Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические симметрия

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    ТАБЛИЦЫ ХАРАКТЕРОВ ДЛЯ ХИМИЧЕСКИ ВАЖНЫХ ГРУПП СИММЕТРИИ [c.408]

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]


    Нет никакого количественного правила для предугадывания точек плавления чистых углеводородов однако качественно это можно сделать точка плавления имеет тенденцию к увеличению вместе с ростом молекулярного веса и с увеличением симметрии молекулы. Точки плавления нормальных парафинов представлены в табл. 111-7. Эти значения хорошо согласуются с данными для низших кристаллических парафинов, когда вещества сравниваются на основе молекулярного веса этот факт является лучшим доказательством химического строения макрокристаллических нефтяных парафинов. Влияние симметрии намного превосходит влияние молекулярного веса. Если добавить боковые цепи к нормальным парафинам, то разветвленные парафины обычно кипят намного ниже, чем нормальные парафины с самой длинной цепью в молекуле. Встречаются, однако, исключения, когда замещение ведет к образованию компактной очень симметричной молекулы например, 2,2-диметилпропан плавится при —20° С, в то время как и-пентан плавится при —130° С, и 2,2,3,3-тетраметил бутан плавится при 104° С, а п-октан плавится при —57° С. Подобные количественные правила применимы и для циклических соединений. [c.192]

    Свойственная изолированным атомам сферическая симметрия при образовании между ними химических связей утрачивается. Поэтому N- и одноэлектронные состояния жесткой молекулы классифицируют с учетом симметрии ее ядерного полиэдра, которая может быть самой разнообразной. [c.192]

    Иногда задают такой вопрос отличается ли химическая симметрия  [c.12]

    Несмотря на очевидную симметрию этих стадий относительно стадии 4 — химической реакции, анализировать такой процесс очень трудно. Так, скорость стадии 1 зависит от концентрации вещества А в ядре потока и у внешней поверхности частицы При анализе стадии 2 величина является граничным условием, а концентрация внутри пор катализатора — зависимой переменной. Стадия 3 зависит от а и концентраций адсорбированных веществ [c.123]

    Однако сложность и разнообразие закономерностей, охватывающих свойства растворов различных веществ, делают теорию растворов труднейшей проблемой молекулярной физики и учения о химических связях. Общей количественной теории растворов пока не существует, имеются лишь с успехом разрабатываемые частные теории растворов неполярных веществ с молекулами, симметрия силового поля которых близка к шаровой, или разбавленных растворов электролитов. [c.168]

    Сложность структуры связей потоков и движущих сил определяется конкретным типом системы. Так, для изотропных систем при малых отклонениях от равновесия справедливы линейные кинетические соотношения между независимыми потоками и движущими силами одинаковой тензорной размерности (принцип Кюри), а структура прямых и перекрестных связей между ними для эффектов данной тензорной размерности определяется соотношениями взаимности или симметрии (принцип Онзагера). Для систем более сложного вида (например, системы с анизотропией или с большими отклонениями от равновесия) кинетические соотношения становятся существенно нелинейными и вместе с тем резко усложняется структура связей между диссипативными потоками и движущими силами различной физико-химической природы. Однако, как бы ни был высок уровень сложности ФХС, понятия диссипативных потоков и движущих сил остаются исходными категориями при описании физико-химических явлений, относящихся к надмолекулярным уровням иерархии ФХС. В этом смысле специфика химико-технологических процессов, как [c.6]

    Рассмотренные молекулярные параметры энергия диссоциации, межъядерные расстояния, равновесная конфигурация, число симметрии — важны для химии не только как индивидуальные характеристики молекул. По ним можно рассчитать термодинамические свойства веществ и константы равновесия химических реакций. В нашей стране ведутся обширные исследования молекулярных параметров методами спектроскопии (В. И. Кондратьев, В. М. Татевский, Л. В. Гурвич, А. А.. Мальцев и др.), м асс-спектрометрии (Л. И. Горохов, Л. И. Сидоров и др.), газовой электронографии и другими физическими методами. [c.50]

    Весьма перспективный метод исследования механизмов элемен<-тарных химических реакций был предложен Вудвордом и Гоффманом (правила Вудворда — Гоффмана) на основе закона сохранения орбитальной симметрии [108. Сходные идеи высказывали также и другие авторы. Суть метода состоит в рассмотрении возможных энергетических состояний исходных и конечных продуктов реакции на основе теоретико-групповых и квантовомеханических представлений. Такое рассмотрение позволяет отделить те особенности механизма реакции, которые имеют геометрическое или кинематическое происхождение, от чисто динамических особенностей, зависящих от природы взаимодействия между частицами, т. е. от потенциальной энергии. Определение последних особенностей требует решения уравнения Шредингера определение первых возможно на основе предварительного сравнительно простого анализа. [c.65]


    Как уже указывалось, химические свойства зеркальных изомеров совершенно одинаковы. Они отличаются друг от друга только симметрией (точнее, асимметрией) кристаллов и направлением вращения плоскости поляризации света. [c.57]

    Применение методов статистической физики к решению проблем химической термодинамики привело в 20-х годах к созданию статистической термодинамики и к возможности определять значения основных термодинамических функций веществ в состоянии идеальных газов на основе данных о строении молекул и о спектрах веществ. Правда, и в настоящее время возможности этого метода практически ограничиваются лишь простыми молекулами или молекулами, для которых такие расчеты упрощаются вследствие их симметрии. Однако большое значение имела прежде всего возможность определить значения энтропии и других величин двумя независимыми методами — методами классической термодинамики на основе калориметрических определений и методами статистической термодинамики на основе данных о строении молекул и их спектрах. В большинстве случаев этими двумя методами были получены хорошо согласующиеся значения энтропии, что. явилось убедительным доказательством надежности каждого из них. Позднее были выяснены и причины наблюдаемых в известных случаях расхождений, что привело к возможности использовать эти расхождения для определения параметров, относящихся к строению молекул (энергетический барьер внутреннего вращения и другие). В дальнейшем развитие радиоспектроскопии расширило экспериментальные основы расчетов, а использование электронно-вычислительных машин облегчило проведение их. В результате методы статистической термодинамики нашли широкое применение для определения основных термодинамических функций разных веществ в газообразном состоянии при самых различных внешних условиях и значительно способствовали быстрому увеличению фонда имеющихся данных. Однако эти методы сами по себе не дают в настоящее время возможности определять тепловые [c.18]

    Уже сама возможность обнаружить в реагирующей системе парамагнитные центры, например атомы и радикалы, являющиеся промежуточными продуктами сложных химических процессов, часто позволяет высказать предположение о механизме этих процессов. Знание параметров спектров, в первую очередь СТС, делает принципиально возможной идентификацию парамагнитных центров, хотя практически эта задача оказывается часто весьма сложной и трудоемкой. Тонкая структура (ТС) может наблюдаться в спектрах парамагнитных частиц со спином 5 1. Связь вида ТС с симметрией электрического поля, в котором находятся соответствующие частицы, является важным источником сведений о природе -а геометрии их окружения. Такого рода данные существенны, например, при изучении координационных соединений ионов металлов переменной валентности. [c.248]

    Задачи планирования маршрутов химического синтеза молекул известных химических соединений. На основе анализа структуры целевой молеку лы распознают функциональные группы, цепи, кольца, избыточность или симметрию скелета молекулы. Затем определяют реакции, позволяющие получать требуемые фрагменты структуры молекул (функциональные группы атомов), в отношении их корректности, однозначности и простоты. Задачу решают с использованием обратной стратегии, т. е. в направлении от структуры целевой молекулы к молекулам исходного сырья. [c.35]

    Поверхность твердого вещества может состоять как из атомов, так и из ионов, а его химические свойства зависят от их электронной структуры и расположения — от их электронной конфигурации, координационного числа и локальной симметрии. [c.16]

    На рнс. 94 представлен спектр ЯМР вещества СзНвО. Исследуемый спектр состоит из следующих грунн квинтет, синглет, дублет. Проектируя центр симметрии каждой группы на нижнюю шкалу делений, с погрешностью 0,1 м. д. определяем соответственно химические сдвиги центра квинтета (4 м. д.), синглета (1,6 м. д.) и дублета (1,2 м. д.). Согласно таблице химических сдвигов указанное значение химического сдвига для квинтета может соответствовать группам СН, для синглета — группам ОН и дтя дублета — группам СНз, СНг. [c.265]

    Опыт показывает, что оптическую активность обнаруживают лишь молекулы, не обладающие плоскостью симметрии и центром симметрии с другой стороны, любые химические превращения, устраняющие асимметрию молекул, обусловливают исчезновение оптической активности. Поэтому можно заключить, что причиной способности многих веществ вращать плоскость поляризации света является несимметричное строение нх молекул. [c.132]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Кристаллизацией называют выделение твердой фазы в виде кристаллов главным образом из растворов и расплавов. Кристаллы представляют собой однородные твердые тела различной геометрической формы, ограниченные плоскими гранями. Каждому химическому соединению обычно соответствует одна или несколько кристаллических форм, отличающихся положением и числом осей симметрии. Явление образования нескольких кристаллических форм у данного химического соединения носит название полиморфизма. Кристаллы, включающие молекулы воды, называют кристаллогидратами, причем в зависимости от условий проведения процесса кристаллизации одно и то же вещество может кристаллизоваться с разным числом молекул воды. [c.632]

    Молярный объем циклоолефшюв и ароматических углеводородов. Переход от циклоалкана к циклоалкену, затем к циклоалкадисну и к ароматическому углеводороду представляет значительный интерес. Простой моноолефин типа циклогексена обладает умерегной реакционной способностью. Бензол относительно химически неактивен из-за симметрии молекулы и резонанса. [c.244]

    При общей обработке данных нельзя воспользоваться теми упрощениями, которые возможны благодаря симметрии молекулы. Химическая интуиция говорит о том, что большинство силовых постоянных фактически должны равняться нулю, так как в молекуле существет ны только те межатомные силы, которые сохраняют постоянными расстояния между двумя атомами, соединенными химической связью, и углы меноду связями одного атома. Поэтому почти во всех случаях используется простое выражение, называемое потенциальной функцией валентных сил, для которого внутренними координатами являются изменение длины связи и угла между связями. [c.298]

    Иными словами, представления о химической связи между атомами, о геометрии молекулы, ее симметрии и топологии и многие другие имеют смысл только в рамках определенных приблил еиий, вообще говоря, не вытекающих из основных (или, как часто говорят, первых) принципов квантовой механики В свою очередь, выбор приближения определяется не только характером постановки решаемой задачи, особенностями рассматриваемой системы, а также соображениями физического и математического порядка, но учитывает (чаще всего, неявно) весь рациональный опыт исторического развития данной предметной области, причем последний фактор не менее важен, чем все остальные. [c.106]

    Вернемся, однако, к приближению Борна — Оппенгеймера. Для химика его значение чрезвычайно велико, так как оно привносит в теорию строения молекул широкий круг фундаментальных понятий. Прежде всего сюда относятся практически все стереохимиче -ские понятия и представления (длина химической связи, угол между связями, конформация, конфигурация, симметрия ядерного полиэдра и т. д.), а также понятия многомерной поверхности потенциальной энергии и потенциальной кривой и мкогне, многие другие, которые вне рамок адиабатического приближения теряют смысл. [c.113]

    О перестановочных группах см. гл. VII нашей книги Молекулы без химических связей . В более полном виде теория та ких групп изложена в книге И. Г. Каплан, Симметрия многоэ.чек тронных систем, М. Наука, 1969. [c.118]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]

    Можно также показать форму электронного о блака, изобразив граничную поверхность, внутри которой находится большая часть облака ( %). Если требуется показать на рисунке точное значение волновой функции, то пользуются контурными диаграммами, где линии соединяют точки, для которых гр (или 1JJ ) имеет определенное значение. На рис. 1.8 показаны различные изображения 2рг-орбитали атома водорода. Несмотря на то, что представленные здесь фигуры имеют различную форму, они обладают одинаковой симметрией, характерной для рг-орбитали. Форма орбиталей важна для понимания особенностей химической связи, и в дальнейшем мы неоднократно будем пользоваться подобными изображениями орбиталей. На схемах часто рисуют орбитали стилизованно, несколько искажая их форму и пропорции. [c.24]

    Метод предназначен для расчета констант равновесия химических реакций на основе инкрементов с учетом некоторых корректирующих факторов и изменения чисел симметрии компонентов реакции. Так как структурные группы большей частью содержатся и в молекулах исходных веществ, и в молекулах конечных продуктов, относящиеся к ним инкременты и корректирующие факторы ирт расчете сократятся и поэтому могут не учитываться. В результате, например, для всех реакций окисления первичного спирта в альдегид р-СН ОН —> Н-СНОЧ-Н, [c.263]

    Оп еделите сумму состояний СНзВг при 298 К и 1,0133 10 Па, если межъядерные расстояния С— Н 1,09 С — Вг 1,9ГА углы между направлениями химических связей - НСН 111°, ВгСН 107°57. Число симметрии равно трем. Частоты колебаний и вырождения (указаны 13 скобках) 618 (1), 953 (2), 1290 (1), 1453 (2), 2965 (1) и 3082 (2). Вырождение нулевого электронного уровня равно единице. [c.111]

    На расстоянии оо интеграл О и (оо) = а = Е(Н). На других расстояниях р< О и Еа > а = Е(Н), т. е. при сближении ат омов в состоянии фл энергия системы непрерывно возрастает по сравнению с энергией разделенных атомов. Это значит, что на любом расстоянии между атомами преобладают силы отталкивания, образование устойчивой молекулы невозможно. На рис. 22, б представлены атомные волновые функции Хг и Хг с разными знаками и образованная путем ЛКАО волновая функция фл. В центре межъядерной оси и в плоскости, проходящей через нее перпендикулярно оси, Гд, = гв,, откуда XI = Ха и фл = 0. Здесь функция меняет знак (узловая точка, узловая плоскость). Электронная плотность 1ф в узловой плоскости равна нулю. Это означает, что на МО типа фл электронная плотность в межъядерной пространстве понижена, в результате чего отталкивание ядер преобладает над притяжением к ним электрона и химическая связь не образуется. Поэтому молекулярная орбиталь называется антисвязывающей или разрыхляющей МО. Она также обладает осевой симметрией и относится к а-типу. [c.71]

    Примером гетеронуклеарных двухатомных молекул с ядрами, сильно отличающимися по величине эффективного заряда, могут служить молекулы гидридов. Рассмотрим молекулу НР. Электронные конфигурации атомов Н[15], Р[15 25 2р ]. Энергии Ь-АО (Н) и 2р-кО (Р) близки, и связывающая а-орбиталь может быть представлена как линейная комбинация 15-орбитали атома водорода и 2рг-орбитали атома фтора, имеющих одинаковые свойства симметрии относительно оси молекулы. Упрощая, можно считать, что все электроны фтора, кроме 2рг, сохраняют свой атомный характер 15- и 25-орбитали не комбинируют 6 15-орбиталью атома Н вследствие большого отличия от нее по энергии. АО 2р и 2р не комбинируют из-за различия по симметрии относительно оси молекулы. Все эти орбитали становятся несвязывающими МО. Основной вклад в химическую связь в молеку- [c.83]

    Строение молекулы (ее симметрия) проявляет себя отчетливо в колебательном спектре, отражаясь в его характерных особенностях — числе полос, значениях частот, поляризации линий комбинационного рассеяния, интенсивности спектральных линий и их контуре и т. п. Вся совокупность данных, а не одна из особенностей позволяет установить строение многих малых молекул. В табл. 16 отражены формы колебаний и активность в ИК- и КР-спектрах газов ряда конфигураций малых молекул. Обычно для исследуемой молекулы возможно предположить исходя из соображений симметрии или химической интуиции несколько равновесных конфигураций, для каждой из которых характерно определенное число полос, соотношение между их интенсивностями и т. д. Сопоставляя имеющиеся спектральные данные с предполагаемой моделью, определяют наиболее вероятную конфигурацию (структурный анализ). Например, для молекул ВС1з можно предположить две структуры — плоскую и пирамидальную [c.175]

    Таким образом, знание энергетических уровней и их симметрии для H XojiHbix и конечных частиц реакции позволяет не только сравнительно просто анализировать энергетику и механизм термических и фотохимических превращений, но и подбирать такие реагенты и катализаторы, химическая реакция между которыми не имеет энергетического барьера. [c.68]

    Структура твердого тела в зависимости от порядка расположения структурных единиц может представлять собой правильную пространственную структуру в кристаллических телах. Прн бесиорядочном расположении ССЕ образуется изотропная структура, характерная для гелей, студне] или стеклообразных тел. Анизотропное или изотропное состояние веществ имеют важное значение. В анизотропных веществах проявляется зависимость физико-химических свойств (механических, оптических, магнитных и т. д.) от выбранного направления. Например, графит легко расщепляется на слои вдоль определенной плоскости (параллельно этой плоскости силы сцепления между кристалла МП графита наименьшие). Поэтому на практике определяют свойства анизотропных тел вдоль главной оси симметрии (И) п перпендикулярно ей (I). Изотропное (аморфное) состояние характеризуется отсутствием строгой периодичности, присущей кристаллам изотропное вещество не имеет точки плавления. При иовышенип температуры аморфное вещество размягчается II переходит в л<идкое состояние постепеино. [c.129]

    В процессе физико-химических превращений получают более широкий ассортимент твердых нефтепродуктов, чем в процессах, основанных на физических переходах. В ходе термодеструктив-ных процессов формируются нецелевые (кокс на стенках труб, аппаратов, на поверхности катализаторов) и целевые (нефтяно углерод — коксы, иекп, технически углерод, а также битумы, сера) дисперсные структуры ра лпчноп степени симметрии. [c.169]

    Изотропная СТС в срганических свободных радикалах. Рассмотрим радикал СНз. Химические связи в этом радикале образуются за i T 5р2-гибридпых орбиталей атома С и s-орбиталей атома Н, а свободный электрон находится на пегпбрпдиой 2рг-орби-тали. Все три протона лежат в одной плоскости, проходящей через атом С и перпендикулярной оси симметрии 2рг-орбитали. [c.245]


Смотреть страницы где упоминается термин Химические симметрия: [c.488]    [c.151]    [c.169]    [c.55]    [c.56]    [c.4]    [c.585]    [c.587]    [c.263]    [c.190]    [c.132]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.31 , c.32 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Активационный барьер. Сохранение орбитальной симметрии при химических реакциях

Высокая химическая активность свободных радикалов и атоПравило сохранения орбитальной симметрии

Кристалличность симметрии химических звеньев цеп

Правила орбитальной симметрии в механизмах химических реакций

Предисловие редактора перевода Симметрия Полиэдры и сетки Шаровые упаковки Тетраэдрические и октаэдрические структуры Некоторые простые структуры АХП Химические связи в молекулах и кристаллах ТОМ

Принцип отбора по симметрии для химических реакций

Сохранение орбитальной симметрии в химических реакциях

Физические и химические свойства кристаллов и элементы симметрии последних. Фигуры травления

Химические запрещенные по симметрии

Химические правила симметрии для

Химические разрешенные по симметрии



© 2024 chem21.info Реклама на сайте