Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос вещества направления процесса

    Диффузионный перенос вещества из одной фазы в другую происходит через поверхность раздела, образующуюся в месте соприкосновения обеих фаз. Считается, что по ту и другую стороны поверхности раздела образуются тонкие пограничные диффузионные слои, в которых наблюдается резкое изменение концентрации. Движение жидкости внутри пограничного слоя носит ламинарный характер, причем скорость движения возрастает линейно с увеличением расстояния от поверхности раздела. В массе газа или жидкости движение носит турбулентный характер. Здесь преобладает более быстрый процесс конвективной диффузии, что приводит к выравниванию концентраций в направлении, поперечном к иоверхности раздела фаз. Таким образом, в разных зонах той или другой фазы действуют различные механизмы переноса в зависимости от гидродинамических условий.  [c.262]


    Перенос вещества в процессе диффузии происходит необратимо в направлении от большей локальной концентрации вещества к меньшей до полного их выравнивания. Движущая сила процесса,. заключающаяся в разности локальных концентраций вещества в системе, называется градиентом концентраций. Градиент концентрации одновременно косвенно выражает изменение концентрации в зависимости от расстояния между двумя локальными объемами в системе. [c.19]

    Пульсационная скорость может быть направлена вдоль и поперек потока, направление ее поперек потока приводит к интенсивному перемешиванию, причем это перемешивание осуществляется не за счет молекулярного движения, а за счет перемещения больших масс газа, что приводит к более интенсивному переносу вещества при процессах горения (турбулентная диффузия). [c.60]

    Для оценки стационарных режимов зернистого слоя в целом необходимо, таким образом, хотя бы качественно исследовать характер решений уравнений (VI.144) и (VI.145). Заметим, что первые два члена этих уравнений описывают перенос вещества и тепла, соответственно в поперечном и продольном направлениях. Возможны два предельных режима теплопереноса [36]. Первый — почти адиабатический, когда отвод тепла на стенку незначителен и практически все тепло реакции уходит на нагревание реагирующего потока. В этом режиме первый член уравнения (VI.145) пренебрежимо мал повсюду, кроме ближайшей окрестности стенки реактора. Переход трубчатого реактора в почти адиабатический режим является крайне нежелательным, поскольку при этом не решается главная задача аппарата этого типа — обеспечение отвода тепла реакции на стенку — и температура в центре реактора быстро возрастает, вызывая угрозу перехода процесса в диффузионный режим. Желательным обычно является другой предельный режим работы реактора, который можно назвать почти изотермическим. В этом режиме тепло реакции отводится в основном на стенку, а изменение температуры по длине реактора мало. Соответственно второй член уравнения (VI. 145) мал по сравнению с первым и в первом приближении может быть отброшен. Из сравнительной оценки обоих членов ясно, что условие работы реактора в почти изотермическом режиме имеет вид  [c.254]

    При изменении параметров состояния температуры и давления твердые вещества индивидуального состава могут переходить из одной структурной формы в другую без изменения стехиометрического состава. Примеры таких переходов — обратимые (энантиотропные) и необратимые (монотропные) превращения модификаций ряда простых веществ и соединений (разд. 33.2.2). Предпосылкой таких процессов является подвижность элементов решетки и перенос вещества, вызванный несовершенством строения твердой фазы. Некоторые свойства твердых веществ определяются не только их структурой и характером дефектов, но и строением микрокристаллитов, в том числе их формой, размерами и составом. Особенно большое влияние строение микрокристаллитов оказывает на механические свойства твердого тела, такие, как твердость, пределы пластической деформации. Проведением специально подобранной твердофазной реакции можно добиться направленного изменения структуры. В результате повышения температуры в достаточно длительного нагревания при постоянной температуре (отжига) можно ускорить рост отдельных кристаллических зерен до больших кристаллов и рекристаллизацию, что обеспечивает улучшение некоторых свойств материала. В отдельных случаях рекристаллизация играет отрицательную роль, например приводит к понижению активности некоторых катализаторов. [c.432]


    Предположим, что в первой фазе находится п/ молей вещества, а во второй фазе — п" молей этого же вещества. Если в системе не установилось равновесное распределение вещества между фазами, то будет происходить переход вещества из одной фазы в другую. Направление процесса переноса вещества между фазами можно легко определить по разности химических потенциалов и знаку этой разности. [c.147]

    Движущей силой процесса молекулярной диффузии является градиент концентраций (1с/(1п, который в общем случае изменяется в направлении переноса вещества. Средний градиент концентраций в первом приближении равен / [c.25]

    Массообменными называются процессы, скорость которых определяется скоростью переноса вещества из одной фазы в другую в направлении достижения равновесия (скоростью массопередачи). В процессе массообмена принимают участие три компонента распределяющее вещество, составляющее первую фазу, распределяющее вещество, составляющее вторую фазу и распределяемое вещество, переходящее из первой фазы во вторую. [c.113]

    Внешнедиффузионный массоперенос. Массоотдача прн адсорбции из растворов есть процесс переноса вещества в направлении поверхности частицы, связанный с неравномерностью распределения концентрации вещества в слое жидкости, прилегающем к поверхности твердого тела. Механизм внешнего переноса массы вещества связан с молекулярным и конвективным переносом [2—5]. Мера отношения массы вещества, перемещаемой молекулярным и конвективным механизмами, характеризуется критерием Пекле [c.112]

    Вторичные транспортные системы могут быть также разделены на три группы. Перенос молекул вещества, не сопряженный с какими-либо встречными или сопутствующими перемещениями молекул других веществ, получил название унипорта. По механизму симпорта перенос молекул вещества сопряжен с переносом протонов в том же направлении и осуществляется при участии одного и того же белкового переносчика. В процессе антипорта перенос вещества сопряжен с переносом в противоположном направлении. Поступление веществ в клетку по механизму симпорта и унипорта широко распространено у прокариот и служит для поглощения ими большинства необходимых органических и неорганических соединений. [c.104]

    Все перечисленные явления — диффузия, электрофорез, седиментация— объединяются общим понятием процессы переноса вещества. Помимо этого в химических системах приходится иметь дело с другими процессами переноса. Перенос энергии теплового движения из области с более высокой в область с более низкой температурой — теплопроводность, или, в более широком смысле, теплопередача — приводит к выравниванию температуры в системе. При механическом воздействии на некоторый слой жидкости или газа, например при действии лопасти вращающейся мешалки, молекулам слоя сообщается дополнительный импульс, приводящий слой в движение. Этот импульс частично переносится к молекулам прилегающих слоев, увлекая их вслед за начавшим перемещаться слоем. Перенос импульса к молекулам жидкости или газа в направлении, перпендикулярном направлению перемещения, обусловливает наличие у них вязкости (см. 8.2). [c.323]

    Направленный перенос вещества принято количественно характеризовать величиной потока вещества /, которая показывает, сколько молей вещества пересекло за единицу времени единицу поверхности, расположенной перпендикулярно направлению перемещения. Неравномерность распределения растворенного вещества, которая и обусловливает процесс диффузии, характеризуется величиной градиента концентрации — производной йс/Ах, где х — координата в направлении перемещения. Согласно первому закону Фика для диффузии поток диффузии пропорционален градиенту концентрации  [c.324]

    Поток вещества в результате диффузии, как и при других процессах переноса вещества, может быть определен как произведение концентрации на скорость направленного перемещения вещества  [c.324]

    Диффузия реагентов, таким образом, играет важную роль в гетерогенных процессах. Диффузия — движение частиц среды. (молекул, атомов, ионов, коллоидных частиц и т. п.), приводящее к переносу вещества и выравниванию концентраций (вернее, активностей) частиц данного сорта в рассматриваемой системе. Тем самым движущей силой диффузии служит разность активностей компонентов системы в разных ее частях. В результате гетерогенной реакции, протекающей в некотором месте реакционной среды, активности исходных компонентов-реагентов здесь уменьшаются, чем и вызывается направленный поток вещества в зону реакции. Одновременно происходит противоположный процесс удаления продуктов реакции из зоны взаимодействия. Оба эти потока осуществляются диффузионным путем. [c.227]


    Движущей силой процесса переноса вещества является отклонение системы от равновесия, т. е. различие химических потенциалов. При практических расчетах за движущую силу принимают разность концентраций. В первом приближении, по аналогии с процессом теплопередачи, считают, что количество передаваемого вещества пропорционально поверхности раздела фаз и движущей силе. В процессе массоотдачи движущей силой служит разность между концентрацией передаваемого вещества в основном объеме фазы и его концентрацией у границы раздела фаз. Если эта разность положительна, вещество передается из фазы к границе раздела, а если она отрицательна,—в обратном направлении. [c.84]

    В практических ситуациях цилиндры обычно расположены в пространстве либо случайным образом, либо так, что соседние цилиндры не следуют один за другим в направлении потока. Поэтому главным фактором, влияющим на интенсивность массопереноса к поверхности цилиндра в системе является изменение поля течения, определяющего конвективный перенос вещества. Для упорядоченных систем, устроенных таким образом, что соседние цилиндры следуют один за другим в направлении потока, пришлось бы учитывать также и эффект взаимодействия диффузионного следа предыдущего цилиндра с диффузионным пограничным слоем следующего, подобно тому, как это делалось для цепочек капель в 4 гл. 2 (см. также анализ процесса массопереноса в цепочках сфер в следующем 7). [c.155]

    Процесс направленного переноса вещества является следствием отсутствия равновесного состояния системы. Это относится как к взаимодействию фаз на поверхности, так и к состоянию внутри каждой из фаз. Обычно полагают, что поток вещества, переносимого из одной фазы в другую, пропорционален первой степени отклонения от равновесия — так называемой движущей силе процесса массопередачи. Тогда все остальные факторы, влияющие на интенсивность переноса, можно рассматривать как сопротивление, оказываемое средой процессу переноса. Запись потока переносимого вещества может быть представлена в виде частного от деления движущей силы процесса на сопротивление переносу. [c.14]

    Перенос вещества в движущейся среде обусловлен двумя различными элементарными механизмами. Во-первых, наличие разности концентраций вызывает направленный поток целевого компонента (примеси) за счет молекулярной диффузии. Процесс молекулярной диффузии описывается известным градиентным законом Фика [c.15]

    Примем для определенности, что процесс ведется в непрерывном режиме и вещество переходит из фазы у в фазу х . Тогда оно с фазой у (его поток показан левой вертикальной стрелкой — см. рис. 10.8) под действием внешнего побудителя (насос, компрессор) вносится в рассматриваемый фрагмент массообменного аппарата. Далее под действием частной разности концентраций в фазе у (в ядре потока и на границе раздела) вещество транспортируется (горизонтальная левая стрелка) к фазовой границе. Затем от нее вещество переносится (горизонтальная правая стрелка) в фазу х — также под действием своей частной разности концентраций (на границе и в ядре этой фазы). Наконец, оно выводится из аппарата с потоком фазы х (правая вертикальная стрелка). Разумеется, при переносе вещества из фазы х в фазу у стрелки примут противоположное направление. Естественно, некоторый поток вещества выносится с фазой "у" из аппарата и может также вноситься с фазой "х" в аппарат. Поэтому подчеркнем, что при рассмотрении потока вещества с фазами "у" и "х" речь идет только о той его части М, которая передается из фазы в фазу. [c.768]

    Перенос вещества и тепла зависит от условий взаимодействия фаз (скоростей и направлений потоков, конфигурации поверхностей) и их транспортных свойств (коэффициентов диффузии, теплопроводности, вязкости). Условия реакции есть результат перераспределения концентраций и температур вследствие одновременного протекания химической реакции и явлений переноса, т. е. гетерогенный процесс является многостадийным. Условия реакции можно выразить через условия процесса, которые заданы или известны, которые можно измерять или наблюдать . [c.64]

    Скорость растворения (массопередачи) зависит от превалирующего механизма переноса вещества между жидкой и газообразной фазами. В неподвижной среде основным механизмом массо-переноса является очень медленный процесс молекулярной диффузии. В движущейся среде процесс массопереноса интенсифицируется за счет переноса массы в направлении движения среды (конвекция) в турбулентных потоках добавляется влияние пульсаций, вызывающих турбулентную диффузию. Поэтому в аппаратах для растворения газа в жидкости кроме повышения давления и снижения температуры жидкости применяют интенсивное перемешивание жидкости и газа путем барботажа воздуха через жидкость или с помощью так называемой струйной аэрации [66]. Воздух в жидкость во многих случаях вводится с помощью эжекторов, включенных непосредственно перед барботером или резервуаром для струйной аэрации. Но такая схема существенно снижает экономичность работы установки. [c.239]

    Известно, что рост кристаллов складывается из нескольких последовательных стадий и в самом общем виде может быть представлен растворением, переносом растворенного вещества и присоединением частиц к растущему кристаллу. Процесс растворения обычно характеризуют теми же стадиями, но протекающими в обратном по отношению к росту направлении. Поэтому некоторые кинетические характеристики, в частности перенос вещества, являются общими как для роста, так и для растворения. Суммарная скорость любого гетерогенного процесса определяется скоростями отдельных стадий реакции. Однако, если скорость на одном из этапов процесса меньше, чем скорости на других, то при реакциях, идущих в несколько последовательных стадий, фактическая скорость процесса будет определяться скоростью наиболее медленной. В том случае, когда медленной стадией процесса является подача или отвод реагентов от места реакции, это означает, что процесс идет в диффузионной области или по диффузионной кинетике. Если медленной стадией является стадия химического или физического превраш,ения, то скорость реакции определяется кинетикой присоединения частиц. Если обе стадии сравнимы между собой, то соответствующие реакции относят к гетерогенным реакциям смешанного типа. [c.338]

    При бесконечно большой скорости обмена проскок вещества в последующие слои сорбента происходил бы только после полного насыщения предыдущих. Однако ввиду конечной скорости массопередачи распределение извлекаемого вещества по высоте слоя происходит плавно, с образованием фронта адсорбции (рис. 47). На рисунке приведены кривые распределения относительной концентрации (С/Со) поглощаемого иона по длине I неподвижного слоя ионита (т1 начала процесса). Согласно опытным данным, по истечении определенного времени профиль фронта обмена становится практически неизменным. После этого он переносится по направлению потока с постоянной скоростью ш. Очевидно, что к—Х/гю. Скорость гг можно найти аналитическим путем  [c.162]

    Поскольку в зернистом слое при Ве = иЦху 10 перенос вещества и тепла против течения происходит,только на расстояниях, сравнимых с размером отдельной ячейки, нри исследовании влияния гидродинамики слоя на положение критических точек перескока между различными режимами рационально пользоваться ячеистой моделью слоя. При этом, благодаря отсутствию переноса вещества и тепла между ячейками в направлении, противоположном движению потока, для вывода локальных условий перехода между режимами процесса достаточно исследовать режимы работы отдельной ячейки при заданных значениях концентраций и температуры на ее входе [36 1. [c.249]

    При дистилляции (или простой иерегонк е) молекулы, отрывающиеся с поверхности испарения, движутся в одном и том же направлении до момента достижения поверхности конденсации. Отличительная же особенность ректификации состоит в том, что поток жидкости (как правило сконденсированных паров) направляется навстречу поднимающемуся потоку паров. Если дистилляция состоит всего лишь из процессов испарения и конденсации, то при ректификации благодаря тесному контакту двух фаз в колонне имеет место массо- и теплообмен. Рассмотрим в общих чертах процесс, протекающий на тарелке колонны (рис. 24). При установившемся режиме составы пара и жидкости на одной и той же тарелке изменяются в направлении достижения термодинамического равновесия между ними под влиянием градиентов температур и концентраций. Вследствие переноса вещества в вертикальном направлении (парами вверх, а жидкостью вниз) это равновесие нарушается, что благоприятствует дальнейшему обогащению паров легколетучими компонентами [1]. Другими словами, поток жидкости (флегма) на своем пути из зоны более низких температур (вверх колонны) в зону более высоких температур (кипятильник) поглощает из потока паров высококипящие компоненты и выделяет легколетучие компоненты. Температурному градиенту в колонне соответствует перепад концентраций в парах и в жидкости. При этом в кипятильнике пар менее насыщен легколетучим компонентом, чем в головной части колонны, а жидкость (флегма) в верху колонны содержит больше легколетучего компонента, чем на входе в кипятильник. [c.39]

    Такие представления первоначально были развиты на основании данных по адсорбции и десорбции газов (паров) эти процессы были проведены на спрессованных и неспрессованных порошках из непористых шаровидных частиц, на непористых образцах кремнезема (кварц и кварцевое стекло) и на силикагелях [72]. В дальнейшем предложенная структура ксерогелей была многократно подтверждена с помощью электронно-микроскопических исследований [73—75]. С точки зрения корпускулярной теории строения скелета ксерогелей спекание катализатора при термопа-ровой обработке можно представить как результат изменения размеров, формы, взаимного расположения и связи первичных частиц, происходящего вследствие переноса вещества этих частиц [75]. Перенос происходит в направлении уменьшения свободной энергии дисперсной системы и приводит к сокращению поверхности, а, следовательно, к увеличению стабильности системы. [c.54]

    Влияние направления диффузии на массоотдачу. Рассмотрим два предельны случая влияния направления диффузии на перенос вещества в каждой фазе. В первом случае путем диффузии переносится к границе раздела фаз лишь один компонент (однонаправленная диффузия). Такая диффузия характерна для процессов абсорбции и жидкостной экстракции. Концентрация переносимого компонента падает в направлении к границе раздела фаз, но общая концентрация смеси компонентов (плотность фазы) не может быть различной и р,зз-пых точках фазы. Поэтому уменьшение абсолютной концентрации, вызванное падением концентрации диффундирующего компонента, компенсируется за счет возникновения потока всей массы газа (жидкости) в направлении к границе раздела фаз — так называемого массового, или стефанового, потока. [c.400]

    Растворение твердого вещества в растворителе и кристаллизация твердой фазы из раствора являются одними из основных операций препаратив- ой химии, необходимых как в начальных, так и в заключительных стадиях химического синтеза. Особым случаем является разрушение и образование ионного соединения в присутствии полярного растворителя (разд. 33.3). Растворение и кристаллизация твердого вещества в соответствующем растворителе также можно рассматривать как химическую реакцию с переносом вещества. Этим методом можно добиться очистки твердого вещества, а также получать монокристаллы. Процессы образования зародыша, а также особенности его роста рассматриваются в разд. 38.3.4.2. Знание закономерностей процессов кристаллизации позволяет проводить направленную кристал--лизацию. Кинетика растворения металлов рассмотрена в гл. 14. [c.436]

    Рекристаллизация. Рекристаллизацией называется процесс, ведущий к уменьшению общей и поверхностной энергии кристаллической массы без уменьшения подвижности кристаллов друг относительно друга. Уменьшение потенциальной энерии кристаллической массы происходит за счет процессов, протекающих внутри кристаллов, — переноса вещества из областей с большей концентрацией дефектов в области с меньшей их концентрацией, или за счет переноса вещества от мелких частиц порошка к более крупным, что ведет к уменьшению общей поверхности твердого тела. Механизм такого переноса в порошках может быть различным. Если вещество нелетуче (давление его насыщенного пара в условиях опыта пренебрежимо мало), то перенос может происходить путем перемещения вещества диффузией в объеме или по поверхности зерен в направлении к областям контакта зерен. Последние в энергетическом отношении аналогичны вогнутому мениску, где силы, действующие на частицы, находящиеся на поверхности, больше сил на выпуклом мениске. [c.213]

    Предположим, что от внешнего источника на электрод наложен ток катодного направления, обеспечивающий приток электронов извне к электроду, т. е. процесс в целом будет протекать в направлении образования лродуктов реакции (7.6) и соответственно потребления компонентов Oxi, 0x2 и т, д. Последние должны будут поступать к границе электрод — раствор, диффундируя из глубины раствора, в то время как продукты реакции Redj, Reda и т. д., образовавшиеся у поверхности электрода в избыточном в сравнении с исходными количеством, потоком диффузии будут переноситься в обратном направлении в глубь раствора. Если бы диффузионный перенос совершался без каких-либо ограничений по скорости, то протекание реакции (7.6) не повлекло бы за собой заметные изменения активностей веществ возле поверхности электрода. Но процесс диффузии в действительности имеет ограниченную скорость. В результате этого при указанном направлении процесса (7.6) все активности исходных реагентов Oxi, Оха и т. д. будут понижены по сравнению с их равновесными значениями. Напротив, [Redi] и т. д. в условиях протекания реакции слева направо будут соответственно больше их ра/вновесных значений. 158 [c.158]

    Различие между величинами E и E q в рассмотренном примере вызвано o paничeниeм диффузионного переноса веществ Oxi, и т. д. к электроду и веществ Redi и т. д. в глубь раствора. Соответственно вводится понятие о перенапряжении диффузии, т. е. поляризации электрода, обусловленной задержкой диффузио1Шого процессса (рис. 93). Перенапряжение диффузии может возникать по описанному механизму и при анодной поляризации, когда процесс (7.6) протекает в направлении справа налево. Вещества, находящиеся в окисленном состоянии [c.159]

    Рассмотрим -ее подробнее. При переходе в раствор ионы металла гидратируются, и освобождающаяся энергия гидратации является движущей силой данного процесса. При переходе каждого иона металла в раствор определенное количество электронов остается в металле. Они перетекают по металлу к катодным участкам, потенциал которых более положителен. Там происходит их связывание частицей окислителя, которая при рассмотрении коррозионных процессов называется катодным деполяризатором О. Схема, приведенная на рис. 136, подчеркивает пространственное разделение мест, где протекает коррозия (анодных участков), и участков, на который происходит ассимиляция притекающих электронов. В растворе электролита наблюдается перемещение электрически заряженных частиц — ионов, движущихся к катоду и аноду под влиянием электростатического притяжения (миграция) и вследствие разности, концентраций (диффузия). Явление диффузионного переноса вещества играет особо существенную роль в развитии коррозионного процесса, когда реакция на катоде протекает при участии электронейтральных молекул кислорода. Так как в результате электрохимического восстановления кислорода на катоде происходит образование ионов гидроксила, согласно реакции Оа + + 2Н2О + 4е 40Н , раствор возле катодных участков защелачи-вается. Ионы гидроксила перемещаются по направлению к анодным участкам и, встречая на этом пути катионы металла, образуют осадок нерастворимой гидроокиси — вторичного продукта коррозионного процесса. [c.248]

    Поэтому электродный процесс, происходящий на границе раздела фаз металл—электролит, можно представить в виде системы, которая испускает, поглощает и отражает кванты энергии в произвольном направлении с определенным импульсом. Такая система может быть описана методом оценки вектора по его случайным проекциям на плоскость или оценки длины вектора по его компонентам, по случайным направлениям движения частиц [43]. Учитывая, что энергия в рассматриваемой системе распространяется под воздействием постоянной ЭДС, примем вектор тока изменяющимся под воздействием превращений электрических параметров жидких веществ.- Тогда процесс излучения переноса потока электромагнитной энергии в системе рассмотрим как процесс испускания, когда в произвольном направлении испускается частица с импульсом тока / (рис. 33). Предположим, что измеряем только одну составляющую тока / при действительном токе / , который является определяющим ленц-джоулевой теплоты грунтового элек- [c.60]

    После отложения компонентов дыма на поверхность продукта начинается их перенос по направлению к центру продукта. Скорость переноса зависит от химической природы коптильных компонентов, причем часть их задерживается на поверхности или в тонком поверхностном слое, вступая в реакции взаимодействия с составными частями продукта. Глубина проникновения коптильных компонентов зависит от продолжительности процесса копчения, состава, свойств и состояния продукта, температуры копчения и др. Линейная скорость внутреннего переноса фенольных веществ дыма при холодном копчении несколько больще в колбасах с натуральными оболочками и зависит от состава фарща. [c.1142]

    Изучение переноса импульса связано с анализом сил (внешних, внутренних), действующих на объект, рабочее тело переноса теплоты — с перемещением и подводом (отводом) тепловой энергии (иногда с изменением агрегатного состояния, с тепловьщелением) переноса вещества — с его перемещением в пределах какой-нибудь одной фазы и (или) между различными фазами. Все эти явления переноса могут быть использованы направленно — для осуществления процесса (скажем, теплоты — для нагрева объекта), а могут и сопровождать какой-либо, в том числе химический, процесс (скажем, отвод теплоты реакции или вывод одного из продуктов реакции). [c.39]

    Следует особо упомянуть о двухпараметрической диффузионной модели. В отличие от однопараметрической (она использует только один параметр — Peg, базирующийся на Е), двухпара-метрическая ДМ учитывает перенос вещества не только в продольном, но и в поперечном направлении. Поэтому здесь наряду с коэффициентом продольного перемещивания Ei фигурирует еще и коэффициент Er, характеризующий интенсивность поперечного (радиального) перемешивания. Появление двухпараметрической ДМ обусловлено тем, что в некоторых аппаратах распределение элементов потока по времени пребывания существенно зависит от интенсивности радиального переноса. И поэтому эффективность процесса в таких ХТА в значительной мере определяется поперечным переносом (теплоты, вещества и т.п.). Он может быть затруднен, и тогда диффузионные (при переносе теплоты — термические) сопротивления радиальному переносу игнорировать нельзя он может быть достаточно интенсивен, и тогда надо учитывать выравнивание интенсивных свойств потока (температур, концентраций и др.) в поперечном сечении. Эти эффекты и учитываются коэффициентом Er (в случае теплопереноса — коэффициентом эффективной радиальной теплопроводности Хд). Примерами здесь могут служить химические процессы с высокими тепловыми эффектами в трубках с неподвижным слоем катализатора (отвод теплоты через слой и стенки трубок) или химические превращения в ламинарно движущихся тонких жидкостньк пленках (заметное выравнивание концентраций реагентов по толщине пленки). [c.643]

    Различные радикалы присоединяются [уравнение (9)] к алкенам, диенам, ароматическим соединениям, алкинам и к другим соединениям с ненасыщенными связями [26]. Стадия присоединения в реакциях с алкенами обычно является частью цепного процесса [схема (21)], приводящего к образованию аддуктов 1 1 (24), теломеров, например (25), или высокомолекулярных соединений. Едва ли нужно говорить о важности процессов радикальной полимеризации, но и образование аддуктов 1 1 также является важной синтетической реакцией [27], применимой к широкому кругу аддендов, например к полигалогенметанам, карбоновым кислотам, эфирам, нитрилам, спиртам, аминам и разнообразным радикалам с радикальным центром на гетероатоме. Преимущественное образование при реакции аддуктов 1 1 либо полимеров определяет конкуренция между стадиями (б) и (в) на схеме (21), и хотя это в большой степени зависит от природы реагирующих веществ, все же изменение условий реакции позволяет в значительной мере контролировать направление процесса. Алкены, образующие стабилизованные радикалы (23), которые ведут цепь, дают преимущественно полимеры. Например, стирол (22, К = РЬ) легко присоединяет радикалы, однако образующийся при этом резонансно стабилизованный радикал на стадии переноса цепи [стадия (б)] имеет низкую реакционную способность и реагирует предпочтительно с другой молекулой стирола. Такие алкены образуют главным образом полимеры, за исключением тех случаев, когда в адденде имеется достаточно слабая связь, чтобы стадия переноса (б) могла конкурировать со стадией дальнейшего присоединения (в). Наоборот, менее стабилизованные ведущие цепь радикалы генерированные из таких алкенов, как, например, (22, К = А1к), обладают [c.579]

    Организм, клетка — химические машины, функционирующие в результате химических реакций и переноса вещества между клеткой и окружающей средой, а также внутри клетки. Перенос имеет определенное направление, перпендикулярное к клеточной и внутриклеточным мембранам. Поток вещества есть вектор, в то же время скорость химической реакции — скаляр. Как уж сказано (с. 312), прямое сопряжение скалярного и векторнога процессов невозможно в изотропной системе в силу принципа Кюри. Невозможно оно и в анизотропных системах, имеющих центр симметрии. Однако биологические системы, в которых сопрягаются химические реакции и диффузия, а именно мембраны, построены из хиральных молекул, лишенных плоскости н центра симметрии ( 2.7). Мембраны анизотропны. В таких системах в принципе возможно прямое сопряжение, векторные коэффициенты — могут отличаться от нуля. Теория прямого сопряжения химии и Д7гффузип в мембранах, непосредственно учитывающая их анизотропию и хиральность, пока не развита. Можно представить себе, например, перемещение неких участников реакции вдоль винтового канала в мембране, в котором расположены центры. Тогда течение реакции будет различным для веществ, поступающих с разных концов канала. К тому же результату приведет рассмотрение симметричного канала, в котором регулярно расположены асимметричные, т. е. хиральные, реакционные центры. Однако пока нет оснований утверждать, что эти эффекты значительны. [c.322]

    Процесс коксообразования в реакторе УЗК представляет собой сложную физико-химическую систему с расцределенными во времени и пространстве переменными,когда в каждой точке многофазной - многокомпонентной смеси происходит взаимный перенос вещества и энергии. На вход системы поступает поток среды, характеризуемый направлением ввода, составом, температурой,давлением,скоростью,плотностью, вязкостью и т.д. потока.Выходы у системы можно разделить на промежуточные и конечные. К промежуточным относятся - гидродинамика и температурное поде реактора. К конечным - качество получаемого кокса и надежность работы реактода. [c.130]

    Б. Я- Пинесу удалось дать этому механизму атомистическое объяснение, исходя из чисто диффузионной трактовки этого явления, сущность которого сводится к тому, что процесс переноса вещества при твердофазовом спекании осуществляется за счет его перераспределения путем направленной объемной и поверхностной самодиффузии. Он обратил внимание на то, что известная формула Томсона, устанавливающая зависимость между давлением пара над изогнутой поверхностью жидкости рг с определенным радиусом [c.335]

    В теории тепломассопереноса существует достаточно развитое теоретическое направление, априори рассматривающее процессы переноса внутри капли при больших числах Пекле в рамках модели диффузионного пограничного слоя (см, [12, 37]). И в этом случае наличие циркуляционного течения приводит к существенным особенностям картины массопереноса внутри капель. Поэтому задача определения массопереноса может решаться только с использованием модели нестационарного пограничного слоя. Схема течения и структура поля концентраций в этом случае представлены на рис. 5.3.3.4 [37]. Механизм переноса вещества в капле в соответствии с [37] выглядит следующим образом. В течение короткого начального периода процесса растворенное вещество с достаточно большой скоростью переносится из внутреннего пограничного слоя к поверхности капли. Однако скорость этого процесса быстро падает за счет обеднения внутреннего пограничного слоя растворенньпи компонентом вследствие существенно более низкой скорости поступления вещества нз ядра потока (зоны бс)- При этом процесс массопередачи выходит на ста- [c.283]


Смотреть страницы где упоминается термин Перенос вещества направления процесса: [c.81]    [c.48]    [c.278]    [c.272]    [c.56]    [c.114]   
Абсорбция газов (1976) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс направленность

Процессы направление



© 2025 chem21.info Реклама на сайте