Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Виниловые мономеры, определение

    Кинетический порядок полимеризации винилового мономера по одному из компонентов окислительно-восстановительной системы равен 0,8. При определенной концентрации этого компонента начальная скорость полимеризации была [c.46]

    Большинство промышленных полимеров получают полимеризацией, протекающей до глубоких степеней конверсии при повышенной вязкости среды или в гетерофазных условиях. Полимеризация при глубоких степенях превращения мономера в полимер имеет ряд особенностей, связанных с диффузионным механизмом элементарных реакций. Так, при гомофазной полимеризации в массе ряда виниловых мономеров наблюдается резкое увеличение скорости реакции после достижения определенных степеней конверсии. Это явление получило название гель-эффекта. Протекание полимеризации до глубоких степеней превращения сопровождается изменением практически всех кинетических параметров. [c.74]


    Потенциометрический метод определения виниловых мономеров основан на использовании реакции присоединения ацетата ртути (И) по месту двойной связи виниловых мономеров в среде метилового спирта  [c.444]

    Определение инициирующей способности в реакции радикальной полимеризации виниловых мономеров [c.50]

    Способность карбокатионов и других положительно заряженных ионов быстро присоединяться по двойным связям и реагировать с гетероатомами органических молекул лежит в основе катионной полимеризации. При определенных условиях в системе возникает ступенчатый рост иона карбония, что и приводит к образованию мономера. По катионному механизму полимеризуются виниловые мономеры и гетероциклы, содержащие в кольце гетероатом. [c.301]

    Часто для улучшения свойств целлюлозных волокон их смешивают с синтетическими волокнами. Другим способом изменения свойств целлюлозных волокон является их модификация химическая (например, ацетилирование), физическая (например, мерсеризация) или сополимеризация целлюлозы с виниловыми мономерами [3, 4, 9, И, 17]. Рядом исследователей были получены привитые и блоксополимеры целлюлозы. При определенных условиях молекулярный вес винилового полимера, связанного с целлюлозой ковалентной связью, оказывался равным или даже большим, чем молекулярный вес целлюлозы [ 2, 42]. Механизм этой реакции изучался и ранее [1, 2, 8, 10, 19, 20, 25, 40]. [c.223]

    Очевидно, что при использовании бифункциональных мономеров имеет определенное преимущество вариант, при котором способ полимеризации на стадии прививки отличается от примененного при получении первого полимерного компонента. Если же на обеих стадиях полимеризации используется один и тот же метод, то выбор подходящего бифункционального мономера весьма ограничен, поскольку трудно из двух аналогичных полимеризуемых групп сохранить одну непрореагировавшей. Однако аллилметакрилат и аллилакрилат являются примерами мономеров с заметно различающейся реакционноспособностью двух полимеризуемых групп, что позволяет получать сополимеры, в которых боковые аллильные группы остаются в основном незатронутыми. Данные по сополимеризации такого мономера, как аллилацетат, с некоторыми наиболее важными виниловыми мономерами приведены в табл. III.20 [77]. [c.106]

    Прививочная сополимеризация виниловых мономеров на полимерные материалы была предметом интенсивных исследований в течение почти четырех десятилетий. Несмотря на огромное число опубликованных статей и патентов и полученные интересные результаты, процесс прививки не получил коммерческого развития. Причины отсутствия масштабного промышленного применения частично экономические. Среди технических проблем, которые в значительной степени остаются не решенными и сейчас, — конкурентное образование гомополимера в большинстве случаев и отсутствие воспроизводимости этих существенно неоднородных реакций. Кроме того, существует определенная трудность контроля привитых боковых цепей в молекулярно-массовом распределении. [c.215]


    Экспериментально концентрацию узлов сетки определяют по результатам анализа продуктов направленной деструкции Т. п. или по результатам определения свойств, теоретически связанных с параметрами структуры сетки. Первый способ основан на химич. разрушении узлов сетки с образованием линейных макромолекул, растворимых и поддающихся физико-химич. анализу. Этот способ применяется гл. обр. для характеристики ненасыщенных полиэфиров, отвержденных в присутствии виниловых мономеров. [c.329]

    Так как неспаренный электрон в растущем радикале находится в фрагменте, образованном присоединенной молекулой мономера, то строение и реакционная способность частиц, участвующих в реакции роста цепи, взаимосвязаны. Известно, что полимеризация простых виниловых соединений, как правило, приводит к регулярному построению полимерной цепи типа голова к хвосту . При таком способе роста цепи из малоактивного мономера образуются наиболее реакционноспособные радикалы и, наоборот, реакционноспособным мономерам соответствуют малоактивные радикалы. Это справедливо для диенов, стирола и его производных, виниловых мономеров с полярными заместителями. Решающее значение в большинстве случаев имеет активность свободного радикала [24, с. 172]. Однако в случае веществ со средней реакционной способностью ситуация менее ясна [13, с. 142]. Если рассматривать широкий круг реакций полимеризации, становится ясной неоднозначность взаимосвязи реакционной способности радикалов и мономеров. Это подтверждают данные, полученные при определении относительной реакционной способности полистироль  [c.53]

    Особенно интересен способ полимеризационного наполнения полимеров при инициировании процесса наполнителями-инициаторами, поскольку дает возможность в определенных пределах гибко управлять кинетикой процесса и свойствами полимерного слоя, связанного с частицей наполнителя, посредством дозирования инициатора-наполнителя, варьирования плотности пероксидных групп на поверхности и условий полимеризации. Методы синтеза таких наполнителей достаточно технологичны, а сами инициаторы универсальны для полимеризации ряда виниловых мономеров, [c.233]

    Выпускаемые различными предприятиями сополимеры имеют примерно одинаковые средний состав и средний молекулярный вес. Однако они обладают разными физико-механическими свойствами, что при одинаковой степени полимеризации в значительной степени определяется неоднородностью сополимеров. Применяются эти сополимеры также в различных областях. При любой реакции сополимеризации двух виниловых мономеров возникающие растущие полимерные радикалы проявляют различную реакционную способность по отношению к двум мономерам. Майо с сотр. показали, что при сополимеризации хлористого винила и винилацетата хлористый винил более активен в реакции присоединения к растущей цепи независимо от того, является ли концевая груша радикалом хлористого винила или винилацетата. Поэтому при сополимеризации двух мономеров полимер всегда обогащен (по сравнению с мономерной смесью) хлористым винилом вплоть до 100%-ной конверсии обоих мономеров. Соотношение между составом мономерной смеси и сополимера показано на рис. XII.1. При сополимеризации определенного количества смеси состав образующегося сополимера непрерывно изменяется. Этот эффект иллюстрируется рис. XII.2. Состав сополимера рассчитывается на основании констант сополимеризации по уравнению сополимеризации в интегральной форме. [c.402]

    Авторы настоящей книги [98] использовали ИК-спектроско-пию как метод для определения содержания привитого сополимера (после экстракции растворителем) и ПВХ, на который были привиты различные виниловые мономеры. ИК-спектры привитых сополимеров сравнивали с ИК-спектрами смесей известного состава, существенной разницы между ними обнаружено не было. [c.163]

    При свободно-радикальной полимеризации винилового мономера концевой атом углерода, несущий неспаренный электрон, имеет практически плоскую форму (хр -гибридизация) и приобретает определенную пространственную конфигурацию (Р или 5) только после присоединения следующей молекулы мономера [90—92]. В общем случае фиксация той или иной пространственной конфигурации может определяться как относительным расположением заместителей К и К в момент присоединения, так и направлением атаки молекулы мономера. Как показали расчеты с использованием потенциалов взаимодействия валентно-несвязанных атомов (см., например, [92]), для реальных полимеров винилового ряда, например полиметилметакрилата, доступным для атаки мономера, обычно оказывается только одно из двух возможных направлений, например сверху от плоскости, образованной тремя заместителями концевого углеродного атома (см. рис. 14). К такому же результату приводит анализ на пространственных молекулярных моделях [85]. Следовательно, характер конфигурации у атома углерода, фиксируемой в акте роста цепи, практически пол- [c.99]


    Процесс радикальной полимеризации виниловых мономеров сопровождается выделением большого количества тепла (в случае ПММА — 54,5 кДж/моль). При получении стекол отвод тепла можно осуществить с помощью теплоносителя. Однако для изделий определенных габаритов такой способ становится неэффективным. Наибольшее выделение тепла происходит на стадии гель-эффекта, увеличивающего скорость полимеризации вследствие уменьшения скорости обрыва цепей [4]. Влияя на этот элементарный акт радикальной полимеризации, можно в значительной мере регулировать скорость процесса в целом и тепловыделения, используя авторегуляторы галогеналканы, галоген- [c.12]

    Образование макрорадикала при окислении целлюлозы солями марганца(П1) протекает по тому же механизму, что и солями церия (IV) — окисляются гликолевые группировки с разрывом пиранозного цикла и образованием свободного радикала. Пирофосфат марганца(III), как и соли церия, может вызывать гомополимеризацию виниловых мономеров, которая и в данном случае протекает с определенным индукционным периодом. Поэтому надо осуществить прививку до окончания индукционного периода. Количество гомополимера составляет 10— 15% от общего количества прореагировавшего мономера. При осуществлении прививки из газовой фазы на волокно, пропитанное раствором пирофосфата марганца(1П), образование гомополимера исключается [c.488]

    Необходимость определения индивидуальных констант потребовала создания специальной теории и новых экспериментальных методов. В целом задача оказа лась настолько трудной, что несмотря на усилия многих исследователей, в настоящее время мы располагаем весьма скромными сведениями о значениях элементарных констант для различных виниловых мономеров. [c.162]

    Допустим, проводится исследование процесса полимеризации винилового мономера в каком-либо растворителе. Полимер раство-рИм в полимеризационной среде. Задача исследования — подобрать наиболее приемлемый инициатор для получения продукта с максимальным выходом, с наибольшей возможной скоростью и определенной ударной вязкостью. Задача специально сформулирована не вполне корректно, что, к сожалению, типично для многих прикладных задач. Заранее оговорим, что в задачу не входит изучение влияния метода переработки материала на его прочностные свойства, а также поиски путей модификации материала. [c.56]

    Из приведенных выше данных видно, что имидазоль-ная группа в мономере может оказывать большое влияние на реакцию инициирования полимеризации. Поэтому были проведены дальнейшие исследования, в результате которых установлено, что имидазол и четыреххлористый углерод могут инициировать полимеризацию определенных виниловых мономеров при повышенных температурах [c.75]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]

    Определение виниловых мономеров (стирола, винилтолуола, винилксилола) [c.444]

    Г.-проявитель в фотографии (обычно используется в виде синергич. комбинаций с метолом или фенидоном) антиоксидант для каучуков, пищ продуктов и др. ингибитор полимеризации виниловых мономеров сырье в произ-ве красителей, лек. в-в, фотоматериалов реагент для с томе-трич. определения № и W, титриметрич. определения Аи(1П) и e(IV). В виде хингидрона используется для определения рн (см. Электроды сравнения). [c.570]

    К настоящему времени уже достаточно определенно наметилась одна область широкого практического применения ДВС — это синтез ионообменных смол и комплексообразуюнщх сорбентов. На основе стирола, метилакрилата, акрилонитрила, 2-метил-5-винилпиридина осуществлен [262] синтез серосодержащих макро-сетчатых ионитов и сорбентов путем сшивки дивинилсульфидом полимерного каркаса. Макросетчатая структура сополимера, которая -во многом является следствием специфичности протекания процесса сополимеризации ДВС с виниловыми мономерами, придает этим новым ионитам повышенную набухаемость, высокие емкостные и кинетические свойства, хорошую механическую прочность (95—100%) и осмотическую стабильность [465]. [c.160]

    А. А. Берлин при изучении трехмерных полимеров олигоэфира,крилатов отметил [135], что механическая прочность реальных густосшитых олигомерных сеток на несколько порядков ниже расчетных значений, определенных на основе представлений об однородных непрерывных сетках. Анализируя этот факт, он указал, что трехмерная полимеризация олигоэфиров (ОЭА) уже на ранних стадиях не является гомогенным процессом и характеризуется различными скоростями в локальных структурных областях и усредненном объеме. К числу фактов, которые не укладываются в рамки традиционных представлений о гомогенной радикальной полимеризации виниловых мономеров, относятся аномально высокие константы скорости роста цепи для тетрафункциональных ОЗА и зависимость константы скорости роста от молекулярной массы олигомера, возрастание начальной скорости полимеризации ОЭА при введении в состав молекул олигомера ароматических ядер или полярных групп и т. д. 135]. Эти наблюдения находят объяснение при учете ассоциативных образований, существующих в олигомерных жидкостях и подобных надмолекулярным образованиям типа жидких кристаллов. Если время жизни (продолжительность структурной релаксации) ассоциата Ха больше, чем продолжительность существования активного центра при полимеризации т, то ближний порядок жидкости при этом фиксируется в твердом полимере. Экспериментально показано, что Ха —10- с , а х л 10 , с [135], т. е. что Та Т.  [c.69]

    Влияние способа инициирования и типа инициатора свободнорадикальной сополимеризации акрилонитрила с фибриллярной целлюлозой на свойства ткани, полученной из этого сополимера, про-иллюстрируется данными табл. 4 [31]. Молекулярный вес привитого сополимера изменяется от 3,3 10 до 5,9-10 и зависит от способа инициирования и условий эксперимента. Между молекулярным весом привитого сополимера и свойствами ткани на его основе нет определенной зависимости. При условиях реакции сополимеризации Б получаются модифицированные ткани с более высокими значениями разрывной прочности, сопротивления раздиру и истиранию при изгибах и в плоскости. Улучшение свойств обусловлено отчасти влиянием условий эксперимента на морфологию волокон, а также тем, что поперечное сечение волокон круглое и привитой полимер распределен однородно по поперечному сечению. При условиях реакции А начальная форма поперечного сечения целлюлозных волокон пе изменяется, а привитой полимер концентрируется в наружных слоях волокна. Ткань, полученная этим методом, характеризуется повышенным сопротивлением истиранию при изгибах и в плоскости и более высокой разрывной прочностью по сравнению с контрольной тканью (из немодифицированной хлопковой целлюлозы). Однако ее сопротивление раздиру меньше, чем у контрольного образца, а сопротивление истиранию при изгибах ниже, чем у образца, полученного в условиях Б. Метод Б может быть развит в непрерывный процесс, при котором ткань вначале погружают в раствор винилового мономера и затем облучают. При всех указанных способах получения сополимеров происходит уменьшение молекулярного веса целлюлозы вследствие окислительной деструкции. [c.229]

    Применение в качестве инициатора азодинитрила бисизомас-ляной кислоты с меченым атомом С при исследовании механизма раздельной и совместной полимеризации метилметакрилс.та и стирола [61] позволило с большой точностью определить число концевых групп с мечеными атомами, сопоставить полученные данные с осмометрическими среднечисловыми молекулярными массами, таким образом, изучить механизм обрыва цепей. Результаты этой работы показывают, что если известен механизм обрыва, то с большой точностью можно выполнить и обратную задачу определение среднечисловой молекулярной массы. Однако сложность механизмов протекания процессов полимеризации виниловых мономеров, а-олефинов и диенов затрудняет правильную интерпретацию полученных результатов и ограничивает использование методов, основанных на введении радиоактивной метки на стадии инициирования или обрыва реакции роста. [c.118]

    Саморазветвление в процессе полимеризации виниловых мономеров изучено лшаь для небольшого числа полимеров. Наиболее детально из мономеров исследован винилацетат, вероятно, вследствие выраженной его склонности к разветвлению по сравнению с другими виниловыми мономерами. Как и в случае полиэтилена, многие методы, использованные для определения степени разветвленности, основываются на измерении молекулярного веса и вязкостей растворов. Спектроскопический анализ не дает желаемых 1)езультатов при изучении виниловых полимеров, так как при их получении не характерны интенсивные реакции передачи цепи, как это имеет место при синтезе полиэтилена. Кинетические исследования весьма эффективны в этих случаях, так как позволяют определять наличие реакции передачи цепи, протекающей даже в незначительной степени. [c.252]

    Полиэфиры, полученные на основе непредельной двухосновной кислоты (малеиновой) и этиленгликоля, так называемые полиэти-ленгликольмалеинаты, позволяют изготовлять очень ценные технические материалы — стеклотекстолиты. Полиэфиры, содержащие двойные связи малеиновой и фумаровой кислот, способны участвовать в реакциях сополимеризации с другими непредельными соединениями, сопровождающихся отверждением. Скорость реакций сополимеризации зависит не только от содержания определенного количества двойных связей и эфирных групп, но и от природы сшивающего мономера. Виниловые мономеры обладают наибольшей реакционной способностью, например стирол. Совместная полимеризация ненасыщенных полиэфиров с различными мономерами проводится чаще всего в присутствии инициаторов перекисного типа. [c.92]

    Точные кинетические данные необходимы для разработки оптимальных процессов привитой сополимеризации, поскольку степень прививки и расположение привитых цепей могут влиять на свойства полученного сополимера. В принципе схема обычной свободнорадикальной полимеризации должна быть применима и к радиационной прививке, поскольку в обоих случаях мы имеем дело с полимеризацией винилового мономера, инициированной полимерным радикалом. В действительности же кинетика радиационной привитой сополимеризации осложняется рядом факторов, проявляющихся в определенных условиях прививки. К ним, в частности, относятся гель-эффект, передача цепи, разделение фаз и диффузия, которые оказывают существенное влияние на кинетику реакции. [c.67]

    Многие вопросы, такие, например, как специфика каталитической сополимеризации этилена и а-олефинов с р-олефинами, диенами, ацетиленами, циклоолефинами, стиролом, гетероатомсодержащими виниловыми мономерами, методы синтеза блоксополимеров и этилен-пропилен-диеновых сополимеров, кинетика каталитической сополимеризации, методы определения констант сополимеризации, распределение звеньев в цепи, а также синтез сополимеров альтернантного строения на комплексных металлоорганических катализаторах в настоящее время не обобщены. [c.5]

    Под действием комплексных металлоорганических катализаторов полимеризуются, а также сополимеризуются с олефинами многие гетероатомсодержащие виниловые мономеры, легко полимеризующиеся по радикальному механизму. Аналогия в протекании элементарных актов полимеризации на комплексных катализаторах и в процессе радикальной полимеризации распространяется, как уже отмечалось, и на реакции обрыва в растворимых катализаторах (диспропорционирование центров роста), а также на процессы ограничения цепи с участием водорода. В этих реакциях водород обладает исключительно высокой реакционной способностью. В определенных условиях акты гидрирования Ме—С-связи в активном центре протекают сразу же после внедрения олефина по Ме—Н-связи, из-за чего катализаторы полимеризации превращаются в катализаторы гидрирования. [c.29]

    Рассматриваемая ситуация подобна той, которая наблюдается при радикальной сополимеризации малеино-вого ангидрида с виниловыми мономерами, поскольку оказалось, что малеиновый ангидрид и другие аналогичные мономеры в определенных уловиях гомополимеризу-ются. [c.67]

    К настоящему времени разработан целый ряд композиций, позволяющих наносить полимерные покрытия с определенными свойствами в промышленных условиях на приборы, инструменты и другие изделия [2, 3, 13, 23, 24]. Так, например, мягкие эмалевые пленки получают на основе малеиновых аддуктов масел [13 ]. Их сополимеризация с различными виниловыми мономерами (стиролом, винилтолуолом, акриловыми эфирами) улучшает твердость, светостойкость, прочность к истиранию покрытий по сравнению с пленками, получаемыми обычными способами. На основе сополимеров малеиновых и фумаровых аддуктов тунгового масла с метил- и этилакрилатами получены коррозионностойкие покрытия [13]. Имеются сведения о получении покрытий с повышенными электроизоляционными свойствами и хорошей химической стойкостью (например, к концентрированной азотной кислоте) на основе тройных сополимеров—метилметакрилата с метакриловой кислотой и ее солями (натрия или калия) в диметилформамиде [5[, а также на основе малеинизированных масел, модифицированных алкидных смол и смол эпоксиэфиров [2]. [c.37]

    Для определения содержания -метоксифенола (ингибитора полимеризации) в виниловых мономерах применяют методики, основанные на спекгрофотометрировании продуктов взаимодействия определяемого вещества с нитритом натрия [1] или с 4-аминоантипирином [2]. Гидрохинон и и-бензохинон, если они присутствуют в анализируемом мономере, мешают определению. От них освобождаются экстракцией [1] или пропусканием мономера через колонку с целитом 545 [2]. Описано также определение п-метоксифенола в метилметакрилате методом анодной вольтамперометрии с пастовым угольным электродом [3], определение п-метоксифенола в водных растворах вольтамперометри-ческим методом с платиновым анодом [4]. [c.116]

    Обычно на практике энергетическая неоднородность поверхности связана с наличием небольшого количества примесей с высокой д, которые дают хвосты на зависимости (0) при малых 0 (0 0,01-0,1). В частности, при адсорбции виниловых мономеров на поверхности 8102 такие хвосты обнаружены практически для всех исследованных систем. Они связаны с наличием на поверхности примесей В, А1, которые образуют кислотные центры типа Льюиса или Бренстеда и являются, как правило, сильными центрами адсорбции для мономеров основного характера. Эти же центры при определенных условиях способны к хемосорбции карбонилсодержащих соединений. Центрами с повышенными значениями д могут также являться микропоры, образуемые, в частности, местами контактов первичных частиц аэросилов. Зависимость теплот адсорбции в некоторых исследованных системах от заполнения поверхности мономером приведены на рисунках 2.10-2.13. [c.29]

    Способность акриловых кислот легко сополимеризоваться с другими непредельными соединениями позволяет осуществлять направленный синтез полиэлектролитов с определенными функциональными группами, придающими сополимерам ценные эксплуатационные качества. Сополимеризацией с неионогенными мономерами - акриламидом (АА), N-винилпирролидоном (N-ВП) — удается добиться увеличения М сополимеров, что особенно важно при синтезе флокулянтов, эффективность которых растет с увеличением молекулярной массы. Использование дешевых мономеров типа акриламида, акрилонитрила удешевляет конечный продукт. В промьЕПленных условиях сополимеризацию акриловых кислот с другими виниловыми мономерами чаще всего проводят методами суспензионной и эмульсионной полимеризации. [c.68]

    Энергия активации деполимеризации равна сумме энергий активации и теплового эффекта полимеризации, а поскольку энергия активации и теплоты полимеризации всех виниловых мономеров (за исключением тетра-фторэтилена) довольно близки (5—7 и 13—20 ккал1моль соответственно), энергия активации деполимеризации для всех полимеров этого типа лежит в сравнительно узком интервале 20—27 ккал1моль. Предэкспоненциаль-ный множитель и энергия активации реакции передачи цепи, определенные на низкомолекулярных модельных системах, обычно составляют около 10 л-моль секг и 12—15 ккал/моль соответственно, что обеспечивает при повышенных температурах высокие скорости этой реакции. [c.16]

    Механизм эмульсионной полимеризации. Наблюдения показывают, что водные растворы персульфата калия мутнеют при соприкосновении с парами виниловых мономеров , причем мутность появляется тем быстрее, чем лучше мономеры растворяются в воде. Это подтверждает предположение, что полимеризация происходит в водной фазе . Установление факта сильного ускорения полимеризации, особенно малорастворимых мономеров, в присутствии мицеллообразующих поверхностно-активных веществ в некоторой мере объясняет механизм эмульсионной полимеризации. Согласно теории Харкинса , развитой Смитом, Эеартом и другими , полимеризация начинается внутри насыщенных мономером мицелл, к которым водорастворимый инициатор имеет легкий доступ. По мере протекания процесса полимеризации все большее количество мономера диффундирует из эмульгированных капелек (являющихся как бы хранилищами мономера) к реакционным центрам. Это продолжается до тех пор, пока не образуется большое количество нерастворимых первичных полимерных частиц, на поверхности которых адсорбируется мицеллообразующее поверхностно-активное вещество . На определенной стадии процесса поверхность мелких частиц из-за их адсорбции на межфазных поверхностях настолько возрастает, что концентрация солюбилизирующего поверхностно-активного вещества становится ниже критической концентрации мицеллообразования. С этого момента внутримицеллярпая полимеризация прекращается и все дальнейшие реакции протекают внутри первичных полимерных частиц, насыщенных мономером. [c.441]


Смотреть страницы где упоминается термин Виниловые мономеры, определение: [c.49]    [c.189]    [c.93]    [c.162]    [c.215]    [c.259]    [c.68]    [c.12]   
Новые окс-методы в аналитической химии (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Виниловые мономеры



© 2025 chem21.info Реклама на сайте