Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция определение

    Метод тепловой десорбции. Определение удельной поверхности из хроматографических данных может быть проведено различными способами по удерживаемым объемам, по размытой стороне хроматограммы, по результатам фронтального анализа. Для массовых определений удельных поверхностей образцов адсорбентов или катализаторов может быть рекомендован метод термической десорбции. Он основан на прямой зависимости между расходом стандартного газа, поглощенного при низкой температуре образцом адсорбента из потока газа-носителя (гелия), и удельной поверхностью. После размораживания образца по площади хроматографического пика судят о величине удельной поверхности. В качестве адсорбтива используют азот, криптон или аргон. [c.51]


    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]

    Определение адсорбционной способности осуществляют на лабораторной установке, которая состоит из газового баллона, адсорбера, газового приемника и вакуум-насоса, соединенных трубками с краниками. Перед опытом адсорбер проверяют на герметичность (под давлением и в вакууме). После десорбции в вакууме при 200° С для очистки адсорбента от ранее адсорбированных газов адсорбер готов для проведения анализа. В случае свежего адсорбента последний подвергают двукратной адсорбции и десорбции газом, подлежащим адсорбции. Эта операция называется промывкой. Затем приступают к адсорбции до максимального давления и к десорбции адсорбированного газа. [c.159]

    В первом случае адсорбент нагревают газовым или твердым теплоносителем до 400-450°С и эвакуируют продукты десорбции определенным количеством отдувочного агента. Это обеспечивает получение газов десорбции, содержащих до 40-50% ЗОг- Их направляют для производства серной кислоты, элементарной серы и жидкого сернистого ангидрида. [c.395]

    Десорбция определенным растворителем происходит тоже последовательно. Можно разделить всю колонку сорбента на зоны, в которых один за другим будут сорбированы компоненты смеси. Содержание составных частей смеси определяют, исследуя каждую фракцию растворителя при десорбции. [c.34]


    Боннет [320] исследовал десорбцию поверхностных окислов искусственных графитов. По мнению автора, природа продуктов горения находится в прямой зависимости от состава поверхностных окислов вида (СО)р, 02)q, j. Об ясняя постоянство отношения окислов СО/СОз, он предположил, что десорбция одной молекулы СОз влечет за собой десорбцию определенного числа молекул СО. Боннет считает, что это число не будет меняться при изменении состава промежуточного окисла. [c.184]

    Адсорбция оксидов азота твердыми сорбентами (силикагелем, алюмогелем, алюмосиликатом, цеолитами, активным углем и др.). Из-за дефицитности и малой адсорбционной емкости адсорбентов, больших затрат тепла на регенерацию не нашла широкого применения. Для этой цели предложены природные адсорбенты (торф, лигнин, фосфатное сырье, бурые угли), которые не нуждаются в регенерации. Адсорбционные методы имеют определенные преимущества перед абсорбционными— компактность и простота конструкции аппаратуры, отсутствие жидких сточных вод. Недостатки методов — цикличность (адсорбция — десорбция), необходимость проведения регенерации при высоких температурах с последующей утилизацией оксидов азота, а также поглощение адсорбентом не только оксидов азота, по и других примесей, включая влагу. [c.67]

    Стабильность дисперсной фазы в масле в присутствии моюще-диспергирующих присадок, как правило, снижается с повышением температуры, что связано с преобладанием процесса десорбции присадок с поверхности твердой фазы. Для присадок разных типов существуют определенные температурные пределы эффективности их стабилизирующего действия (рис. 4.9). [c.217]

    Потеря смазочной способности пленки масла (особенно в случае использования химически инактивной смазочной среды) определяется нарушением упорядоченности граничного слоя и десорбцией молекул смазки с поверхности металла при определенной критической температуре (Ткр), поэтому последняя, по мнению Р. М. Матвеевского, может служить критерием оценки эффективности смазочного действия [249]. В частности, [c.243]

    Сопоставление общей кислотности и силы кислотных центров, измеренных по поглощению и десорбции пиридина, показало, что изомеризация протекает на сильных кислотных центрах. Если оценить каталитическую активность сильной кислоты в 100, то для кислоты средней силы она составляет 10, а для слабой отсутствует (0). Именно высокая чувствительность изомеризации к силе кислоты используется при получении а-олефинов дегидратацией спиртов. Для этого процесса не требуются сильные кислотные центры, а использование слабой кислоты позволяет получать только а-олефины, без их изомеризации в 7- и р-изомеры. Чувствительность изомеризации к величине Н использована для определения силы кислотных центров при расчете скорости изомеризации диме-тилбутена-1 и других олефинов [13].  [c.95]

    Процесс трения вносит в адсорбцию определенные особенности. При трении на величину адсорбции и десорбции помимо обычных факторов существенно влияют такие параметры, как характер обработки поверхности металла и его предварительная деформация, В частности, результаты опытов показали, что величина поверхности, заполненной адсорбированными молекулами присадки, по мере повышения шероховатости изменяется экстремально, имея максимальное значение при шероховатости, характеризуемой выступами размером 0,3—0,4 мм. Это, по-видимому, связано с тем, что число узлов решетки на 1 см шероховатой поверхности оказывается в 1,5—2 раза выше, чем на идеально гладкой. [c.256]

    Методы анализа и испытания катализатора НИП-74. Определение химического состава и физических свойств катализатора НИП-74 проводится по методикам, приведенным выше для катализатора ИП-62, с той разницей, что дополнительно производится определение удельной поверхности катализатора по методу тепловой десорбции аргона на хроматографической установке, разработанному в Институте катализа СО АН СССР [92]. [c.79]

    Для определения РТФ, так же как и для ММР, используют жидкостную хроматографию, только с той разницей, что носитель в случае определения РТФ активен по отношению к функциональным группам и не активен по отношению к полимерной цепи. При определении РТФ можно применять ступенчатую десорбцию с активной насадкой растворителями с возрастающей долей полярного компонента и жидкостную хроматографию на силикагеле с использованием смешанного растворителя постоянного состава [c.435]

    Расчет толщины слоя сорбента и длительности стадий адсорбции и десорбции с помощью профилей концентраций и выходных кривых довольно трудоемок. Поэтому (а также ввиду отсутствия данных для определения внутреннего сопротивления) расчет установок с неподвижным слоем твердой фазы часто проводят по эмпирическим зависимостям, полученным для конкретных адсорбционных систем (см. гл. IX). [c.75]

    Продолжительность стадий процесса. Определение длительности стадии адсорбции при заданных высоте слоя и концентрации проскока также можно производить графически после расчета выходной кривой — зависимости конечной (при z = Н) концентрации очищаемой среды от времени (рис. 111.17). Аналогично можно найти и продолжительность стадии десорбции, исходя из заданной конечной концентрации десорбирующего газа или максимально допустимой остаточной концентрации в сорбенте (рис. 111.18). [c.67]


    Прн десорбции концентрация растворенного газа в массе жидкости больше, чем у ее поверхности. При этом парциальное давление газа, соответствующее условиям равновесия с основной массой жидкости, выше его парциального давления у поверхности и при определенных условиях может быть даже больше общего давления у поверхности. Напрнмер, воду можно насытить двуокисью углерода при парциальном давлении последней в несколько десятков атмосфер, а затем внезапно уменьшить общее давление до атмосферного. Если, как в этом примере, разность между общим давлением у поверхности и давлением, равновесным с жидкостью, велика (т. е. велика степень пересыщения), то внутри жидкости образуются пузырьки, и большое количество газа будет выделяться, диффундируя к поверхности этих пузырьков. Такой процесс сильно отличается от процессов абсорбции, рассмотренных выше, где величина поверхности контакта фаз определялась исключительно внешними факторами, а не самим абсорбционным процессом. Количественная теория пузырьковой десорбции в настоящее время отсутствует. [c.264]

    Родионова. И., Зенков В. В., Труды МХТИ им. Д. И. Менделеева, вып. 69, 1972, стр. 195. Исследование коэффициентов массоотдачи в жидкой фазе-в колоннах с провальной тарелкой (при десорбции гелия и аргона с одновременным определением поверхности контакта фаз окислением рабочего сулы )итного раствора). [c.275]

    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    Простейший пример механизма сопряжения — совместная работа двух катализаторов (например, с помощью прямого взаимодействия промежуточных продуктов частных реакций различного типа, адсорбированных на соприкасающихся кристаллах (зернах) контактов разных функций, через перемещение адсорбированных промежуточных продуктов с контакта на контакт посредством поверхностной диффузии, а также через газовую фазу с десорбцией с одного контакта и адсорбцией на другом). Преимущественное использование смешанных катализаторов перед простыми и необходимость применения носителей и модификаторов вызваны необходимостью обеспечить скрытое сопряжение, требуемое для получения определенного продукта. Для эффективного сопряжения, как правило, требуются сложные каталитические системы. До сих пор их находят в основном эмпирически. Сознательный подбор и конструирование таких систем — одна из насущных задач теории катализа. Его частный и особенно важный вид — морфологический катализ — состоит в обеспечении определенного строения продуктов реакции. [c.306]

Рис. III. 18. Определение продолжительности десорбции Рис. III. 18. <a href="/info/1777624">Определение продолжительности</a> десорбции
    Уравнения (П 1.92)—(И 1.94) дают возможность найти предельные параметры процесса минимальную толщину слоя сорбента при заданной продолжительности стадии адсорбции, или минимальную длительность стадии десорбции для слоя определенной толщины, или максимальное время работы слоя сорбента заданной высоты до момента проскока и т. п. [c.68]

    Уравнения (П1.92)—(111.94), справедливые прн бесконечных скоростях массопереноса, дают возможность найти предельные параметры процесса. Их применяют также для быстрого определения ориентировочных значений высоты слоев и длительности стадий адсорбции и десорбции, а также для приближенного расчета массообменных процессов с неподвижным слоем твердой фазы в тех случаях, когда нет данных для расчета внутреннего сопротивления. Более точный расчет требует учета скоростей массопереноса. [c.69]

    В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи на тарелках различных конструкций. Однако большинство их получено путем обобщения экспериментальных данных по абсорбции и десорбции газов и испарению жидкостей в газовый поток. В ряде работ показано, что с достаточной степенью приближения эти данные можно использовать для определения коэффициентов массоотдачи процессов ректификации бинарных систем, для которых мольные теплоты испарения компонентов приблизительно равны. В частности, для тарелок барботажного типа рекомендуются [14] обобщенные критериальные уравнепия типа (VI.39), которые приводятся к удобному для расчетов виду  [c.132]

    Кинетика реакций на неоднородной поверхности. При невыполнении одного из постулатов Лангмюра (см. раздел 1.2) вид изотермы адсорбции меняется. Подставляя в формулы (11.88)—(П.90) уравнение любой изотермы адсорбции, отличной от лангмюровской, получаем видоизмененные кинетические зависимости, характеризующие процесс на неоднородной поверхности или при взаимодействии молекул в адсорбированном слое. Если адсорбционное равновесие не достигается, соответствующие неравновесные зависимости получают, заменяя уравнения изотерм адсорбции зависимостями степеней заполнения поверхности от концентраций реагентов в объеме, определенными из условия баланса потоков адсорбции, собственно реакции и десорбции. [c.85]

    Прямой метод определения параметров моделей многофазных потоков, в случае многофазных систем или систем с ярко выраженной структурной неоднородностью, когда распределение объема между фазами или неоднородностями неизвестно, анализ структуры потоков индикаторными методами в известной мере затруднен. Трудности анализа функций отклика системы на типовые возмущения по составу потока обусловлены сопутствующими помехами, вызванными такими явлениями, как молекулярная диффузия в поры и капилляры твердых частиц, в пленки и карманы в пространстве между этими частицами, конвективная диффузия в застойных зонах системы, адсорбция и десорбция индикатора на поверхности частиц и стенок, ограничивающих поток и т. д. [c.29]

    Выше, при определении фактора десорбции воды, было принято число теоретических тарелок Мт = 3. Известно, что число рабочих тарелок равно [c.82]

    Известно, что многие твердые тела, которые дают увеличенное число нар электрон — дырка на их новерхностях при облучении в диапазоне видимой или ультрафиолетовой областей спектра, проявляют фотокатали-тические свойства. Так, окись цинка в этих условиях катализирует такие реакции, как образование окиси углерода [138] или перекиси водорода [139]. Известно также, что многие твердые тела, действующие как хорошие катализаторы в отсутствие электромагнитной радиации, приобретают большую склонность к десорбции определенных веществ со своих поверхностей, когда их облучают светом определенной длины волны. Закись никеля, исследования которой проводили недавно Хабер и Стоун [140] и Ионгенье и Скейт [141[, принадлежит к катализаторам этой группы. Так как при интерпретации процессов хемосорбции и последующей фотодесорбции с по- [c.250]

    На рис. 10 представлен типичный десорбциоппый спектр водорода с вольфрама при малых степенях заполнения. Кривая отражает зависимость нормированной степени заполнения, вычисленной из изменения ионного тока при нагревании образца вспышкой. Эта кривая была проанализирована на основе уравнений (9а) и (96) результаты анализа представлены на рис. 11. Линейная зависимость в координатах уравнения для реакции второго порядка показывает, что лимитируюш ей стадией при десорбции водорода с вольфрама является реакция второго порядка этот факт убедительно свидетельствует в пользу того, что водород на поверхности адсорбирован в виде отдельных мобильных атомов. Энергия активации десорбции, определенная по графику для реакции второго порядка, составляет 35 ккал/моль. Фактор частоты, рассчитанный из уравнения (96), равен 2-10" м мoлeкyл " . Величина фактора частоты, рассчитанная согласно теории столкновений молекул как твердых шаров в двумерном пространстве и равная а пкТ/ тУ 3,6 -10 для водорода, достаточно хорошо согласуется с приведенным выше значением. Чтобы проверить правомерность этого метода, уравнение (8) интегрировали численно с применением электронно-вычислительных машин и получили значения для о, А-йГ и V. На рис. 10 рассчитанные точки (кружки) нанесены па эксперилгентально полученную кривую десорбции. [c.242]

    Свободную энергию активации десорбции можно рассчитать из скорости десорбции, определенной экспериментально по изменению поверхностного потенциала со временем. Для получения зависимостей энергий и энтропий активации от заполнения Элей [120] и Хигучи с сотрудниками [107] применили к десорбции теорию абсолютных скоростей. Скорость десорбции определяется выражением [c.131]

    На рис. 2-5 для сравнения предстарлена изобара десорбции паров воды из силикагеля КСМ-6, в структуре которого, в отличие от цеолитов, отсутствуют катионы. Силикагель КСМ-6 (диаметр зерна 0,8—1,2 мм) обладает также хорошими десорбционными свойствами — удаление основной влаги достигается уже при t = ЮОч-120 °С в течение 8—10 мин. С повышением температуры десорбции до 200 °С увеличения десорбированной влаги практически не происходит. При более жестких температурных условиях десорбции (при 300 °С) имеет место новый количественный скачок в процессе удаления влаги. Вероятно, это связано с десорбцией определенной части химически связанной влаги. Однако в этих условиях, по-видимому, происходит разрушение кристаллической структуры силикагеля и он частично теряет свои адсорбционные свойства. [c.31]

    Для расчета процесса абсорбции и десорбции, определения скорости циркуляции поглотительного раствора и других технологических параметров необходимо иметь данные о физических свойствах водных растворов этаноламинов. (Приложение 2). Важное значение для извлечения из газов кислых компонентов имеет тот факт, что водные растворы аминов обладают ярко выраженными щелочными [c.102]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Для определения равновесных концентраций с целью построения кривых равновесия и (или) определергия движущей силы процесса абсорбции или десорбции, необходимо знать температуру. Температуру процесса можно рассчитать из уравнения теплового баланса. Тепловой баланс — это равенство теплоты, вносимой в аппарат и уносимой из него. [c.75]

    Расчеты абсорбционно-десорбционных процессов по методу Кремсера — Брауна в силу допущений, принятых при выводе формул абсорбции и десорбции, являются приближенными. ЭВМ позволяет отказаться от этих допущений и решать задачу в точной постановке. Известен метод расчета от тарелки к тарелке . Суть его сводится к тому, что для каждой тарелки решаются свои уравнения материального и теплового баланса и уравнение равновесия. Методом итераций достигают установившегося режима работы колонны. Основной недостаток этого метода — использование понятия теоретической тарелки (использование уравнения равновесия). Точное определение числа теоретических тарелок не имеет большого смысла, поскольку при переходе к реальным тарелкам приходится апеллировать к к. п. д. тарелок, выбор которого в определенных пределах произволен. Точный потарелочиый расчет приобретает смысл при определении мест ввода в колонну нескольких сырьевых потоков и (или) вывода нескольких продуктовых, что встречается при ректификации многокомпонентных смесей. [c.86]

    Для выяснения тех пределов адсорбционного сродства, внутри которых растворители могут быть использованы в качестве десорбеитов для промышленных процессов, целесообразно ввести эмпирическое понятие индекса адсорбционного сродства, который в дальнейшем будет называться индексом адсорбции (ИА) [231. За индекс адсорбции какого-нибудь соединения принимается его кажущаяся адсорбция, выраженная в миллилитрах на килограмм адсорбента при равновесной концентрации 0,2% объемн. в определенном растворителе (обычно в к-гептаие или в другом продельном углеводороде). Если построить графики изотерм адсорбции для веществ с сильно различающимся адсорбционным сродством, применяя в качество единицы количества адсорбента 1 кг, то индекс адсорбции будет выражаться ординатой точки пересечения вертикали, соответствующей концентрации с=0,2%, с данной изотермой. Выбор концентрации 0,2% в известной мере произволен, но эта концентрация была выбрана с тем, чтобы по меньшой мере для того интервала значений индекса адсорбции, в котором лежат все углеводородные системы, индекс адсорбции был пропорционален количесигу гептана, затрачиваемому для десорбции данного соединения из силикагеля и подсчитываемому по уравнению типа (24). [c.158]

    Были проведены систематические определения ц, по температурной зависимости равновесного давления кислорода 1.8-1.10]. Величину ро2 определяли масс-спектрометриче-ски и по наклону прямых 1про2 1/Т рассчитывали значения для различных р. Перед измерениями образцы нагревали в вакууме при 500°С в течение 4 ч, обрабатывали кислородом при 500"С и ро2 = 10 тор в течение 2 ч, затем для удаления О2 из газовой фазы и физически адсорбированного кислорода откачивали кислород при 50°С в течение 1 ч. После этого измеряли равновесное давление десорбции кислорода при различных температурах. [c.8]

    Цеолиты СаА по отношению к изобутену проявляют молекулярноситовой эффект, а н-бутены на них сорбируются хорошо, что-создает возможность разделения этих олефинов. Однако в определенных условиях на цеолитах СаА наблюдаются побочные процессы полимеризация, изомеризация и даже крекинг олефинов. При контакте с сорбентом изобутен образует олигомеры, что обусловлено природой связукГщего компонента и активированием поверхности сорбента кислородом при повышенных температурах. Этот нежелательный процесс можно предотвратить, исключив доступ кислорода, подобрав соответствующее связующее или обработав сорбент аммиаком или хинолином. Когда десорбцию проводят при высоких температурах, возможны крекинг и изомеризация. [c.199]

    Так как при десорбции образуются только шаровидные мениски, а при адсорбции—как шаровидные, так и цилиндрические, то дссорбционную ветвь изотермы удобно использовать для определения эффективных размеров пор, т. е. размеров, эквивалентных круглым цилиндрическим порам. Каждая точка изотермы дает значения адсорбированного количества а и относительного давления пара p/p .. Умножая величину а на v (мольный объем жидкости), находят объем пор V, заполненный жидкостью, а подставляя соответствующую величину р/р в формулу Томсона (X 1 X, 15), получают эффективный радиус г, шаровидного мениска в поре. [c.526]

    Остановимся также на разработанном в последние годы дифференциально-изотопном методе (С. 3. Рогинский, Н. П. Кей-ер) обнаружения неоднородности поверхности, суть которого заключается в следующем. На поверхности сначала адсорбируется определенная порция газа одного изотопного состава, а затем порция другого изотопного состава вслед за этим производится десорбция отдельных порций газа и анализ их изотопного состава. Если изучаемая поверхность однородна, то со-стаз десорбируемого газа должен быть средним по сравнению с разновременно адсорбированными порциями, поскольку [c.333]

    Эта реакция характерна для водородного электрода. Равновесию между ионами НзО (при а+=1) и мoлeкyляpны газообразным водородом (р=1 атм) соответствует вполне определенный потенциал, условно принимаемый равным нулю. При этом потенциале имеется равновесие динамического характера, т. е. на границе электрод — раствор одновременно протекают как процесс разряда ионов гидроксония, так и процесс ионизации адсорбированного водорода, а на границе электрод газ — процессы адсорбции и десорбции водорода. При этом скорссти про-тизоположных процессов равны. Если поляризовать водородный электрод катодно, т. е. подводить к нему з ектроны, то равновесие нарушится и преимущественно будет происходить разряд ионов гидроксония. Отсюда ясно, что разряд ионов гид )оксония и выделение молекулярного водорода будут наблюдаться лишь по достижении равновесного потенциала водородного электрода, соответствующего активности иока гидроксония в растворе и давлению выделяющегося Нг, (при отсутствии перенапряжения). Этим и определяется предельное значение пол5 ризации катода при электролизе с выделением водорода. [c.613]

    Перед насыщением ацетиленом адсорбенты высушивали до постоянной массы (веса). Высушенные об-)азцы имели следующую насыпную массу силикагель <СК —0,43 г см , силикагель КСМ — 0,72 г см , активный глинозем— 0,86 г/см . Образцы адсорбентов насыщали техническим ацетиленом из баллона в течение 8 ч при скорости потока ацетилена 20 см 1мин, после чего их рассыпали тонким слоем на листы бумаги, чтобы удалить ацетилен, накопившийся между зернами. После перемешивания адсорбент снова засыпали в сосуды и охлаждали сначала до 203° К, а затем до 90 К По мере испарения хладоагента происходило медленное отогревание до комнатной температуры. Такой способ насыщения был необходим для того, чтобы избежать образования твердого ацетилена на поверхности зере адсорбента. Количество поглощенного ацетилена в пробах образцов адсорбентов определяли десорбцией ацетилена с последующим определением его с помощью реактива Илосвая. Количество ацетилена в различных образцах составляло 0,3—1,2% (по массе). [c.62]

    Эт закономерности, как показано выше, могут нарушаться, например, из-за торможения продуктами реакции, недостатка водорода, особенностей адсорбции вещества. Поэтому особенно интересно применение для гидрирования полициклических ароматических углеводородов гомогенных комплексных катализаторов, при использовании которых не имеют место осложняющие явления, связанные с адсорбцией и десорбцией на катализаторе. Эти катализаторы появились недавно, а применение их для гидрирования полициклических углеводородов описано пока только в одной работе Катализатор был приготовлен на основе родия и N-фeнилaнтpaнилoвoй кислоты. На примере антрацена опытами с дейтерированием и определением места дейтерия в прореагировавшей молекуле было показано, что в данном случае не происходит промежуточного образования 9,10-дигидро- [c.157]


Смотреть страницы где упоминается термин Десорбция определение: [c.88]    [c.229]    [c.226]    [c.34]    [c.157]    [c.448]    [c.73]    [c.346]   
Адсорбция, удельная поверхность, пористость (1970) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Газо-хроматографическое определение удельной поверхности адсорбента методом тепловой десорбции азота

Газо-хроматографическое определение удельной поверхности методом тепловой десорбции азота

Газохроматографическое определение удельной поверхности I пигментов методом тепловой десорбции азота

Десорбция

Десорбция определение понятия

Определение констант скоростей адсорбции и десорбции в случае нелинейных изотерм

Определение теплоты десорбции по изотерме Лэнгмюра

Определение энергии активации процесса десорбции Ed с помощью программируемой термодесорбции

Федоров, Р. И. Измайлов. Определение десорбционной ветви изотерм адсорбции газов и паров непрерывной десорбцией их в динамических условиях

Хроматографическое определение константы скорости десорбции



© 2025 chem21.info Реклама на сайте