Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия резонансные структуры

    Равновесные превращения соединений такого типа могут быть исследованы различными физическими методами. Первыми были применены методы ИК-спектроскопии. При исследовании стероидов [126] было отмечено, что, если в положение, соседнее с карбонильной группой, ввести аксиальный атом брома, частота валентных колебаний карбонильной группы практически не меняется напротив, введение брома в экваториальное положение приводит к повышению частоты С = О на 20 см . Этот эффект можно объяснить, если представить себе две основные резонансные структуры карбонильной группы (рис. 7-8, А и Б). Наличие соседней полярной связи С — Вг приводит к уменьшению вклада формы Б и, следовательно, к увеличению двоесвязного характера связи С = О, что в свою очередь приводит к повышению частоты валентных колебаний карбонильной группы. Таким образом, конформация чистого конформационного изомера мо/кет быть [c.541]


    Таким образом, ЭПР-спектроскопия феноксильных радикалов указывает на существование у них нескольких реакционных центров, что можно представить тремя резонансными структурами  [c.113]

    Учитывая эти обстоятельства, некоторые исследователи применяли спектроскопию ЯМР С в сочетании с данными ПМР для изучения фракций асфальтенов [14]. Однако сделанные на основании этих исследований выводы о том, что большая часть атомов углерода в молекулах асфальтенов имеет алифатическую и али-циклическую природу и что конденсированные ароматические структуры в молекулах асфальтенов состоят преимущественно из 3 и 4 бензольных колец, находятся в резком противоречии со всеми известными в настоящее время данными по структуре молекул асфальтенов. В спектрах ЯМР С исследованных фракций асфальтенов не были обнаружены связи атомов углерода в молекуле с гетероатомами. Подобное явление объясняется малой концентрацией последних. Химические сдвиги резонансных линий асфальтенов в спектрах ЯМР "С приведены в табл. 74. [c.223]

    И разумеется, наиболее детальное зондирование структуры молекулы, макромолекулы или макроскопического тела произойдет в условиях резонансного поглощения энергии, когда в системе есть релаксаторы или осцилляторы с собственной частотой V = 1/тл. Повторяем, что безотносительно к эффектам квантования на этом основана вся атомная и молекулярная спектроскопия с тем единственным (и непринципиальным) отличием, что непрерывный спектр заменяется линейчатым или полосатым. Рекомендуем читателям самим в этом убедиться. [c.52]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]

    При любом движении электрического заряда возникает магнитное-поле. Не представляет исключения и спин электрона — электрон создает магнитное поле, соответствующее магнитному моменту, который должен быть у вращающегося отрицательного заряда электричества. Вращающийся электрон можно представить себе как крошечный магнит, который может ориентироваться в магнитном поле таким образом, что составляющая момента количества движения, имеющая направление вдоль поля, равна -Ьцв или —цв, где цв —магнетон Бора = 0,927- 10- Дж-Т- (джоуль тесла- = 10 эрг - гаусс" ). Спин электрона в магнитном поле может измениться и приобрести отрицательную ориентацию вместо положительной, если электрон поглотит микроволновое излучение, имеющее соответствующую частоту. На этом основан метод электронно-спиновой резонансной спектроскопии (электронного парамагнитного резонанса, ЭПР) после 1945 г. этим методом получена огромная информация об электронных структурах. [c.111]


    Найт [1] в 1949 г. впервые обнаружил, что резонансная частота данного ядра в данном поле определяется характером химического соединения. Действительно, то обстоятельство, что магнитное поле, существующее вблизи ядра, значительно отличается от магнитного поля, приложенного к образцу, положено в основу всех исследований структуры химических соединений методом ЯМР-спектроскопии. Величина приложенного поля (Яо) изменяется веществом, через которое магнитный поток проходит до того, как достигнет ядра на него оказывают влияние также различные экранирующие эффекты, отличающиеся друг от друга отдельными деталями механизма и характером экранирования — межмолекулярным или внутримолекулярным. [c.263]

    Масс-спектрометрические методы позволяют определить отношение массы к заряду, на основании которого можно судить о составе ионов, генерируемых, например, при использовании метода электронного удара или фотоионизации. Наряду с составом ионов можно определить энергии (потенциалы появления), которые требуются для образования ионов. Масс-спектрометрические методы не дают прямой информации о структуре ионов, однако она может быть выведена на основании последующей фрагментации ионов в масс-спектрометре [28] или при использовании двойного резонанса в случае ион-циклотрон-резонансной спектроскопии [29]. [c.525]

    С позиций метода валентных связей фуран рассматривается как резонансный гибрид канонических структур (1) — (5). Направление диполя в молекуле фурана (0,72 Д) в противоположность распространенным ошибочным взглядам таково, что отрицательный заряд сосредоточен на атоме кислорода, который, таким образом, индуктивно оттягивает электроны кольца. То же наблюдается в случае тиофена, но не в случае пиррола [3]. Для фурана было выполнено много расчетов по методу МО, но их результаты расходятся в широких пределах [4]. Значения энергии резонанса фурана, определенные термохимическими методами, составляют 66—96 кДж/моль [5]. Валентные углы и длины связей для тиофена, пиррола и фурана были определены методом микроволновой спектроскопии. В качестве критерия ароматичности было использовано соотношение длин 2,3- и 3,4-связей, но обоснованность этого подхода подвергалась сомнению. [c.117]

    Исследование структуры молекул и их ассоциатов в жидком и твердом состоянии проводится, кроме рассмотренных спектроскопических методов, основанных на взаимодействии частиц с электромагнитным полем, еще многими десятками физических методов, базирующихся как на взаимодействии с электромагнитным излучением (микроволновая спектроскопия, спектроскопия комбинационного рассеяния, у-резонансная спектроскопия, рентгенография, электроно- и нейтронография, люминесцентная спектроскопия, рефрактометрия, поляриметрия), так и с другими типами полей, в частности с электрическим полем (полярография, кондуктометрия, потенциометрия и др.), гравитационным полем. [c.132]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Метод спектроскопии ЯМР используют для испытания подлинности лекарственных веществ, которая может быть подтверждена либо по полному набору спектральных параметров, характеризующих структуру данного соединения, либо по наиболее характерным сигналам спектра. Подлинность можно также установить с помощью стандартного образца, добавляя определенное его количество к анализируемому раствору. Полное совпадение спектров анализируемого вещества и его смеси со стандартным образцом указывает на их идентичность. Количественное определение лекарственного вещества может быть также выполнено с использованием спектров ЯМР. Относительная погрешность количественных определений методом ЯМР зависит от точности измерений площади резонансных сигналов н составляет 2—5 %. При определении относительного содержания вещества или его примеси измеряют площади сигналов резонанса испытуемого вещества и стандартного образца. Затем вычисляют количество испытуемого вещества. Для определения абсолютного содержания лекарственного вещества или примеси анализируемые образцы готовят количественно и добавляют к навеске точно отвешенную массу внутреннего стандарта. После этого выполняют регистрацию спектра, измеряют площади сигналов анализируемого вещества (примеси) и внутреннего стандарта, затем вычисляют абсолютное содержание. [c.197]


    Уровни сверхтонкой структуры обусловлены наличием собственных моментов (ядерных спинов) у атомных ядер (табл. 14.3). Разности энергий этих уровней очень малы, составляя от десятимиллионных до стотысячных долей электрон-вольта (от тысячных до десятых долей обратного сантиметра). Переходы между такими уровнями лежат в основе группы радиоспектроскопических (спин-резонансных) методов анализа спектроскопии электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), ядер-ного квадрупольного резонанса (ЯКР) и др. [c.335]

    Применение. Метод магнитной резонансной спектроскопии применяется в основном в физике и физической химии для изучения кристаллической структуры, фазовых превращений и движений молекул в твердых телах н для определения ядерных констант [9, 10]. Он имеет большое потенциальное значение для определения молекулярной структуры веществ [4]. [c.248]

    Применение инфракрасной спектроскопии для оценки изменения свойств воды после магнитной обработки очень перспективно. Этот метод, основанный на квантовом эффекте резонансного поглощения света веществом, находит широкое применение в исследованиях молекулярной структуры жидкой воды. Однако при использовании этого метода возникают принципиальные трудности. Не зная детально структуру воды, затруднительно использовать метод теоретического моделирования. Размытость колебательных полос жидкой воды мешает получению большинства спектральных характеристик. Сильное поглощение во всей области основных колебаний заставляет работать со слоями жидкости микронной толщины, что неизбежно снижает точность измерений. Все это обусловливает необходимость проведения исследований на высоком профессиональном уровне. Сделанное до сих пор отвечает лишь начальной стадии исследований. Тем не менее первые полученные результаты заслуживают внимания, поскольку они характеризуют изменения собственно воды в присутствии примесей..  [c.33]

    Много работ посвящено изучению ионов переходных металлов резонансными и спектроскопическими методами. Например, в работе [61] методами ЭПР и отражательной спектроскопии показано, что в Со-формах цеолитов А, X и при дегидратации меняется координация ионов Со и в координационной сфере, наряду с молекулами воды и кислородом каркаса, могут появиться гидроксильные группы или ионы кислорода. Обычно в процессе дегидратации образуется широкий набор промежуточных структур. [c.45]

    Радиоспектроскопия делится на несколько разделов один из них газовая микроволновая радиоспектроскопия, которая является как бы продолжением инфракрасной спектроскопии в области более длинных волн. Определение резонансной частоты вращательного движения молекул в радиоспектроскопии производится с точностью, недоступной инфракрасной снектроскопии. Наибольшее распространение газовая радиоспектроскопия получила в области определения структур молекул и решения некоторых технических задач. К сожалению, до настоящего времени газовая радиоспектроскопия практически не применяется в аналитической химии [3, 4, 51—55]. [c.116]

    Примером устойчивого циклобутадиена другого типа является соединение 55, содержащее две электронодонорные и две электроноакцепторные группы оно устойчиво в отсутствие воды [123]. Устойчивость таких соединений связывают обычно с вкладом резонансной структуры, показанной ниже. Резонансную стабилизацию такого типа называют пуш-пульным эффектом [124], однако, по данным фотоэлектронной спектроскопии, большее значение здесь имеет фиксация связи второго порядка [125]. Рентгеноструктурный анализ показал [126], что в соединении 55 цикл представляет собой искаженный квадрат с длинами связей 1,46 А и углами 87 и 93°. Азациклобутадиен (56) также устойчив по аналогичным причинам [127]. [c.80]

    V. Незамещенный циклопропилметил-катион был получен в растворах суперкислот при низких температурах спектроскопия С-ЯМР позволяет сделать вывод о том, что в этом растворе присутствует равновесная смесь бисекторного циклопро-пилметил-катиона, строение которого показано резонансными структурами 53, и бициклобутониевого иона 22 [153]. [c.48]

    Расчет длины связи С-1 в ацетилиодиде, произведенный на основании данных микроволновой спектроскопии также свидетельствует, что ее длина больше ковалентной одинарной связи. Это подтверждает ее значительно ионный характер. Обнаруженное при этом отсутствие цилиндрической симметрии в электронно-полевом окружении связи С-1 позволило предположить существование резонансной структуры СН3СО1 (С). Вклад структуры (С)-6 в ацетилгалогенидах по сравнению с винилгалогенидами представлен в таблице 4. [c.20]

    Ола с сотр. [9] на основании изучения спектров ЯМР Щ, С, комбинационного рассеивания света (КР) и электронной спектроскопии для химического анализа (ЭСХА) пришел к выводу, что 2-норборнильный ион в условиях долгой жизни имеет неклассическое строение, а не является быстрым равновесием двух классических ионов, нри этом главный вклад в делокализацию положительного заряда вносят резонансные структуры А и Б, но не В. Ола считает, что структура X лучше отра> ает характер делокализации, чем XI. Он также справедливо замечает, что сам термин неклассический ион еще не дает меры и тина а делокализации возможно, что химический сдвиг в спектре ЯМР может быть мерой а-делокализации. Так, если принять, что циклопентильный и норборнильный ионы имеют соответственно О и 100% а-делока-лизации, то в этой шкале 2-метилнорборнильный ион имеет 30% <з-делокализаци и. [c.146]

    В нефтяном анализе спектроскопия ЭПР до сих пор использовалась главным образом при изучении асфальтово-смолистых и металлсодержащих соединений. Данные ЭПР указывают на присутствие в нефтях стабильных радикалов в концентрациях Ю — 10 г-1, растущих симбатно общей ароматичности нефтяного концентрата [12, 247—250]. В ЭПР спектрах ВМС нефти обычно обнаруживаются два типа поглощения синглетная полоса с ё -фак-тором 2,0025, близким к -фактору неспаренного электрона <2,0032), и мультикомпонентная сверхтонкая структура (СТС) резонансного поглощения с -фактором 2,0183, соответствующая ионам У+ в составе ванадилпорфириновых комплексов.Обнаружены также сигналы с -фактором 1,9995, указывающие на присутствие парамагнитных ядер Со и Си [247, 251, 252]. Сходство СТС асфальтенов и синтетического этиопорфиринового ванадильного комплекса послужило основой для ряда способов определения концентрации ванадия в нефти методом ЭПР [251, 253 и др.]. [c.32]

    Рассеяние и поглощение резонансных гамма-квантов широко используется в весьма популярном методе мёссбауэровской спектроскопии. Дифракция резонансных гамма-квантов используется в новом резонансном методе структурного анализа — мёссбауэро-графии, сочетающем возможности рентгено- и нейтронографии и открывающем новые перспективы в исследовании атомной и магнитной Структуры твердых тел и в изучении внутрикристаллических магнитных и электрических полей. [c.16]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]

    Основными параметрами ЯМР спектроскопии, позволяющей исследовать структуру органических соединений, являются химический сдвиг б и константа спни-спинового взаимодействия . Для ядер с одинаковым магнитным моментом, напрнмер для атомов водорода, при постоянном значении напряженности поля должна быть одна и та же резонансная частота. Однако электронная оболочка, экранирующая ядро от внешнего магнитного поля (Яо), сильно его меняет, создавая вторичное магнитное поле направленное против Яо. [c.88]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Точное измереинс частот скрытых резонансных линий с помощью ИНДОР-спектроскопии определение протонных последовательностей установление структуры определение относительных знаков констант спин-спинового взаимодействия построение диаграммы энергетических уровней, косвенное определение химических сдвигов слабочувствительных ядер, например С и с помощью гетероядерной ИНДОР-спектроскопии [c.333]

    Как указывалось выше, теперь спектры ЯМР С записываются исключительно с использованием спектроскопии ФП. Ее экспериментальные аспекты были весьма детально рассмотрены в гл. IX, и основные высказанные там положения в равной мере применимы и к ЯМР- С-ФП. Запись спектров проводят с использованием сигнала ТМС как внутреннего стандарта (см. разд. 2.2) и гетероядерной системы стабилизации, где резонансный сигнал Н от растворителя С0С1з служит опорным. Применяется широкополосное подавление протонов, и химические сдвиги определяются обычным способом, так как частоты линий печатаются непосредственно компьютером. Однако существует несколько проблем, связанных с развязкой от протонов, которые требуют специальных комментариев. Во-первых, исчезновение расщеплений спектральных линий лишает нас возможности измерять константы спин-спинового взаимодействия С, Н, т. е. приводит к потере ценной информации. Во-вторых, ядерный эффект Оверхаузера приводит к искажению интенсивностей, и интегрирование таких спектров вызывает сомнение. Наконец, отнесение резонансных сигналов к определенным атомам углерода в конкретной структуре никоим образом не является очевидным. [c.390]

    В разд. Непрямое спин-спиновое взаимодействие (разд. 9.3.2) было показано, что взаимодействие между соседними ядерными диполями по механизму непрямого спин-спинового взаимодействия вызывает расщепление сигналов и приводит к появлению характеристических мультиплетов. Эти сигналы содержат информацию о структуре молекул. Например, присутствие квадруплета и триплета в спектре свидетельствует о наличии этильной группы в молекуле. В разд. 4Метод ЯМР и ЯМР-спектрометр (разд. 9.3.2) мы узнали о том, что спектры ЯМР на ядрах С записывают обычно с использованием широкополосной протонной развязки, с помощью которой устраняются спин-спиновые взаимодействия. Это достигается путем облучения мощным полем с частотой, соответствующей переходу протонов. При этом ориентация спинов протонов меняется очень быстро, время жизни каждого состояния спина уменьшается и результирующее взаимодействие становится равным нулю. Исчезает расщепление сигналов, мультиплеты становятся сипглетами. Такая процедура широкополосной протонной развязки является гетероядерной развязкой, поскольку облучают протоны, а наблюдают резонансные сигналы ядер С. Возможно проведение и гомоядерной развязки эти эксперименты очень важны и используются, когда нужно в спектроскопии ПМР идентифицировать сигналы, принадлежащие взаимодействующим друг с другом протонам. В качестве примера можно привести ацетилсалициловую кислоту, ароматическая часть спектра которой приведена на рис. 9.3-30,а. Для того чтобы продемонстрировать этот подход, облучим образец резонансными частотами дублета дублетов, с центром при 6 = 7,95, соответствующего протонам Н-6 (протон в орто-положении к карбоксильной группе). Сравнивая исходный и развязанный спектр (рис. 9.3-30,6), мы видим, что дублет триплетов упростился (<У = 7,25), так что одно орто-взаимодействие теперь отсутствует. Следовательно, этот сигнал можно отнести к Н-5. Однако мы также видим упрощение другого дублета— дублета триплетов при 6 = 7,5, поскольку л ета-взаимодействие J(H-4/H-6) [c.246]

    Сегодня 2М-спектроскопия ЯМР представлена целым рядом рутинных методик, применяемых для облегчения отнесения резонансных линий в спектрах ЯМР и определения молекулярных структур [20,21]. Например, гомоадерная корреляционная спектроскопия ( OSY) и обменная спектроскопия (EXS Y) являются двумя основными методами в структурном анализе химических высокомолекулярных соединений и биологических макромолекул в растворах [1, 21]. [c.46]

    Разработана новая универсальная методика 2М обменной спектроскопии ЯМР, позволяющая использовать температурную зависимость мультиплетной структуры спектров участвующих в обмене ядер (уширение резонансных линий мультиплетов, их коалесценция и движение по полю, усреднение величины наблюдаемой константы скалярной связи и пр.) для изучения обменных реакций, протекающих в связанных спиновых системах, а также приложение разработанной методики к исследованию кинетики и механизмов структурной нежесткости и лиган- [c.134]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    Спектроскопические исследования не ограничиваются резонансными линиями металлов и электронным возбуждением. В настоящее время широко изучено излучение электронно-возбужденных многоатомных молекул, например СиОН [41], а также ИК-излучение таких частиц и вращательно-колебательная структура в области электронного перехода. Атомные спектры поглощения использовались в фотометрии пламени для определения заселенности основного состояния в линейной области зависимости Ван-дер-Хельда. Сагден и Джеймс [38] применили наиболее удобный метод атомно-абсорбционной спектроскопии— метод двух пламен —в нелинейной области этой зависимости. В этой области интенсивность пропорциональна корню квадратному из N 1. Если измерить интенсивность двух пламен [c.227]

    Среди методов, используемых для изучения структуры молекул и внутримолекулярных взаимодействий, одним из самых молодых является мёссбауэровская спектроскопия, или ядерная у-резонансная флуоресценция. Этот метод основан на резонансном поглощении и испускании у-квантов атомными ядрами твердого тела. Он получит, вероятно, такое же широкое распространение в области неорганической химии, какое метод ЯМР получил в органической химии. [c.198]


Смотреть страницы где упоминается термин Спектроскопия резонансные структуры: [c.171]    [c.273]    [c.5]    [c.188]    [c.521]    [c.270]    [c.286]    [c.87]    [c.21]    [c.139]    [c.32]    [c.32]    [c.32]    [c.112]    [c.31]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.400 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные

Резонансные структуры

Спектроскопия резонансная



© 2025 chem21.info Реклама на сайте