Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критическое давление состояние жидкости

    Из уравнения Ван-дер-Ваальса следует, что при некотором значении температуры, повышая давление газа, его можно превратить в жидкость. Однако для каждого газа существует такая температура, выше которой он никаким повышением давления не может быть переведен в жидкость. Эта температура называется критической Г р-Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением Р р. Объем паров при критических температуре и давлении называется критическим объемом. В критической точке исчезает граница между газообразным и жидким состоянием. [c.45]


    Критические параметры. Газы мо-гут быть превращены в жидкое состояние сжатием, если температура при этом не превышает определенной величины, характерной для каждого однородного газа. Температуру, при превышении которой данный газ не может быть сжижен никаким повышением давления, называют критической температурой газа ( кр)-Давление, необходимое для сжижения газа при критической температуре, называют критическим давлением (р1,р). Объем газа, соответствующий критической температуре, называют критическим объемом (F p), а состояние газа, определяемое критическими температурой, давлением и объемом, — критическим состоянием газа. Плотность пара над жидкостью при критическом состоянии становится равной плотности жидкости. Критические температуры и давления приведены в табл. 1-2. [c.14]

    Радиус корреляции. Наибольшее расстояние между частицами атомами, молекулами, ионами) жидкости, при котором еще можно наблюдать корреляцию, называют радиусом корреляции. Обычно эту величину обозначают символом L. Величина L зависит от метода и точности наблюдения корреляции, поэтому L определена не строго. Радиус корреляции зависит от температуры, давления и состава жидкой фазы. Если состояние жидкости далеко от критической точки, то L, как правило, не превышает 3—4 диаметров молекул. В окрестности критической точки жидкость — пар радиус корреляции резко возрастает, достигая значений порядка 10 нм и более. [c.119]

    При рассмотрении основных факторов термического крекинга следует учитывать, что сырье и продукты термодеструкции могут находиться в реакционной зоне в газовой или жидкой (чаще в смешанной, жидко-паровой) фазе. Для легкого дистиллятного сырья температура процесса всегда выше температуры полного испарения сырья. Если применяют высокое давление, температура полного испарения сырья повышается. Однако и в этом случае сырье обычно находится в газовой фазе, так как температура в зоне реакции выше критической температуры сырья. Иное положение создается при крекинге тяжелого остаточного сырья. В этом случае, как правило, сырье и продукты находятся в смешанном состоянии (жидкость и пары) чем выше температура и чем ниже давление, тем больше доля газовой фазы. Фазовое состояние продуктов крекинга зависит и от глубины превращения сырья, так как при значительном выходе продуктов разложения высокое парциальное давление их паров обеспечит переход в газовую фазу и более высококипящих продуктов уплотнения. [c.69]


    Жидкое состояние вещества занимает определенный участок на температурной шкале. Снизу он ограничен температурой кристаллизации (или, что то же, температурой плавления). Сверху — так называемой критической температурой (существование которой установил Д. И. Менделеев). С повышением давления повышается температура, при которой жидкость находится в равновесии со своим паром. При температурах выше критической ни при каком давлении состояния жидкость и пар не различимы, остается одно полностью неупорядоченное газообразное состояние вещества. Выше этой температуры, следовательно, никаким давлением нельзя добиться конденсации газа в жидкость. Это относится, например, к основным компонентам воздуха —- азоту и кислороду, поэтому столь безуспешными были первые попытки получить жидкий воздух путем повышения давления при комнатной температуре. В табл. 7.11 приведены координаты критических точек некоторых веществ. Заметим, что ими определяется выбор жидкостей для холодильных устройств (в частности, аммиака, фреона и т. п.). [c.157]

    Изменение агрегатного состояния вещества (плавление, испарение) сопровождается затратой тепла, так называемой скрытой теплоты испарения или плавления. Так как при данном давлении индивидуальное вещество кипит при постоянной температуре, то сообщение скрытой теплоты испарения не сопровождается подъемом температуры. Размерность величин скрытой теплоты плавления или испарения — ккал кг и кал моль. С повышением давления скрытая теплота испарения уменьшается и при критическом давлении (т. е. и при критической температуре) становится равной нулю при критической температуре исчезает различие между жидкостью и паром жидкость превращается в пар без затраты тепла, так как при этом не происходит изменения объема. Скрытые теплоты испарения при атмосферном давлении могут быть найдены по формуле Трутона  [c.87]

    Для систем, составленных из жидких углеводородов и метана, увеличение давления приводит к достижению критического состояния, при котором система становится гомогенной. Для воды и неполярных газов увеличение давления в большинстве случаев не сопровождается достижением критического состояния. Так, например, на диаграмме системы этан—вода видно, что при температурах ниже 350 °С критические состояния не существуют при давлениях до 350 МПа и давление не способствует сближению состава фаз. Минимальная температура, при которой система достигает критического состояния, равна 350 °С. При этой температуре одновременно образуются две совпадающие критические точки (критическая точка равновесия жидкость—газ и критическая точка равновесия газ—газ). С ростом температуры критическое давление равновесия жидкость—газ резко уменьшается, критическое давление равновесия газ—газ возрастает. Проекции критических кривых в координатах давление—температура для различных двойных систем вода—неводный компонент представлены на рис. 26. Критические кривые, проходящие через минимум температуры, соответствуют равновесию газ—газ второго типа (см. гл. I). Характеристики критических точек, имеющих мини- [c.65]

    Для каждого вещества существует так называемое критическое состояние, которое характеризуется критическим давлением и критической температурой tк. В этом состоянии плотность жидкости и ее насыщенного пара становятся одинаковыми исчезает различие между жидкостью и ее насыщенным паром. Вещество, находящееся в критическом состоянии, является однофазным. Оно обладает свойствами газообразных и жидких тел одновременно. При температуре выше критической никаким повышением давления перегретый пар не может быть обращен в жидкость. [c.34]

    Кривая ОК начинается от температуры плавления и оканчивается при критической температуре (соответственно, при критическом давлении). Она называется кривой испарения и разграничивает область пара (III) и жидкости (II). Кривая ОА, идущая от температуры плавления в сторону более низких температур, падает более круто, чем ОК. Эта кривая разграничивает области кристаллического состояния (I) и пара (III) и носит название кривой возгонки. [c.63]

    На рис. 5 приведены изотермы диоксида углерода. Рассмотрим изотерму для 283,16 К. На ней только участок АВ соответствует газовому состоянию, подчиняющемуся закону Бойля— Мариотта. Участок ВС соответствует состоянию жидкость — пар. Здесь наблюдается резкое уменьшение объема при постоянном давлении. Участок С соответствует жидкому состоянию он не показывает за-Таблица 2. Параметры критического состояния различных газов [c.24]

    Температура, при которой газ никаким давлением нельзя сжать в жидкость, называется критической температурой. Давление, при котором кривая ас превращается в точку, называют критическим давлением. Критическая температура для каждого вещества имеет свое особое значение. Газ при температуре выше критической условились называть газом, при температуре ниже критической — паром. Критическая температура есть мера стремления вещества принимать газообразное или жидкое состояние (табл. 37). [c.128]


    В этих уравнениях а — в еличина адсорбции для равновесных относительных давлений р1Р вс и абсолютных температур Т, ммоль1г-, Рнас — давление насыщенного пара адсорбтнва р — парциальное давление адсорбтнва ркр — критическое давление адсорбтнва Ь — константа уравнения Ван-дер-Ваальса, смУммоль и W — предельные объемы адсорбционного пространства В и А — константы Ра — коэффициент аффинности характеристических кривых (может быть найден как отношение парахоров адсорбируемых веществ к парахору стандартного пара, для которого определяют константы Wo и В или и А) V — объем миллимоля жидкости в адсорбированном состоянии, с м ммоль. [c.721]

    Заметим, что между газом и жидкостью, как и между жидкостью и твердым аморфным телом, нет принципиальной разницы. Все они изотропны, т. е. их свойства (в отличие от кристаллических тел) одинаковы по всем направлениям. Различаются эти фазы лишь величиной сил взаимодействия между молекулами. Поэтому не во всех случаях можно различить понятия жидкость и газ . Когда в системе эти фазы существуют одновременно и отделены поверхностью раздела (при температурах и давлениях ниже критических) в условиях, изображаемых точками, лежащими на кривой равновесия, мы определяем более конденсированную фазу как жидкость, а менее конденсированную как газ. Но кривая равновесия между газом и жидкостью имеет конец в точке К, координаты которой соответствуют критической температуре Ткр и критическому давлению Ркр. Изменяя состояние системы по пути, лежащему за критической точкой К, т. е. не пересекая кривую равновесия, мы все время будем иметь однородное тело, которое с равным основанием можем называть жидкостью или газом. [c.131]

    V проявляться силы взаимодействия между моле- кулами и, во-вторых, уже нельзя пренебрегать собственным объемом молекул по сравнению с объемом газа. С увеличением давления и понижением температуры расстояния между молекулами уменьшаются, а силы взаимодействия увеличиваются так, что вещество из газообразного состояния может перейти в жидкое. Для каждого газа существует предельная критическая температура, выше которой газ не может быть превращен в жидкость ни при каком давлении. Давление, необходимое для сжижения газа при критической температуре, называется критическим давлением, а объем одного моля газа при этих условиях — критическим объемом. [c.14]

    Жидкий кислород представляет собой прозрачную голубоватую легко подвижную жидкость. Температура кипения при нормальном давлении минус 183° С, температура затвердевания минус 218° С. Критическая температура, т. е. температура, выше которой кислород может быть только в газообразном состоянии, минус 118° С. Критической температуре соответствует критическое давление жидкости, которое равно 49,7 кг/см . [c.29]

    На рис. 11.11 изображена объединенная диаграмма переходов между различными фазовыми состояниями воды в условиях равновесия. Три области диаграммы, соответствующие существованию воды в твердом, жидком и газообразном состояниях, разграничиваются тремя кривыми линиями, которые сходятся в общей точке t. Кривая V, разделяющая жидкое и газообразное состояния, определяет значения давления и температуры, при которых осуществляется кипение. Например, при давлении 1 атм температура кипения оказывается равной 100°С при более низких давлениях температура кипения соответственно понижается. В частности, можно наблюдать кипение воды при комнатной температуре, снизив давление над поверхностью воды до 0,03 атм. И наоборот, повышение давления приводит к возрастанию температуры кипения воды до тех пор, пока не будет достигнута так называемая критическая точка, соответствующая точке с на диаграмме. В этой точке давление равно 218,3 атм, а температура 374°С, причем граница между жидкой и паровой фазами воды становится неразличимой (табл. 11.3). Плотности жидкости и газа в критической точке также становятся одинаковыми. Вещество не может существовать в жидком состоянии при температурах выше критической температуры Т рт независимо от того, как велико давление. Критическим давлением называется минимальное давление, достаточное [c.195]

    При достаточно низкой температуре любой газ можно превратить в жидкость, приложив внешнее давление при этом объем уменьшается, а молекулы сближаются настолько, что силы притяжения между ними оказываются достаточными, чтобы вызвать конденсацию. Ниже некоторой температуры, называемой критической, между жидкой и паровой фазами существует мениск, но при достижении критической температуры мениск исчезает. Для чистого вещества критическое состояние может определяться любым из следующих двух критериев 1) критическому состоянию соответствуют температура и давление, при которых газовая и жидкая фазы становятся настолько близкими по свойствам, что не могут более существовать как отдельные фазы 2) критическая температура чистого вещества — это самая высокая температура, при которой газ и жидкость еще могут существовать как отдельные фазы. Критическим давлением называется давление в критической точке, а критическим объемом — значение мольного объема при этих условиях. [c.86]

    Для всех веществ тройная точка равновесий твердая фаза — жидкость — пар отвечает наиболее низкой температуре, при которой возможно абсолютно стабильное существование вещества в виде жидкости. Критическая температура является наиболее высокой, при которой вещество может находиться в жидком состоянии. Выше нее вещество существует в виде одной фазы, которую правильнее называть не газообразной, а флюидной. Соответственно, критическое давление есть наивысшее, при котором две фазы, жидкая и газообразная, могут сосуществовать в равновесии. [c.23]

    Линия a k соответствует двухфазному равновесию между жидкостью и паром. Как уже указывалось, оно является моновариант-ным, т. е. характеризуется одной степенью свободы. Это означает, что можно произвольно изменять только один из параметров состояния— давление или тем пературу, тогда как другой определяется из диаграммы. Из диаграммы также следует, что линия a k характеризует зависимость давления насыщенного пара данного вещества от температуры и ее же можно трактовать как зависимость температуры кипения вещества от внешнего давления. В этой связи кривая a k получила название кривой кипения или кривой испарения. Со стороны повышенных температур и давлений эта кривая заканчивается в критической точке с координатами Ть и Ри, характеризующей такое состояние вещества, в котором исчезает различие между жидкостью и паром. Это состояние нонвариантное, так как к обычным условиям равновесия добавляется условие идентичности фаз, которое уменьшает число степеней свободы на единицу. Нонвариантными для данного вещества будут также критическое давление и критический объем. Обычно при значениях параметров, превышающих критические, принято говорить о состоянии надкритическом, однофазном, избегая приписывать этому состоянию наименование жидкость или пар. Точки, ограничивающей кривую a k снизу, со стороны пониженных температур и давлений, не существует. Жидкость может пребывать в переохлажденном состоянии ниже точки плавления а. Линия a k i, являющаяся участком кривой a k, пролонгированным за тройную точку в область твердого состояния S, изображает зависимость давления насыщенного пара от температуры над переохлажденной жидкостью. Переохлажденная жидкость менее устойчива, чем твердая фаза при той же температуре. Поэтому давление паров над переохлажденной жидкостью выше, чем над твердой фазой при той же температуре (кривая a k i лежит выше кривой а а ]). Однако такой критерий различной устойчивости фаз применим только к однокомпонентным системам. У двух- и многокомпонентных систем эти отношения сложнее. [c.265]

    Критическая температура (Т р), названная по предложению Д.И. Менделеева абсолютной температурой кипения - температура, при которой исчезает различие между жидко- и газообразным состоянием вещества. При температурах свыше Т р вещество переходит в сверхкритическое состояние без кипения и парообразования (фазовый переход 2-го рода), при котором теплота испарения, поверхностное натяжение и энергии межмолеку-лярного взаимодействия равны нулю. При сверхкритическом состоянии возникают характерные флуктуации плотности (расслоение по высоте сосуда), что приводит к рассеянию света, затуханию звука и другим аномальным явлениям, таким как сверхпроводимость и сверхтекучесть гелия. Вещество в сверхкритическом состоянии можно представить как совокупность изолированных друг от друга молекул (как молекулярный песок ). Для веществ, находящихся в сверхкритическом состоянии, не применимы закономерности абсорбции, адсорбции, экстракции и ректификации. Их в смесях с докритическими жидкостями можно разделить лишь гравитационным отстоем (см. 6.3.3). Критическое давление (Р р) - давление насыщенных паров химических веществ при критической температуре. Критический объем (У р) - удельный объем, занимаемый веществом при критических температуре и давлении. [c.96]

    При повышении температуры жидкости и увеличении энергии системы некоторые из частиц, получившие достаточный запас кинетической энергии, способны преодолеть силу внутреннего давления, покинуть жидкость и перейти в газовую фазу. Если система закрытая, то устанавливается равновесие между жидкой и газовой фазами, и среднее число частиц, покидающих жидкость и возвращающихся в нее, становится равным. Состояние вещества, находящегося в газовой фазе в равновесии с жидкостью, называется насыщенным паром. На фазовой диаграмме (см. рис. 4.5) этому равновесию отвечает кривая 3. При движении по этой линии по мере повышения температуры и давления плотность жидкости уменьшается, а плотность пара увеличивается. При определенных значениях Т и Р плотности жидкости и пара становятся равными и граница раздела между ними исчезает. В этой точке, которая называется критической точкой, линия равновесия жидкость - пар кончается. Например, для воды Т р = 647,4 К и Р р= 22 114 кПа. [c.97]

    Кривые /, 2, 3 различаются значениями температуры. Кривая 3 соответствует температуре, превышающей критическую Т>Т ). В этом состоянии кривая изменяется плавно, давление падает с ростом V и вещество может находиться в равновесном состоянии только будучи в газообразном виде. Вторая кривая соответствует критической температуре Тс — наивысшей температуре, при которой жидкость и пар могут находиться в состоянии равновесия друг с другом. При температуре Т <Т (кривая /) зависимость р(о) ведет себя немонотонно. Слева от точки В (линия АВ) вещество находится в однофазном жидком состоянии, справа от точки О (линия СН) вещество находится в однофазном паровом состоянии. Область между точками В я С соответствует равновесному двухфазному состоянию жидкость — пар. Согласно условию [c.78]

    Свойства сильно сжатых газов, включая растворяющую способность, сходны со свойствами жидкости, различие состоит только в том, что сильно сжатые газы полностью заполняют любое ограниченное пространство, в которое их помещают. При умеренных давлениях содержание конденсируемого вещества в контактирующем с ним газе определяется давлением пара или давлением сублимации этого вещества, и содержание контактирующего вещества уменьшается, если давление системы растет. Однако при давлениях, близких к критическому давлению газа, его растворяющая способность резко увеличивается с давлением, точно так же, как это происходит с жидкими растворителями. Такое увеличение растворимости объясняется резким уменьшением коэффициента фугитивности газообразного растворенного вещества с увеличением давления. Указанное поведение хорошо оценивается современными уравнениями состояния. Некоторые данные, иллюстрирующие сказанное, приведены на рис. 8.13. [c.431]

    С, С, С", является насыщенным паром, а жидкость в со- нях, представляемых точками В, В, В", иногда называют лйсыщенной жидкостью. Внутри области, ограниченной этими точками (см. пунктирную кривую), все точки отвечают наличию одновременно газообразной и жидкой углекислоты. Особого внимания заслуживает точка К, отвечающая критическому состоянию. Она лежит на изотерме, выше которой ни при каком давлении не происходит конденсации газа в жидкость, точнее говоря, не происходит разделения углекислоты на два слоя —. жидкий и парообразный. Эта температура получила название критической температуры или 7 . Давление, представляемое точкой К, получило название критического давления Рк и объем — соответственно критического объема а сама точка К — критической точки. В настоящее время эти величины измерены для большого числа различных химических соединений и простых веществ. Г<ритические параметры некоторых веществ приведены в табл. П. [c.110]

    Для определения критической температуры для смеси необходимо знать экспериментальные данные. На диаграммах температура — давление, подобной диаграмме на рис. 3, линии постоянного состава жидкости имеют тенденцию сходиться к точке, которая, как можно полагать, соответствует критической температуре и критическому давлению. Кривые, рассчитат ые для области, лежащей вне замкнутой кривой на плоскости Р — Т, стремятся приблизиться к точке, являющейся, как можно предположить, критической для данной смеси. Основываясь на такого рода наблюдениях, критическую температуру смеси можно определить как температуру, выше которой смесь нельзя целиком перевести в жидкое состояние. [c.166]

    Приведенные свойства относятся к насыщенному пару и (или) жидкости. При низких давлениях их значения будут очень близки к значениям для перегретого пара или недогретой жидкости. Однако по мере приближения к критической точке данные для насыщенных состояний сильно отклоняются от значений, которые можно было бы ожидать в нормальных условиях. По этой причине следует пользоваться с большой осторожностью данными при давлениях, превышающих значение, равное 70 % критического давления. [c.200]

    Кривая зависимости давления пара от температуры имеет физический смысл лишь в определенной области давления и температуры. При увеличении температуры и давления плотности жидкости и пара начинают сближаться между собой по своему значению, и наконец достигается такое состояние, при котором жидкость и пар становятся неразличимыми по всем термодинамическим параметрам (например, по плотности и молярному объему), исчезает граница жидкость — пар, соответственно поверхностное натяжение становится равным нулю. Это состояние называется критическим. Энтальпия испарения с увеличением температуры понижается и в критическом состоянии также становится равной нулю. Соответствующая температура называется критической Гкрит (аналогично ркрит, Укрит, ркрит). В критическом состоянии пар и жидкость неразличимы. Нельзя считать, как это иногда делают, что критическое состояние отличается тем, что выше критических температуры и давления невозможно превратить газ (пар) в жидкость. Критическая плотность составляет примерно треть плотности жидкости в нормальных условиях, соответственно она в 300 раз больше плот- [c.276]

    КРИТИЧЕСКОЕ СОСТОЯНИЕ — состояние, ири котором исчезает граница раздела фаз между жидкостью и паром, которые становятся тождественными по своим физическим свойствам. К. с. характеризуется критическим давлением, температурой, объемом и плотностью. В К. с. возникают характерные флуктуации плотности, что ириводнт к рассеянию света, которое называется критической опалесценцией. Вещество при температуре выше критической нельзя перевести в жидкое состояние, даже при очень ВЫС0К0.М давлении. Вода имеет критическую температуру 374,2 С, критическое давление 22 10 Па, критическую плотность 0,321 г/мл, критический объем 56 мл/моль. [c.141]

    При перемещении по кривой давления пара над жидкостью в область высоких температур и давлений свойства газа и жидкости все более сближаются и наконец наступает критическое состояние, при котором различия между жидкостью и газом исчезают. Достижение критического состояния отображается на кривой критической точкой, которой отвечают строго определен ные критическое давление и критическая температура. В кри тической точке все термодинамические свойства сосуществую щих фаз становятся одинаковыми, поэтому система в критиче ской точке безвариантна. Выше критической точки ни при ка ком давлении не происходит разделения вещества на две фа зы —жидкую и газообразную. [c.26]

    Для характеристики критических явлений жидкость—газ в системах, состоящих из какого-либо компонента и воды, недостаточно знания поведения ветви критической кривой, начинающейся в критической точке чистой воды. В некоторых случаях в таких системах есть еще ветвь критической кривой, начинающаяся в критической точке неводного компонента. Такая ветвь может существовать только тогда, когда критическая температура неводного компонента выше температуры замерзания воды. Оканчивается эта ветвь в конечной критической точке (см. гл. I), в которой критическое состояние между неводной жидкой и газовой фазами одновременно является трехфазным состоянием, т.е. критическая фаза находится в равновесии с некритической водной фазой. Если критическая температура неводного компонента невысокая, то параметры конечной критической точки мало отличаются от параметров критической точки чистого неводного компонента. Это объясняется тем, что при низких тёмпературах давление пара воды невелико и при давлениях, близких к критическому давлению неводного компонента, содержание воды в газовой фазе, равновесной с жидкой водой, мало. При небольшом содержании воды в конечной критической точке параметры последней близки к параметрам критической точки чистого неводного вещества. Так, например, молярная доля воды в конечной критической точке [c.74]

    Строение жидкостей. Жидкое агрегатное состояние является промежуточным между кристаллическим и газообразным (см. рис. 116). Поэтому при высоких температурах свойства жидкости приближаются к свойствам неидеального газа (где весьма часты многократные толкновения молекул), при низких — к свойствам кристаллического вещества. Так, если жидкость нагревать под возрастающим давлением (иначе она превратится в пар), то можно достичь такого состояния, при котором парообразование жидкости не сопровождается расходом энергии. Это состояние называется критическим-, ему соответствуют критические температура и давление, разные для различных веш,еств (см. рис. 116). В критической точке все свойства жидкости и пара (энергия, плотность и т. д.) становятся тождественными. Следовательно, если жидкость подвергнуть нагреванию под критическим давлением, то при достижении критической температуры она ничем, в частности, — ни характером движения частиц, ни структурой, — не будет отличаться от своего пара.  [c.276]

    Наличие такой температуры, выше которой ни при каком давлении не происходит разделения на жидкую и газообразную фазы, т. е. становится невозможным их сосуществование, закономерно, так как жидкость и пар при температурах, близких к критической, отличаются друг от друга лишь большей или меньшей степенью взаимодействия частиц. Поэтому можно осуществить непрерывный переход жидкости в пар и пара в жидкость. Для этого следует так подобрать значения Р и Г, чтобы обойти критическую точку, т. е. гомогенно перейти от пара к жидкости. Это показано на рис. 50 (с. 185) и 60 (процесс abed). При изменении состояния жидкости по пути, огибающему кривую равновесия, которая заключает гомогенную область АКБ, система все время будет однородной, и нельзя будет указать момент перехода от пара (белое поле) к жидкости (черное поле). [c.198]

    Сероводород — бесцветньш ядовитый газ с неприятным запахом плотность его по воздуху 1,1906. Он принадлежит к группе легко сжижаемых газов. Уже при обыкновенном давлении в охладительной смеси из твердого диоксида углерода и эфира он сжижается в прозрачную бесцветную жидкость, кипящую при —60,3° С и затвердевающую при дальнейшем охлаждении в белую кристаллическую массу, плавящуюся при —85,5°,С. Его критическая температура 100° С, критическое давление 89 атн. В жидком состоянии сероводород является хорошим растворителем органических соединений. [c.565]

    Жидкое состояние веш,ества — промежуточное между твердым и газообразным. Температуры и давления, соответствуюш,ие жидкому состоянию, для разных веш,естр весьма различаются. При фиксированном давлении область устойчивого жидкого состояния ограничена снизу температурой кристаллизации, сверху—температурой кипения. Для каждого вещества имеется критическая точка, в которой осуществляется непрерывный переход от жидкости к газу (см. рис. 19) (естественно, кроме веществ, разлагающихся при повышении температуры до достижения критической точки). При температурах вьшие критической жидкое состояние невозможно, каково бы ни было давление. Критической точки, соответствующей непрерывному переходу жидкость—кристалл , не обнаружено. [c.355]

    Критическая температура Т р, температура, выще которой газ с повыщением давления не может быть превращен в жидкость. В природных условиях осадочной толщи в жидком состоянии не могут существовать метан, водород, кислород, но пропан, бутан, Н28 и СО2 легко превращаются в жидкости. Критическое давление Р р — давление, необходимое для конденсации пара при критической температуре. В двухкомпонентной смеси в отличие от однокомпонентной в критической точке С еще сосуществуют газовая и жидкая фазы, а Ткр и Ркр не являются максимальными. Максимальные для системы температуры и давления отмечены соответственно в точках Тщ и Р где — максимальное давление — криконденбар, при котором еще существует газовая фаза, и Тщ — максимальная температура, при которой еще сохраняется жидкая фаза — крикондентерм. Ретроградные явления испарения и конденсации происходят в узкой термобарической области, лежащей между криконденбаром и критической точкой, с одной стороны, и крикондентермом — с другой (заштрихованная область на рис. 1.18). Таким образом, газоконденсатными называются такие [c.56]

    Гдубсжим охлаждением принято называть снижение температуры вещества ниже —100 С, умеренным охлаждением— д( температ фы выпте —100 С. Критическая температуфа, т. е. такая температура, выше которой вещество не может находитьс5 в жидком состоянии, для кислорода равна —118,4 С, а для азота—-147 °С. Соответственно критическое давление, т. е. давле ние пара над жидкостью при этой температуре, для кислород равно 5,01 МПа, а для азота —3,35 МПа. [c.60]

    Теоретическая линия DW ZB не соответствует обычным физическим представлениям. Например, наклон кривой в точке С положителен, что означает увеличение объема при увеличении давления (физически невозможное). Однако можно получить газ в нестабильном состоянии, представленном началом пунктирной линии прежде чем произойдет сжижение переохлажденного пара, которое будет сопровождаться снижением давления до величины, соответствующей горизонтальной линии. Можно также получить жидкость в метастабильном состоянии вдоль BZ. При критической температуре (461 К для изопентана) и критическом давлении уравнение (3.4) имеет только один действительный корень — критический объем Ук- [c.90]

    Адсорбированное вещество в микронорах в поле адсорбционных сил подобно жидкости, находящейся в сильно сн атом состоянии. По ориентировочной оценке этодгу сжатию отвечает гидростатическое давление порядка нескольких сотен атмосфер. Для области температур, значительно ниже критических, например нормальной температуре кипения, сжимаемостью жидкости в объемной фазе, а следовательно, и адсорбата можно пренебречь. По мере приближения к критической температуре плотность жидкости в объемной фазе резко падает, а ее сжимаемость сильно возрастает. Поэтому отношение плотностей адсорбата при кп и нельзя считать равным отношению реальных плотностей объемной жидкой фазы при указанных температурах. Допустим, что плотность адсорбата при критической температуре соответствует максимальному сжатию, т. е. мольному объему, выраженному константой Ъ уравнения состояния Ван-дер-Ваальса  [c.62]

    С флотореагентом в соотношении к нефтешламу 1 1, при необходимости через патрубок б направляют острый пар для размягчения нефтешлама до жидкого состояния и включают вибратор 2. В реакторе 1, который разделен перегородкой 7 на два отсека / и II, происходит смешение исходных компонентов в режиме низкочастотной вибрационной кавитации. Низкочастотная кавитация сопровождается такими физическими эффектами, как образование и схлопывание при достижении критического объема кавитационных каверн с образованием микрогидравлических струек, которые активно способствуют очистке загрязнений с твердыми компонентами смеси. Объем смеси увеличивается на 1/3 от исходного и эта часть сливается из реактора 1 через патрубок 3. При низкочастотной кавитации нарушается закон Паскаля, т. е. жидкость неравномерно давит на все стенки сосуда. При повышении давления (подъем жидкости на 400 мм) жидкость не выливается из реактора. За счет мощных гидравлических потоков, охлопывающихся кавитационных каверн в реакторе происходит тщательное перемешивание всех компонентов. При этом нефть или нефтепродукты флотируются на поверхность воды, а за счет вибрации твердые очищенные включения транспортируются по наклонной под углом 5-15 к стенке 8 и через патрубок 5 удаляются вместе с частью жидкой фазы в отстойник. Из отстойника нефть отправляют на переработку. [c.64]

    В этих уравнениях а — величина адсорбции для равновесных относительных давлений р/Рнас и абсолютных температур Т, ммоль1г Ряас—давление насыщенного пара адсорбтива р — парциальное давление адсорбтива рнр — критическое давление адсорбтива 6 —константа уравнения Ван-дер-Ваальса, см ммоль 1 0 и 1 — предельные объемы адсорбционного пространства В и Л — константы Ра — коэффициент аффинности характеристических кривых (может быть найден как отношение парахоров адсорбируемых веществ к парахору стандартного пара, для которого определяют константы ХРа к В или и -4) V — объем миллимоля жидкости в адсорбированном состоянии. см 1ммоль. [c.721]

    Еще Д. И. Менделеев установил отсутствие принципиальной разницы между жидким и газообразным состояниями вещества. Очевидные внешние различия между жидкостью и газом объясняются различным характером взаимодействия атомов в этих двух состояниях вещества. В обоих состояниях движение атомов имеет хаотический характер и отличается лишь длиной свободного пробега, которая в жидкости значительно меньше вследствие ее большей плотности. Не вдаваясь в подробности физической картины этих агрегатных состояний вещества, заметим, что опытным путем была доказана возможность непрерывного перехода из газообразного состояния в жидкое и обратно без скачкообразного фазового перехода на границе раздела фаз. Это обстоятельство известным образом ограничивает кривую фазового равновесия р = Р Т), обрывая ее в некоторой критической тояке К (фиг. 3), понятие которой было установлено в 1860 г. Д. И. Менделеевым. Критической точке К отвечают вполне определенные для каж-дого вещества--значения давления и темиерат>ры Т р. При всех значениях р п Т, меньших критических, переход из одной фазы в другую происходит с пересечением кривой упругости или кривой фазового равновесия р(Т), на которой обе фазы равновесно сосуществуют. Выше критической точки состояние вещества может быть только однородным и иногда называется закритическим. [c.33]

    На фиг. 3 показан переход системы из точки А, расположенной в области жидкости, в точку В, расположенную в области газа, проведенный двумя путями. На первом пути, пересекающем кривую фазового равновесия, происходит скачкообразное изменение фазового состояния, сопровождающееся положительным тепловым эффектом. На втором пути, идущем в обход критической точки, в каждый момент свойства вещества во всем объеме системы одни и те же, но в ходе процесс они непрерывно изменяются без скачкообразного фазового перехода и без теплового эффекта. Так осуществляется непрерывный переход из жидкого состояния в газо-обрашое. Понятие критической точки позволяет дать определение ее параметрам. Наименьшая температура, выше которой ни при каком давлении нельзя ожижить данный газ, называется критической температурой этого газа. Давление, при котором газ, находящийся ири критической температуре, приходит в насыщенное состояние, называется критическим давлением. Удельный объем вещества, находящегося под критическим давлением и при критической температуре, называется его критическим объемом Укр. По мере приближения вещества к критическому состоянию, отвечающему точке К [c.33]


Смотреть страницы где упоминается термин Критическое давление состояние жидкости: [c.72]    [c.264]    [c.133]    [c.113]    [c.48]    [c.113]    [c.33]    [c.215]    [c.298]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Давление жидкостей

Давление критическое

Давление критическое Критическое давление

Состояние критическое



© 2025 chem21.info Реклама на сайте