабильности растворов металлизации очень важен, так как только его решение позволяет составлять пригодные для металлизации растворы, которые бы не разлагались с выделением порошкообразного металла (шлама) во всем объеме. Некаталитическая вначале реакция восстановления ионов металла после образования первых металлических частиц сразу же может стать автокаталитической и ускоряться по мере дальнейшего образования и роста частиц. Это приведет к непроизводительному расходу как восстановителя, так и ионов металла, а образующиеся мелкие частицы металла ухудшат качество покрытия. Разница скоростей некаталитического (объемного) и каталитического (поверхностного) процессов восстановления определяет практическое применение растворов химической металлизации. [c.28]

    В зависимости от характера агрессивной среды применяются различные методы защиты металлов от коррозии. К ним относятся, в основном, следующие 1) пассивирование поверхности, т. е. создание на поверхности изделия окисной пленки 2) электрохимическая защита (протекторная или электротоком), при которой защищаемое изделие становится катодом и не корродирует 3) обработка агрессивной среды для снижения ее активности путем введения ингибиторов (замедлителей) или веществ, химически связывающих активатор коррозии, например кислород в воде и нейтральных водных растворах 4) покрытие поверхности неметаллическими химически устойчивыми материалами лаками, красками, эмалями, резиной, пластмассами и т. п. 5) нанесение на поверхность изделий металлических покрытий 6) применение летучих ингибиторов и других средств. [c.54]

    Применение защитных покрытий является надежным и универсальным средством борьбы с отложениями парафина. При этом важно, чтобы защитное покрытие удерживалось на поверхности подложки в течение длительного времени, в пределе, определяемом сроком службы оборудования. Следовательно, материал защитного покрытия должен, с одной стороны, показывать низкую сцепляемость с парафином и,с другой-обладать высокой сцепляемостью с материалом подложки. При подборе материала защитного покрытия основным требованием, определяющим критерий подбора, является первое из указанных, поэтому второе требование обеспечивается, как правило, различными техническими приемами, основным из которых является тщательная подготовка защищаемой поверхности. Сцепляемость между контактирующими телами определяется не только межмолекулярными силами взаимодействия между ними, но также и плотностью соприкосновения поверхностей контактов, поэтому подготовка защищаемой поверхности сводится прежде всего к удалению любых загрязнений. Способы удаления загрязнений с поверхности, предназначенной под покрытие, определяются особенностями загрязнения и располагаемыми приспособлениями и различны загрязнения смывают, растворяют, химически модифицируют, удаляют механически. В общем случае поверхность очищают комбинированными приемами. Техника и технология очистки поверхностей и нанесения защитных покрытий на них подробно рассмотрена в работе /43/. [c.138]


    Конкретный состав раствора металлизации зависит не только от вида осаждаемого металла и покрытия, но также от технологии металлизации. В этом смысле растворы химической металлизации можно подразделить на растворы многократного использования и одноразового применения. [c.34]

    При эксплуатации разнообразного машинного оборудования часто юз-никает необходимость предотвращения ржавления металлических деталей. Применение постоянных защитных покрытий (красочных или гальванических) часто бывает невозможным по техническим соображениям. В таких случаях для предотвращения ржавления на поверхность металла наносят масла или смазки. Этими маслами обычно служат нелетучие нефтяные продукты, в которых растворены специальные добавки, предохраняющие металл от ржавления. Для этой цели можно использовать самые разнообразные химические вещества, но чаще всего применяются три основные группы соединений нефтяные сульфонаты, карбоновые кислоты и их соли и сложные эфиры карбоновых или фосфорных кислот. [c.179]

    Один раз в квартал как в производственных, так и в лабораторных условиях вышеописанная уборка производится с применением средств химической демеркуризации и последующим смывом остатков раствора с полов водой. При выборе средств демеркуризации необходимо принимать во внимание данные об устойчивости покрытий к химическим средствам. [c.173]

    Сравнение свойств растворов химического меднения и никелирования показывает, что раствор никелирования работает в довольно щироком диапазоне pH, причем величину pH можно легко регулировать. Наоборот, раствор меднения работает в узком диапазоне pH, причем величину pH регулировать трудно. Скорость меднения и, следовательно, продолжительность процесса зависят от щелочности среды. С понижением pH реакция восстановления меди замедляется, а при высоких значениях pH понижается стабильность раствора и ухудшается качество медного покрытия. При высокой щелочности среды растворы никелирования также менее стабильны, но применение буферных растворов и понижение pH в процессе работы предотвращают разложение раствора. [c.151]

    Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, аморфную структуру и является сплавом никеля с фосфором. При этом содержание фосфора в покрытии зависит от состава раствора и колеблется от 4—6% для щелочных, до 8—10% для кислых растворов. [c.144]

    Способ применения химических отбеливателей различен и зависит от природы активно действующего вещества. Так как в отбеливающих растворах химических отбеливателей образуется активный кислород, процесс отбеливания следует проводить в эмалированной, алюминиевой или другой посуде, которая не подвергается быстрому окислению. Посуда из черных и цветных металлов без антикоррозионных покрытий для проведения процессов отбеливания химическими отбеливателями непригодна, так как в ней образуются окислы металлов, загрязняющие ткань, и посуда быстро разрушается. [c.38]

    Основное внимание в брошюре уделяется химическому никелированию, которое является наиболее распространенным способом нанесения покрытий, а также химическому меднению являющемуся основным процессом при металлизации пластмасс В последнее время практическое применение получили химическое кобальтирова ние и осаждение некоторых драгоценных металлов Существуют также многочислениь е рекомендации составов растворов для нанесения химических покрытий олова, хрома, свинца и некоторых сплавов [c.3]

    Серебро находит применение в химической промышленности как материал для облицовки и покрытий. Его недостатками являются низкий предел прочности на растяжение и склонность к пластической деформации под давлением. Серебро стойко против действия многих кислот, щелочей и растворов солей (при нагреве [c.474]

    Раздел под общим заголовком Проницаемость, транспорт и ионная селективность посвящен очень важной и интересной проблеме изучения механизма диффузионного переноса водных растворов электролитов (и неэлектролитов) в полимерах различной структуры. Информация подобного рода чрезвычайно полезна, во-первых, для описания механизма гидролитической деструкции полимеров в диффузионной и диффузионно-кинетической областях, во-вторых, для научно обоснованного прогнозирования сроков защитного действия полимерных покрытий и мембран и, в-третьих, для более глубокого понимания сущности и закономерностей диффузионных процессов разделения и концентрирования с помощью мембранных методов. Последние находят в настоящее время все большее применение в химической, пищевой и медицинской отраслях промышленности. [c.6]

    Резиновые покрытия (гуммирование). Для защиты химических аппаратов от агрессивных сред и абразивного износа широко применяют листовые покрытия резиной, которые устойчивы во многих агрессивных средах (в соляной кислоте любой концентрации, в растворах серной кислоты концентрации до 70%, в атмосфере влажного хлора, во многих растворителях и др.). Температурные пределы применения резиновых покрытий от —50 до + 100°С. Резиновые покрытия отличаются высокой стойкостью к вибрации и резким температурным перепадам. Гуммирование применяют для защиты емкостных и колонных аппаратов, железнодорожных цистерн, мешалок, деталей трубопроводов, центрифуг и многих других изделий. [c.24]

    Свойства покрытий и области их применения. Фосфатирование — химический процесс образования пленки нерастворимых в воде фосфорнокислых соединений на поверхности стали, чугуна под действием раствора препарата мажеф . Этот препарат (ГОСТ 6193—52) получил название по начальным буквам его составных частей — марганца, железа и фосфорной кислоты. Соответственно составу этого препарата и фосфатная пленка на черных металлах состоит из фосфорнокислых солей этих металлов, имеет темно-серый цвет и пористую мелкокристаллическую структуру. [c.185]

    В данной книге изложены методики анализа 54 электролитов и растворов для гальванических и химических покрытий с применением новых методов (хроматографии и комплексометрии). [c.3]

    В брошюре рассмотрены способы химического никелирования, меднения, серебрения, лужения и палладирования металлов и диэлектриков. Приведены составы применяемых растворов и их свойства, области применения покрытий и оборудование для химических покрытий. [c.2]

    Все более широкое применение находят твердые смазочные полимерные материалы на основе тетрафторэтилена. Политетрафторэтилен добавляют в горячее свежее масло работающего двигателя в соотношении 1/5. При этом образуется суспензия, которая со временем при эксплуатации обволакивает все детали двигателя, проникает в микронеровности и образует прочно сцепляющееся полимерное покрытие. Обычно толщина пленочного покрытия 1—2 мкм. Пленка не разрушается от воздействия химических реактивов, не растворяется в масле и бензине. Полимерная пленка снижает трение (до 10%), понижает температуру деталей и масла. Она оказывает уплотняющее действие, что обеспечивает повышение мощности и снижение расхода топлива (на 5—7%). Износ деталей снижается на 15—20%. [c.671]

    Латексные покрытия под общим названием полан — эластичные, бесшовные, применяются в качестве непроницаемого подслоя под футеровку штучными кислотоупорными материалами. Покрытие полан получают на основе защитной композиции (ТУ 38-106473—84) — водной дисперсии подвулканизованного латекса типа ревультекс, модифицированного метилцеллозольвом. Выбор этого типа латекса обусловлен его хорошими пленкообра-зующими свойствами, возможностью получения прочной пленки без применения высокотемпературной обработки, химической стойкостью. В настоящее время разработаны следующие виды покрытия полан-М, -2М, -Б, -ПЭ, -хлор. Промышленное применение имеют латексные покрытия полан-М, -2М и -Б. Покрытие полан применяется для защиты оборудования, железобетонных сооружений, эксплуатирующихся в диапазоне температур от —30 до 100 °С в следующих агрессивных средах фосфорная экстракционная, фосфорная термическая, полифосфорная, плавиковая, кремнефтористоводородная кислоты и растворы фторсодержащих солей любых концентраций, а также в серной кислоте (до 60%). [c.220]

    Жидкие растворы играют громадную роль в жизнедеятельности организмов. Они находят самое различное применение в практике в технологии получения полупроводников и полупроводниковых приборов, в очистке веществ, в гальванических процессах получения и очистки металлов, в работе химических источников тока, в процессах травления металлов и полупроводников и т. д. Для нас особое значение будут иметь водные растворы электролитов. Но и неводные растворы играют большую роль в теории и практике. Неводные растворители применяют для обезжиривания и для удаления всяких органических загрязнений с поверхности полупроводников и металлов перед их травлением, перед осаждением покрытий и т. д. Такими растворителями являются спирты, ацетон, трихлорэтилен и др. В природе, в лабораториях, в заводской практике постоянно приходится иметь дело с растворами. Чистые вещества встречаются гораздо реже. Громадное число реакций протекает в жидких растворах. [c.148]

    Химическое осаждение можно получить автокаталитически, когда металлическое покрытие осаждается на металлической или активированной металлом поверхности, а его толщина увеличивается более или менее линейно до тех пор, пока поддерживается равновесное по составу состояние раствора. Растворы этого вида обычно называют растворами химического восстановления. К металлам, которые могут осаждаться автокаталитически, относятся медь, никель, железо, кобальт, серебро, золото, платина и палладий. Из этих металлов наиболее широкое распространение (в технике и электронике или для металлизации пластмасс при подготовке к электроосаждению) получили, пожалуй, медь и никель. Серебро и золото имеют более ограниченное применение и используются в некоторых электронных приборах. [c.83]

    Функциональные показатели количественно характеризуют растворы и получаемые покрьггия. Среди первых можно выделить скорость осаждения (мкм/ч, мг/см -ч), температуру, кислотность и другие технологические показатели применения раствора чувствительность к активации, определяемую по обратной величине периода индукции реакции металлизации ( - ) или по минимальному количеству активатора на поверхнсстн диэлектрика (мг/см ) состав и возможные отклонения концентраций компонентов от оптимального. Качество покрытий оценивают по химическому составу физическому составу и структуре механическим свойствам (твердость, пластичность, эластичность, вязкость, прочность, ползучесть) физическим свойствам (электропроводность, теплопроводность, магнитная восприимчивость и вязкость, отражательная способность, прозрачность) химическим свойствам (коррозионная стойкость, растворимость и т. п.) технологическим свойствам (паяемость, свариваемость, полируелюсть). [c.35]

    Фенольные смолы. Реакция формальдегида с фенолом приводит к получению ряда смол, которые в сочетании с другими смолами или высыхающими маслами находят применение в защитных покрытиях. Производится два основных типа фенольных смол — новолачные и резольные. Новолаки представляют собой низкомолекулярные линейные продукты конденсации формальдегида и фенолов с алкильными заместителями в пара-положении. Если алкильный заместитель содержит четыре или более углеродных атомов, смола способна растворяться в маслах. Резолы являются продуктами реакции незамещенных фенолов с формальдегидом. Поскольку в этом случае реакция может протекать как в пара- так и в мета-положения фенольного кольца, молекулы резолов очень разветвлены и по мере протекания, реакции могут превращаться в жесткие стеклоподобные продукты. Фенольные смолы обычно повышают химическую стойкость композиций, в которых они используются. Они всегда применяются в комбинации с другими пленкообразующими. При этом фенольный компонент может либо прореагировать с другим пленкообразовате-лем, либо просто образовать с ним смесь. Так, фенольная смола (например, новолак) после взаимодействия с канифолью или с ее эфиром может быть затем смешана с полимеризованным высыхающим маслом полученное связующее пригодно для грунтовок в строительстве, либо в непигментированном виде в масляных лаках. Композиции на основе фенольных смол находят применение там, где требуется химическая стойкость, например, для защиты трубопроводов и резервуаров. [c.18]

    Учитывая, что даже при самых благоприятных условиях срок эксплуатации растворов химического золочения все же невелик, особенно большое значение приобретает вопрос о регенерации отработанных растворов и промывных вод. В них, помимо основного компонента — золота, будут также присутствовать примеси составляющих сплава, на который наносили покрытие, восстановитель (для указанного выше случая — сернокислый гидразин и продукты его разложения). Применение для извлечения золота ионообменной смолы типа АВ-17 сопровождается сорбцией не только этого металла, но и примеси никеля, так что при последующем сжигании смолы получают сплав, содержащий около 10 % N1. Для регенерации 10 л раствора, содержащего 2 г/л Аи и 1,7 г/л N1, требуется около 67 г смолы [153]. Чтобы достигнуть возможно более полного извлечения золота, раствор последовательно пропускают через несколько колонок, заполненных смолой. Безвозвратные потери золота при этом составляют около 0,1 %. В очищенном от золота растворе разложение оставшегося сернокислого гидразина проводят при 90—95 °С, погрузив в него никелевую пластину. Скорость разложения восстановителя составляет около 50 г/(м -ч). Для повышения экономичности процесса регенерации предложено использовать активированные угли марки ЦНИЛХИ, отличающиеся большей селективностью по отнощению к золоту по сравнению с никелем [72, с. 91]. [c.226]

    Эпоксидные полимеры обладают высокой адгезией, химической стойкостью, твердостью, эластичностью, высокими электроизоляционными показателями, вeтo тoйкo тью . На их основе готовят лаки и краски, клеи для различных материалов, заливочные и прессовочные материалы, смолы, слоистые пластики и др. Эпоксидные полимеры можно модифицировать, сочетая их с другими продуктами (феноло-формальдегидными полимерами, амидо- и аминосоединениями, с алкидными полимерами и др.), что обеспечивает широкие возможности варьирования свойств изготовляемых из них материалов. Одной из главных областей применения эпоксидных полимеров является изготовление покрытий для аппаратов, работающих в условиях большой влажности и действия концентрированных растворов щелочи и других химикатов, приготовление защитных лакокрасочных покрытий и др. Они применяются в электротехнике и электронике, в строительном и дорожном дел Пер-спективным направлением использования является изготовление коррозионностойких труб и резервуаров. [c.50]

    В ЧССР наиболее распространена гальваническая ванна с сегнетовой солью. Богатый опыт применения растворов меднения в гальванопластике описывает Лебдушка [22]. Некоторые авторы [26, 371 указывают, что кислые электролиты вызывают шелушение металлического покрытия. Выбор электролита иногда зависит и от химических свойств пластмассы. Например, щелочные электролиты травят фенопласты, поэтому в данном случае предпочтительнее кислые электролиты. В кислых же электролитах рекомендуется меднить [c.106]

    Неионогенный продукт ОП-7. Полиэтиленовый эфир алкил-фенсла (алкильныи остаток содержит 8—10 атомов углеро- та) с 6—7 молями окиси этилена — маслообрагшая вязкая жидкость от желтого до коричневого цвета хорошо растворяет жиры. Удельный вес при 20 " равен 1,06—1,08, При растворении в воде образует прозрачные растворы. При температуре 50—60° раствор. мутнеет, при охлаждении вновь становится прозрачным. Продукт ОП-7 находит применение в легкой, химической и други.ч отраслях промышленности. Он обладает эмульгирующей, смачивающей, диспергирующей и моющей способностью. Как эмульгатор (ири добавлении небольшого количеств а олеиновой кислоты) применяйся при замасливании прядильных волокон перед прядением. У1я увлажнения пряжи, для шлихтования, как смачиватель и раз-. 1ИЧНЫХ процессах расшлихтовки, отварки, промывки, крашения. В качестве пластификатора добавляется к различным покрытиям из ис1сусственпых смол, сообщая им гидрофильные свойства. Сообщает смачивае.мость тканям с плохой капиллярностью. [c.170]

    I и II составы являются наиболее простыми, приготовляются из недефицитных материалов в растворе состава II отсутствует ион натрия, а в раствор состава III введен фтористый натрий. При фосфатировании стали в ваннах без подогрева в I, II и III растворах сплошного покрытия поверхности пе было получено. Соответственно химическая стойкость фосфатного покрытия, определявшаяся но капельной пробе, оказалась низкой. Удовлетворительные осадки фосфатов получились в ваннах при повышении температуры раствора до 40—50° С. Эффективным оказалось применение катодной поляризации фосфатированного образца в указанных ваннах без подогрева раствора. Испытания качества фосфатного покрытия капельной пробой в последнем случае неноказател ьны, так как капля растекается. Поэтому для оценки защитных свойств образцы с фосфатным покрытием испытывали в 3%-ном растворе КаС1. Качество покрытия оценивалось по времени появления ржавчины в порах фосфатного слоя. В процессе испытания фиксировалось значение потенциала образцов. Измерение потенциала проводилось обычным компенсационным способом при помощи потенциометра ППТВ-1 и гальванометра М-91/а. В качестве электрода сравнения использовался каломельный насыщенный электрод. На рис. 11 представлены кривые изменения потенциалов фосфатиро-ванных образцов во времени. Как видно из графиков, в начальный момент образцы приобретают высокий отрицательный потенциал, соответствующий потенциалу цинка, что свидетельствует о наличии в слое фосфатов свободного цинка. Продукты коррозии на фосфатированной поверхности появлялись после резкого смещения потенциала в положительном направлении. Из полученных данных следует, что защитные свойства пропорциональны времени [c.61]

    Наряду с неметаллическими трубопроводами в промышленности применяются трубы из углеродистой стали, защищенные изнутри слоем неметаллического химически стойкого материала, нанример эмалированные трубы. Практическое применение в химической промышленности получили гуммированные трубы и в некоторых случаях трубы, покрытые с внутренней стороны химически стойкими лакалш и эмалями, например бакелитовым, перхл0рвини.т10вым, битумно-масляными лаками и др. Такие защитные покрытия устойчивы в кислых растворах при температурах не выше 65°. [c.109]

    Для улучшения адгезии красящих покрытий к изделиям из полиолефинов применяют различные методы предварительной обработки поверхности полимера. Эти методы подразделяются на химические и физические. Химические методы предусматривают применение окисляющих реагентов, например хромовой смеси или перекиси водорода, с последующей тщательной отмывкой изделий и сушкой их изделие может также подвергаться воздействию окисляющих газов (озона, хлора, двуокиси азота при каталитическом действии ультрафиолетового облучения) или галоидированию путем обработки концентрированными водными растворами бромистводородной или фтористводородной кислот и т. д. Из этого перечня видно, что химические методы требуют применения агрессивных, химически вредных реагентов, аппаратуры, которая практически должна быть полностью герметична и коррозионно устойчива. При обработке газами необходима система рекуперации. Трудоемки и сложны последующие операции промывки и сушки. Поэтому химические методы в настоящее время вытесняются физическими, которые в свою очередь подразделяются на тепловые и электрические. [c.191]

    В металлургической, химической и нефтеперерабатывающей промышленности применение эпоксидных лакокрасочных покрытий для защиты внутренней поверхности крупногабаритного и дорогостоящего оборудования, эксплуатирующегося при посто-яном воздействии горячих щелочных растворов и защелочен-ных сред, позволяет в 1,5—2 раза увеличить срок их службы, сократить простои и расходы на ремонт. [c.114]

    Опыт применения на химических заводах труб и аппаратов с различными коррозионностойкими материалами показывает, что для большинства агрессивных сред наибольший срок службы обеспечивается резиновыми покрытиями. Так, при футеровке химической аппаратуры кислотостойкими плитками срок ее службы в растворах серной и соляной кислот составляет 2—3 года, в то время как при обкладке кислотостойкой резиной толщиной 2 мм — превышает 7 лет [1, 2]. Трубы, гуммированные мягкой резиной, при транспортировке по ним 30-процентного раствора сульфата натрия после двух лет работы оставались еще в хорошем состоянии. В этих же условиях трубы из углеродистой стали эксплуатировались только 8 месяцев, а в стальных трубах, выложенных свинцом, через 7 недель была нарушена свинцовая облицовка [3]. Этим и объясня-ется, что на многих химических заводах зарубел<ных стран в основном применяются гуммированные трубопроводы [4—8]. [c.52]

    Эти аппараты работают неинтенсивно и в настоящее время применяются лищь для выпаривания вязких растворов при небольщих масштабах производства, когда не требуется большая поверхность теплообмена. Они могут быть использованы также при применении греющего пара высокого давления и при выпаривании агрессивных жидкостей. В последнем случае змеевики изготовляются из химически стойкого материала, а внутренняя поверхность аппарата снабжается защитным покрытием. [c.470]

    Применение для производства стеклопластиков в качестве связующего при получении минеральной ваты, стекловаты, древесностружечных и древесноволокнистых плит, древеснослоистых пластиков для керамических пресс-порошков для покрытия металлов, керамики и бетона для производства полимерцементных растворов, устойчивых к агрессивным средам, химически стойких мастик и замазок, суперпластификаторов для бетонных смесей, полимеркерамзитобетона, перлитовых теплоизоляционных изделий для склеивания металла с керамикой. [c.112]

    В производстве печатных плат используют блестящие по-к )ытия сплавами, которые сохраняют способность к пайке без оплавления до 18 месяцев, а также проявляют высокую химическую стойкость в растворах травителей, применяющихся для вытравливания меди с поверхности печатных плат. Электроосаждение блестящих осадков в присутствии композиции органических добавок сложного состава, иеионогенных ПАВ и формальдегида, ингибирующих процесс электроосаждения сплава, протекает при плотности тока в 2—3 раза большей обычной. Среди известных блескообразующих добавок наиболее стабильными по составу являются композиции типа Станекс-ЗНЗ и Лимеда ПОС-1 , которые получили широкое применение в про-мып1ленности. Высокая рассеивающая способность электролита позволяет обеспечить максимально возможную равномерность покрытия по толщине в отверстиях печатных плат. [c.54]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    Если даже не рассматривать механические загрязнения и загрязнения, попадающие в воду из промышленных установок (например, целлюлозно-бумажных фабрик или химических заводов) вследствие недостаточной очистки (эти загрязнения могут быть всевозможных типов основания, кислоты, растворители, фенолы, соли, многие из которых, например ртутные, очень ядовиты), то в реки, озера и моря попадает огромное количество детергентов, применение которых в современном обществе чрезвычайно расширилось. Значительную отрицательную роль играют прежде Бсего детергенты, которые с трудом разлагаются в природных услО Виях (разд. 9.4), а не классические мыла, которые разлагаются легко. Присутствие таких веществ сильно изменяет поверхностное натяжение загрязненной воды, что в свою очередь серьезно угрожает жизни водяных растений и животных (например, детергенты растворяют естественное жировое покрытие перьев водоплавающих птиц, угрожая их существованию). В некоторых местах загрязнение [c.336]


Смотреть страницы где упоминается термин Применение Растворы для химического покрытия: [c.131]    [c.5]    [c.224]    [c.137]    [c.154]    [c.326]   
Справочник по гальванопокрытиям в машиностроении (1979) -- [ c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Покрытия химические

Химический ая ое раствора



© 2025 chem21.info Реклама на сайте