Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры энергии связей

    Химическая связь между атомами кремния и кислорода (51—О), называемая силоксановой , определяет основные свойства силоксановых полимеров. Энергия связи 5 —О составляет 440—495 кДж/моль, а связи С—С в обычных карбоцепных полимерах 265 кДж/моль. [c.276]

    Этот вывод имеет, очевидно, общее значение. Так, методом фотоэлектронной спектроскопии установлено, что с ростом толщины слоя металла, термически осажденного в вакууме на поверхность полимера, энергия связи электрона снижается, приближаясь к величине, характерной для объема металла [403]. [c.92]


    Свойства полисилоксанов в значительной степени определяются свойствами силоксановой группировки. Связь кремния с кислородом отличается большей термической стабильностью, чем органических полимеров, что определяется большей энергией образования связи. Так, энергия связи 81—О равна 89 ккал моль, а энергия [c.150]

    Увеличение энергии связи компонента с матрицей приводит к снижению подвижности молекул газа и, следовательно, к уменьшению эффективных коэффициентов молекулярного переноса (например, коэффициенты диффузии газов в полимерах на несколько порядков меньше коэффициентов взаимной диффузии в газовой смеси). В результате резко снижается проницаемость мембран. Действительно, наибольшей проницаемостью обладают газодиффузионные мембраны, в которых энергия связи проникающего газа с матрицей близка к нулю. [c.15]

    Увеличение энергии связи приводит к усилению роли сорбционных явлений в общем процессе разделения. В частности, скачкообразное изменение концентрации компонентов на границах мембраны не только повышает проницаемость целевого компонента, но может принципиально изменить процесс разделения смеси. В полимерах коэффициенты диффузии более легких растворенных газов, как правило выше, а растворимость их ниже, чем у более тяжелых газов. В итоге скорость проницания последних часто превосходит проницаемость той же мембраны по более легким газам. [c.15]

    Для объяснения причин различий экспериментальных и рассчитанных по энергиям связи теплот полимеризации проведен ряд исследований. Их результаты показывают, что этими причинами являются 1) стабилизация электронов в мономере или полимере функциональными группами 2) стерические на- пряжения при полимеризации циклических мономеров 3) образование связей между молекулами мономера или полимера (типа водородных) и сольватация. Наибольшее значение имеет влияние заместителей, вызывающее стабилизацию электронов. [c.261]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]


    Сегмент молекулярной цепи, напряженный до предельного значения своей работоспособности, является чрезвычайно мощным источником накопленной энергии упругой деформации. При термомеханической активации разрыва химических связей для их разрыва необходима лишь небольшая часть накопленной энергии, а именно механический вклад в энергию активации i7o Оставшаяся большая часть энергии связана с механическим взаимодействием с окружающими цепями или рассеивается в виде тепла. Рассеиваемое тепло оказывает двоякое влияние через последующее возрастание локальной температуры увеличивает подвижность других сегментов цепи и уменьшает их разрывную прочность 1136 (7 ). Оба фактора стремятся облегчить дальнейшую деградацию напряженного полимера. [c.258]

    Энергия связи атомов брома и иода с углеродом значительно ниже энергии связи углерод—водород, вследствие чего отщепление брома или иода наблюдается уже при комнатной температуре как для мономеров (бромистого и иодистого винила), так и для полимеров. [c.253]

    Благодаря высокой энергии связи углерод—фтор предотвращается возможность возникновения реакций, связанных с отщеплением атома фтора в процессе полимеризации. Маловероятным является и прекращение роста макрорадикалов в результате передачи цепи через макромолекулу. Поэтому макромолекулы политетрафторэтилена имеют преимущественно линейное строение. Отсутствие разнотипных заместителей в звеньях полимера исключает и образование стереоизомеров. Такое строение полимерной цепи политетрафторэтилена определяет возможность образования кристаллитов. По степени кристалличности политетрафторэтилен можно сравнить с полиметиленом, несмотря на то, что образование его происходит по механизму радикальной полимеризации. Степень кристалличности различных образцов политетрафторэтилена (как и полиэтилена) можно характеризовать величиной плотности. Его плотность в аморфном состоянии со- [c.256]

    В реальных молекулярных цепях полимеров на конусе вращения имеется один-два (или больше) минимума с различными потенциальными энергиями. Связь С—С может находиться либо в одном, либо в другом из этих положений с минимальными значениями потенциальной энергии. Подобные различные конформации молекул, отличающиеся потенциальной энергией, относятся к поворотным изомерам [41 11], характерным как для полимеров, так и для низкомолекулярных веществ. У полимеров они представляют собой набор различных конформаций цепей —от свернутых до распрямленных. Анализ с этих позиций формулы (4.13) привел М. В. Волькенштейна и О. Б. Птицына к заключению, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения, т. е. /(ф) = = и —ф) (см. рис. 4.8 и 4.10). [c.94]

    Силовое возмущение межатомных связен в нагруженном полимере проявляется в изменении спектра поглощения в ИК-области, где лежат частоты колебаний связей в полимерных цепях. Полосы ИК-поглошения под действием напряжения смещаются в сторону низких частот и деформируются, размываясь в ту же сторону. Разгрузка полимера приводит к восстановлению исходного вида полос поглощения. Растяжение межатомных связей вызывает уменьшение энергии связи, и как следствие этого, некоторое уменьшение частоты колебаний. Большая часть связей (80—90%) нагружается сравнительно слабо, о чем свидетельствует небольшое смещение полосы поглощения. Малая часть связей нагружается значительно сильнее. Максимальные перенапряжения наиболее нагруженных связей (несколько процентов) достигают значений порядка десятков (ро—10). Наличие таких перенапряженных связей играет решающую роль в разрушении полимера, так как вначале именно они будут разрываться под действием флуктуаций, что приводит к появлению зародышей разрушения. [c.324]

    Политетрафторэтилен можно рассматривать как полиэтилен, в молекуле которого все атомы водорода заменены атомами фтора. Энергия связи между углеродом и фтором велика и составляет 519 кдж/моль. Этим и объясняется весьма высокая термостойкость полимера, а также стойкость к действию окислителей и других химических реагентов. В этом отношении он превосходит даже платину и золото. Негорюч, обладает высокими диэлектрическими свойствами. Находит применение в химическом машиностроении и электротехнике. [c.471]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]


    Связь Si—С достаточно устойчива и может сохраняться в полимере с силоксановой цепью. Атом углерода, входящий в состав радикала, может менять энергию связи с атомом Si в зависимости от строения радикала. Наиболее устойчива связь Si—С для радикала фенила (— Hs), радикал метил (—СНз) дает менее устойчивую связь. [c.508]

    Этим требованиям удовлетворяют полимеры, имеющие следующие химические и физические характеристики большое содержание гетероциклических и ароматических звеньев высокие энергии связей между атомами высокая стойкость связей к окислению достаточная когезионная прочность. В значительной мере эти свойства присущи отвержденным ФС резольного типа, о термостойкости которых дают представление следующие данные [2]  [c.109]

    Энергия связи между одинаковыми атомами (гомоцепные полимеры) [c.23]

    Получают К. к. эмульсионной сополимеризащ1ей мономеров (в кислой среде). Способны вулканизоваться оксидами двухвалентных металлов (ZnO, MgO или др.). В возникающей при этом гетерог. вулканизац. сетке принимают участие и частицы оксида металла, на пов-стях к-рых образуются лабильные связи солевого типа с группами СООН полимера (энергия связи 4-8 кДж/моль). Это обусловливает высокий ориентац. эффект при деформации, способствующий высокой прочности ненаполненных вулканизатов (резин). Для предотвращения больших остаточных деформаций (разнашиваемости) вулканизацию осуществляют оксидами металлов в сочетании с серой и серосодержащими соед., иапр. с тиурамами. Резины характеризуются повышенными долговечностью, сопротивлением раздиру и росту трещин, прочностью связи с кордом и металлич. пов-стями, высокими тепло- и износостойкостью а 20 50 МПа, относит, удлинение 600-900%. Однако для К. к. характерна повыш. склонность к подвулканизации, что препятствует их широкому применению. Один из путей преодоления этого недостатка-замена карбоксильных групп на сложноэфирные, омыляемые при вулканизации. [c.320]

    Термостойкость следует отличать от тепдостойкооти, т.е. -способности полимера не размягчаться и сохранять свои экоплуата-ционнне свойстве при повышенных температурах. Основным фактором, определяющим термостойкость, является энергия связя мевду атомами в главной цепи. [c.19]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    Величтша энергии связи углерод—фтор больше энергии связи углерода с водородом, причем в присутствии атомов фтора повышается прочность соседних с ними связей между углеродными атомами. Вследствие этого полимеры фторпроизводных этилена обладают наиболее высокой химической и термической стойкостью по сравнению с другими органическими полимерами, в том числе и по сравнению с полиэтиленом. Особенность связи углерод— фтор ярко выражена в свойствах политетрафторэтилена, который отличается наибольшей химической инертностью и термоустойчивостью. [c.253]

    Для синтеза но. шмерных соединений, содержащих титан, применяют соединения четырехвалентного титана. Энергия связи титан—углерод меньше энергии связи титан—кислород, поэтому полее стабильны полимеры, н которых титан соединен с органи- [c.497]

    Широко распространено мнение о том, что в морфологическом отношении аморфные полимеры не имеют упорядоченной структуры и состоят из скрученных и перепутанных молекул. При температурах, меньших температуры стеклования, молекулы полимера практически неподвижны. Колеблются и вибрируют только атомы, причем амплитуда колебаний с ростом температуры увеличивается. Вблизи температуры стеклования колебания соседних атомов принимают кооперативный характер, что при достижении Tg приводит к сегментальному движению молекулярных цепей. При этой температуре межсегментальная энергия связи (вторичные силы) становится соизмеримой с энергией теплового движения. Частота колебаний сегментов оказывается достаточно высокой для того, чтобы сообщить эластичность аморфным полимерам (как и кристаллическим, поскольку они содержат аморфные области), однако она слишком мала для того, чтобы можно было реализовать течение с типичными для технологической практики скоростями, из-за чрезмерно высоких значений вязкости. Только при температурах, на 40—50 °С превышающих температуру стеклования, вязкость типичных аморфных полимеров снижается до значений, приемлемых для переработки. [c.67]

    Самый длительный процесс релаксации относится к перестройке вулканизационной пространственной сетки, образованной химическими поперечными связями. Процесс наблюдается как в наполненных, так и ненаполненных полимерах. Энергия активации этого процесса совпадает с известными данными Тобольского [37, с. 228] для химической релаксации вулканизатов каучуков и для б-макси-мума механических потерь .  [c.63]

    Фи-бриллизация не возникает в волокнах из неорганических полимеров, например в стеклянных. Связано это, опять-таки, с межмолекулярными взаимодействиями по самым грубым оценкам, плотность энергии когезии в неорганических полимерах на полтора— два порядка выше, чем в образующих почти бездефектную кристаллическую решетку неполярных или умеренно полярных органических полимерах. В связи с этим имели и до сих пор имеют место попытки подражания структуре стеклянных волокон с использованием достаточно жесткоцепных и достаточно полярных некристаллизующихся полимеров. Попытки эти, однако, априори обречены на провал, так как в случае тех же стеклянных волокон даже не нужна кристаллическая решетка, а при отсутствии решетки в органических полимерах, неминуемо содержащих обрамляющие группы [24, т. 2, с. 363—371], плотность энергии когезии, а значит и средняя энергия взаимодействия соседних звеньев смеж ных цепей, непоправимо мала. [c.228]

    Ограниченность или неограниченность набухания определяются соотношением энергий связей в полимере с энергией соль-Рис. 29.6. Кинетические ватации И энтропийным фактором. В ли- [c.466]

    Несколько особняком стоит самостоятельный раздел физико-химической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например в процессах мышечной деятельности. Эта область, получившая название механохимии, занимается в основном высокомолекулярными соединениями, в связи с их высокоэластическими свойствами, связанными с гибкостью длинноцепочечных маркомолекул. Кроме того, механическое разрушение в полимере всегда связано с местной деструкцией, т. е. химическим разрушением — разрывом цепей главных валентностей, которое энергетически более выгодно вследствие больших размеров макромолекулы [c.211]

    Чтобы оценить предельное напряжение, которое полимер может выдержать, не разрушаясь, рассчитывают теоретическую прочность, Наиболее просто это сделать для кристаллического телг с известными параметрами кристаллической решетки и известной энергией связей в решетке. Например, чтобы определить теоретическую прочность кристалла поваренной соли, умножим энергию ионных связей в кристаллической решетке Ыа+С - па число таких связей в единице поперечного сечения образца, рассчитаем работу разрушения кристалла, а затем и напряжение, необходимое для осуществления этой работы. Для кристалла ЫаС1 получим значение напряжения около 2000 МПа. Для определения реальной прочности следует испытать экспериментально специально приготов- [c.194]

    Стойкость материалов при длительной эксплуатации (или в течение ограниченного срока) определяется в основном составом и химическим строением макромолекул, их стойкостью против деструктирующего действия тепловой энергии и кислорода воздуха. Так как первичный акт термического или термоокислительного разложения полимера — это разрыв связей, то их прочность, оцениваемая энергией связи, наиболее существенно влияет на стойкость полимерных молекул к деструкти-рующим воздействиям. Прочность макромолекул определяется прочностью наиболее слабого места, поэтому не все связи разрываются одновременно рвутся менее прочные по своей природе и ослабленные связи и на тех участках, на которых сосредоточена наибольшая кинетическая энергия. [c.80]

    Для них характерны связи 51—О, 51—С и С—Н. Наиболее прочна силоксановая связь 51—О. В силу электроотрицательности кислорода она весьма полярна (37% от ионной). Энергия связи 51—О 89 ккал1моль. Связь 81—С в некоторой степени также поляризована из-за большей электроотрицательности углерода в сравнении с кремнием и из-за индуктивного влияния 51—0-связи. Поэтому у кремнийорганических полимеров устойчивость органических радикалов к термоокислительной деструкции выше, чем у полимерных углеводородов. [c.82]

    Сжимаемость элементов подгруппы германия сравнительно невелика (рис. Х-73). Их теплоты плавления и испарения имеют соответственно следующие значения 7,6 и 80 (Ge) 1,7 и 69 (Sn), 1,2 и 43 ккал/г-атом (РЬ). Пары олова и свинца состоят почти исключительно из одноатомных молекул, а у германия (при сравнительно низких температурах — 1600 ч- 2000 °К) содержат также полимеры Ge , где и == 2-н 7. Энергия связи GeGe [c.625]

    Делокализация большого числа я-электронов по молекулярной цепи полимера с системой сопряженных связей обусловливает большой выигрыш энергии, т. е. высокую термодинамическую устойчивость таких полимеров. Это объяс[1яется тем, что образование соединений с системой сопряже1П1ых связен протекает с выделением большого количества тепла, значительно превышающего значения энергий, вычисленных на основании констант энергии связи. Например, для бензола разность энергии, рассчитанной по теплотам горения и по константам энергии связи, составляет около 146 кДж/моль (35 ккал/моль), для стирола — [c.408]

    Влияние наполнителей на свойства пластических масс определяется, в первую очередь, поверхностными явлениями, развивающимися на границе полимер — наполнитель. Для получения хороших результатов необходимо почти полное смачивание поверхности наполнителя полимером, что достигается введением так называемых пластификаторов или растворителей, удаляемых в процессе изготовления изделий (выпотевание при уменьщент растворимости и испарение). Хорошее смачивание создает большую энергию адгезии, т. е. энергию связи наполнителя с полимером. Наполнитель, разбивая объем полимера на тонкие слои, увеличивает и работу когезии (см. гл. VIII), так как в тонких слоях создается более организованное расположение макромолекул полимера. Наполнители, хорошо смачивающиеся полимером, в частности стеклянные нити и стеклоткань, позволяют создавать весьма прочные материалы с хорошими электрическими свойствами, необходимые для современной техники. [c.501]

    Чию в активированной высокоэнергетической форме дезок-сирибонуклеозидтрифосфата. В этом отношении синтез ДНК напоминает синтез всех других биополимеров поскольку полимериза-Дия мономеров в полимер энергетически не выгодна, мономеры всегда поступают в реакцию синтеза в активированной форме. В случае синтеза ДНК присоединение очередного нуклеотида к концу затравки сопровождается гидролизом богатой энергией связи и отщеп- [c.45]

    Реакции, протекающие с разрывом главной цепи макромолекулы. При нагревании полимера, вследствие флюктуаций тепловой энергии в ггекоторых местах системы энергия теплового движения становится соизмеримой с энергией химической связи, и связь разрывается. Очевидно, что очень важным фактором, определяющим термостойкость полимера, является величи[га энергии связи между атомами в (лапной цепи. [c.58]

    Одной из наибо, [Се устойчивых к термическим воздействиям является углерод-углеродная связь. Эта связь особенно устойчива в алмазе. Наличие атомов водорода в молекуле полимера сильно понижает энергию связи С—С, поэтому, например, высокомолекулярные углеводороды и некоторые их производные обладают срао-нительно невысокой термостойкостью и лри нагревагши легко де-структиру[Отся. [c.58]

    Кристалличность очень часто наблюдается в полимерах, которые имеют мало или ие имеют совсем разветвленных цепей или поперечных связей, для которых характерна регулярность и симметрия структуры вдоль основной цепи и кoтo[iыe имеют полярные группы или группы с высокой энергией связи. Указанные структурные особенности оказывают на свойства полимера в основном такое же влияllиeJ как и в случае простых орга- [c.57]

    Термостойкость кремнийорганических полимеров в основном зависит от природы органических групп, обрамляющих их кремнекислородный каркас. С увеличением длины алкильных радикалов, связанных с атомом кремния, термостойкость уменьшается, так как при этом снижается и энергия связи 51—С (5 —СН3) — 74 ккал1моль, 5 — (СНз)аСНз — 54 ккал1моль. На основании исследований предложен следующий механизм термоокислительной деструкции полиорганилсилоксанов  [c.146]

    На рис. 1.1 представлена зависимость выхода ПЭ от мольного отношения алюминийорганического соединения (АОС) к четыреххлористому титану. Увеличение выхода полимера (до определенного предела) с повышением мольного отнощения АОС ТЮЦ при постоянной концентрации титана объясняется, с одной стороны, связыванием примесей в сырье алюминийорганическим соединением, а с другой — изменением состава каталитического комплекса вплоть до оптимального значения энергии связи Т1—С. Характер зависимости выхода полимера от отношения взятых для реакции АОС и четыреххлористого титана сохраняется независимо от алкилирую-щей и восстанавливающей способности алкилалюминия. Однако абсолютные значения выхода ПЭ при одном и том же мольном отношении А0С Т1С14 и разных алкильных составляющих отличаются. При постоянной концентрации АОС выход ПЭ увеличивается с повышением концентрации Т1С14. [c.17]

    Численные значения lZiDQi, харакгерные для каждого атома и каждого типа межмолекулярного взаимодействия, определены с помощью статисти-чесгой обработки экспериментальных данных по методу наименьших квадратов . Получающиеся в результате обработки экспериментальных данных значения энергий связи, как отмечено выше, соответствуют энергиям межмолекулярного взаимодействия. Наличие в полимерах полярных групп, приводящих к сильному межмолекулярному взаимодействию, учитывается введением специальных инкрементов. [c.127]


Смотреть страницы где упоминается термин Полимеры энергии связей: [c.294]    [c.312]    [c.297]    [c.260]    [c.392]    [c.258]    [c.269]    [c.553]    [c.485]    [c.518]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.312 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи

Энергия связи в гетероатомных полимера

Энергия связи и горючесть полимеров



© 2025 chem21.info Реклама на сайте