Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурные свойства воды как растворителя

    А. Структурные свойства воды как растворителя [c.106]

    Вода растворяет большинство комплексных соединений, и понятно, что в большинстве кинетических исследований комплексов в качестве растворителя использовали воду. Однако интерпретация полученных при этом кинетических данных усложнена из-за особых свойств воды как растворителя. Эти свойства по своей природе могут быть или структурными, или кинетическими. [c.106]


    В заключение отметим, что проведенное в настоящей работе изучение кинетических и структурных свойств водного растворителя, окружающего дипептид аланина, дало непротиворечивую качественную картину сольватации. Существенное влияние растворенного вещества на динамические свойства молекул воды ограничивается первым сольватным слоем. Влияние индивидуальных функциональных групп локализовано. Структура растворителя, индуцированная вблизи неполярных групп, и сопутствующие конфигурационные ограничения для молекул воды являются результатом образования такого же числа водородных связей, как в объеме воды, с ограничением в виде уменьшенного числа соседей, способных к образованию водородных связей. Неполярные группы неспособны к образованию водородных связей —именно это свойство отличает их от полярных групп. Пониженная подвижность молекул растворителя около неполярных групп связана прежде всего с конфигурационными (энтропийными), а не с энергетическими барьерами. Несмотря на то что система в некоторых своих геометрических аспектах подобна клатратам, ошибочно было бы применять этот термин по отношению к числу и прочности межмолекулярных связей. Динамика, подобная динамике молекул в объеме, наблюдаемая для молекул растворителя, находящихся вблизи полярных групп растворенного вещества, совместима с представлениями о том, что полярные группы взаимодействуют с соседними молекулами воды примерно так же, как молекулы воды взаимодействуют между собой. Дополнительные детали, относящиеся к настоящей работе, обсуждены в [7]. [c.49]

    Для химика-органика большое значение имеет знакомство с методами, позволяющими индивидуализировать и определять органические соединения. Еще более важным является для него глубокое понимание структурной формулы соединения он должен уметь по структурной формуле составить себе представление о физических и химических свойствах изображенного формулой соединения. Так, например, наличие в молекуле карбоксильной или аминогруппы свидетельствует о том, что вещество обладает кислым или, соответственно, основным характером большой вес углеводородной части молекулы указывает на малую растворимость вещества в воде и значительную растворимость его в органических растворителях. Обратное заключение можно сделать при большом числе гидроксильных или сульфо-групп. Из рассмотрения структурной формулы часто становятся ясными такие свойства соединения, как легкая окисляемость, способность подвергаться гидролитическому расщеплению наличие характерных хромофорных групп (азогруппы, хиноидные системы и др.) показывает, что соединение обладает окраской  [c.631]


    Следует однако заметить, что теоретическая интерпретация величин У2 и их предельных значений - непростая задача. Поскольку объемные термодинамические свойства жидкостей непосредственно связаны с упаковкой молекул и изменениями этой упаковки при изменении параметров состояния (температуры, изотопного состава и т.д.), то любые изменения структуры растворителя должны изменять парциальные молярные свойства растворенного вещества в разбавленном растворе. В случае предельного разбавления определяющими являются объемные вклады от размещения молекул мочевины в структурной матрице воды и связанных с этим изменений характера взаимодействия во вновь образованном гидратном комплексе, или молекулярной упаковки растворителя в "возмущенной сфере" [129]. [c.162]

    На перенос разделяемых веществ через мембрану большое влияние оказывают структурные свойства растворителей (например, воды) и взаимодействие их с мембраной. Вода содержит связанные водородной связью молекулярные группы, состоящие [c.323]

    На перенос разделяемых веществ через мембрану большое влияние оказывают структурные свойства растворителя (воды) и взаимодействия его с мембраной. [c.383]

    Если спирт присутствует в смеси растворителей в низкой концентрации, то спиртовые молекулы располагаются в структурных полостях воды, деформируя, но не разрушая жидкой структуры воды. Если же концентрация спирта увеличивается до таких пределов, что уже не хватает места для всех его молекул в структурных полостях, то появляется уже новый тип структуры раствора, что влияет на свойства растворителя иным путем (не только деформацией структурных полостей). Таким образом свойства, изменяющиеся в соответствии с изменением концентраций, можно объяснить и с помощью данной теории. [c.212]

    Приведенный выше материал рассматривался в связи с общими факторами, имеющими значение при ионообменных реакциях (физико-химические и структурные свойства адсорбента и адсорбтива). Как известно из многочисленных примеров, немалую роль в адсорбционных процессах играет растворитель, свойства которого влияют на скорость процесса и установление окончательного равновесия. До сих пор недоставало экспериментальных результатов, чтобы выяснить внутреннюю связь между физическими и химическими константами растворителя и устанавливающимся равновесным распределением. В последних работах пытались найти зависимость между адсорбированным количеством и диэлектрической постоянной растворителя , его дипольным моментом, теплотой смачивания, выделяющейся при контакте растворителя с адсорбентом, изменением поверхностного натяжения, вызванным адсорбированным веществом на поверхности раздела вода — растворитель. До недавнего времени два основных типа адсорбции — молекулярную и ионообменную — четко не разделяли. Разбросанный экспериментальный материал, приведенный в литературе (краткий обзор дан в статье Фукса Успехи хроматографических методов в органической химии ), к сожалению, недостаточно характеризует системы ни относительно адсорбента, ни относительно адсорбтива, так что часто нельзя принять правильного решения даже относительно имеющего место типа адсорбции. Вообще на основе этого ограниченного материала об обменных реакциях в неводных растворителях можно сказать, что электролиты, растворенные в жидкостях, подобных воде (спирт, ацетон), при контакте с ионитами ведут себя, как правило, так же, как в водных растворах. Но иногда последовательность расположения ионов изменяется в зависимости от прочности связи с обменником и тем са.мым вытесняющей способности иона. Еще меньше систематических исследований по обменной адсорбции в жидкостях, несходных с водой (бензол и др.). Однако интересно отметить, что незначительная добавка воды к бензолу, вызывая незначительную диссоциацию, способствует обменной адсорбции. Очевидно, также растворимость воды в соответствующем растворителе имеет значение для из- [c.352]

    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]


    Д. И. Менделеев впервые указал на необходимость учета всех и всяких взаимодействий между всеми частицами растворов. В соответствии с этими взглядами следует исходить из равноправия компонентов, образующих раствор, и взаимовлияния всех составляющих его частиц. Это особенно важно для растворов электролитов, представляющих собой типичные гетеродинамные, по классификации В. К. Семенченко, системы (системы, в которых действуют различные по характеру силы между частицами), а также для водно-органических систем. На необходимость исходить из равноправия растворенного вещества и растворителя при изучении рас творов электролитов указывает В. К. Семенченко. При этом он подчеркивает необходимость рассмотрения как растворителя, так и растворенного вещества с молекулярной точки зрения. Главным образом советскими исследователями обнаружено весьма большое влияние растворителей на свойства растворов электролитов (например, структурных особенностей воды на свойства и структуру водных растворов электролитов особенностей неводных растворителей на свойства неводных растворов). Важность анализа влияния растворителей на состояние электролитов в растворе первостепенна для всей проблемы растворов. Именно в исследованиях такого рода было обнаружено определяющее значение короткодействующих сил между частицами для свойств жидких растворов. [c.178]

    Подробное обсуждение значений констант ионизации на основании изменений энергии и энтропии в этом процессе более уместно проводить в книге, специально посвященной вопросам термодинамики, а не структурной органической химии. Однако и в настоящей книге нелишне остановиться на некоторых факторах, относящихся к этому вопросу. Так, установлено, что очень важную роль играет природа растворителя, чего и следовало ожидать, поскольку растворитель может быть основанием или акцептором протонов. Однако роль воды в кислотно-основных равновесиях не определяется исключительно ее основными свойствами. Вода является очень хорошим ионизирующим растворителем по двум другим причинам она обладает высокой диэлектрической проницаемостью (80) и довольно высокой поляризуемостью. Влияние первого из этих свойств приводит к тому, что при возникновении взаимодействия кислота — основание электростатическое протяжение между катионами и анионами, которое определяет возможность их обратной рекомбинации в кислоту и основание, снижается настолько, что ионам обеспечивается возможность независимого существования в течение более длительного времени. Высокая поляризуемость молекул воды приводит к тому, что участвующие в сольватации молекулы воды стабилизируют ионы, обеспечивая дисперсию их избыточного заряда. Поэтому, если воду заменить другим растворителем с меньшей сольватирующей способностью или менее основным, то величины Ка для данной кислоты в этих двух разных растворителях будут существенно отличаться. Так, показано, что степень ионизации уксусной кислоты в смеси метанол — вода уменьшается по мере роста содержания мета- [c.411]

    В биологических системах связанной называют воду, которая прочно связана с поверхностью макромолекул биополимеров. Каждый грамм ДНК связывает 0,45 г воды, которая образует гидратный слой толщиной 0,3 нм. 1 г яичного альбумина связывает 0,25 г воды, образуя гидратный слой толщиной 0,25 нм. В микроорганизмах обнаружено примерно 15—18% связанной воды. В связи с присутствием макромолекул связанная вода значительно отличается по свойствам от обычной воды. Ее нельзя использовать в качестве растворителя веществ, она не замерзает даже при —70°С. Для связанной воды характерна пониженная электропроводность. Термодинамически эта вода мало отличается от льда. Связанную воду целесообразно рассматривать как структурный элемент, а не как среду. [c.23]

    Структурный голубей цвет воспринимается как голубой лишь в отраженном, но не в проходяш,ем свете. Окраска может зависеть также от угла падения света и от угла наблюдения. При погружении животного в воду или в другой растворитель окраска структурного происхождения, вероятно, исчезнет, а после испарения растворителя восстановится. Если окраска обусловлена пигментом, то последний можно экстрагировать из тканей водой или органическими растворителями. Информацию о хромофоре может дать резонансная рамановская спектроскопия. Изучение растворимости, физико-химических и спектроскопических свойств выделенного пигмента (см. соответствующие главы данной книги) позволит идентифицировать класс, к которому принадлежит это соединение. [c.404]

    Структура воды значительно искажается при попадании в нее различных примесей, как способных взаимодействовать с диполями растворителя, так и инертных. Здесь возможно либо упрочнение структурных образований (энтропия системы уменьшается), либо их ослабление (энтропия системы возрастает). Одновременно изменяются и кинетические свойства системы — вязкость, диффузия и др. [c.14]

    Взаимодействие белков с неполярными молекулами обусловлено гидрофобными взаимодействиями, возникновение которых определяется особыми структурными свойствами воды как растворителя. Структура и свойства воды являются в настоящее время предметом многочисленных физико-химических исследований. Современные структурные лтодели воды в основном базируются на классических представлениях Франка и Эванса [25 и Франка и Вэна [26]. Результаты выполненных в последние годы исследований обобщены в ряде обзоров [27—32]. Состояние воды в биологических системах специально рассмотрено в ряде работ [15, 33-36]. [c.8]

    При температуре более 70 °С резко снижаются вязкость вод-лых растворов гипана и адсорбируемость вследствие улучшения лри высоких температурах растворяющей способности воды (растворителя) и начала разрушения водородных связей. Не- смотря на то, что при этих температурах скорость структурирования растет, образующийся при этом гель имеет низкие структурно-механические свойства. Это обстоятельство ограничивает лрименимость реагента в высокотемпературных скважинах. [c.52]

    T min(H20) = 337 К . (ОгО) = 338К [15]) находятся в температурных областях, в которых вода как растворитель обладает достаточно отличающимися структурными свойствами. По указанной причине сольватация молекул Н(0)-связанного неэлектролита в H20(D20), как видно из рис. 3,10, индуцирует не только различающиеся по величине, но и (при Т > 308 К) даже противоположные по знаку изотопные эффекты в К 2 и s.2 Обращает на себя внимание и то, что в области температур выше 318 К величина К 2 > по существу остается неизменной. Это наряду с очевидной корреляцией максимума на зависимости А,Д 2 (рис. 3.10) с минимумами изотермической сжимаемости изотопомеров воды onst [116]), позволяет предположить, что при Т 320 К структура гидратного комплекса дейтеромочевина-тяжелая вода образована D-связями не менее (а может, даже и более) прочными, чем в объемной сетке D2O. Аналогичное предположение сделано нами выше на основе обнаруженной перемены знака (с положительного на отрицательный) у величины 1/22(020) (рис. 3.8). [c.155]

    Ассоциация воды в хлоралкапах проходит одновременно с образованием соединений выше димера, причем предполагается наличие циклических ассоциатов [56, 58]. С образованием циклов увеличивается растворимость. В углеводородах с разветвленными цепями растворимость воды выше, возможно, за счет более высокого давления пара растворителя, а не структурных свойств молекулы [58]. Было найдено, что растворимость 65 органических растворителей в воде [58] пропорциональна мольному объему углеводорода. Растворимость воды в бензоле в широком интервале температур выше, чем бензола в воде [59]. [c.30]

    Многие результаты теоретических и экспериментальных работ по гидратации ионов (некоторые из этих работ приведены в табл. 2 и 3) можно интерпретировать на основе современных представлений о структурных и динамических свойствах воды. Особый интерес представляет способность некоторых ионов разрушать структуру воды, образовывая с ней комплексы, включаться в существующую структуру воды, увеличивать или уменьшать степень упорядочения растворителя на значительном расстоянии. Ионы классифицируются как "структуроразрушители" и "структурообразователи" в зависимости от того, разрушают ли они структуру воды с образованием менее специфической структуры со слабой координацией молекул, стабилизируют существующую структуру или же приводят к новой гидратной структуре с сильной координацией. Однако такое разделение не всегда оправдывается в различных измерениях. В настоящее время почти нет сомнений в том, что в растворе могут существовать гидратированные группы со специфической локальной координацией ионов и молекул воды. Некоторые ионы могут разрушать структуру воды путем комбинации кулоновского взаимодействия, поляризационных и стерических факторов. Так, имеются свидетельства того (табл. 3), что ионы с сильными полями образуют гидратные комплексы с ближним порядком, аналогичным порядку в соответствующих кристаллогидратах, но с различной степенью ковалентного связывания иона ме-тадла с кислородом воды. Сильные поля таких ионов могут вызывать упорядочение растворителя за первым гидратным слоем. Имеются также данные, указывающие на то, что при низких концентрациях и температурах "водоподобные" области могут сосуществовать с гидратированными ионами. Такие ионы также увеличивают среднюю энергию активации диффузии молекул И jO и действуют как "положительные гидрататоры", по терминологии Самойлова [3, 4]. С другой стороны, большие ионы с низким зарядом могут разрывать структуру воды, вызывая уменьшение средней энергии активации диффузии, т.е. действуя как "отрицательные гидрататоры". Очевидно также, что в некоторых случаях (табл. 3) ионы могут включаться (путем внедрения или замещения) в существующую структуру воды и при этом не разрушать ее. [c.194]

    Есть некое принципиальное отличие в значимости информации от ма-щинного эксперимента, полученной в отношении структурных свойств сольватной оболочки и в отношении свойств функции ПСС jj2W- Сопоставление экспериментальных результатов, методы аналогии, общие соображения плюс интуиция уже давно способствовали выдвижению гипотезы о квазиклатратной структуре воды вокруг молекул гидрофобных L и увеличении структурированности растворителя в гидратной оболочке по сравнению с объемной водой. Расчеты на ЭВМ оправдали эту гипотезу и обогатили ее количественными характеристиками. [c.79]

    Как уже отмечалось, термодинамические сюйства воды и термодинамические характеристики гидратации ионов содержат информацию о диффузионно-усредненной структуре растворителя (воды) и ее изменениях под влиянием растворенных частиц. Было показано также, что структурное состояние воды оказывает существенное влияние на протекание процессов растворения веществ и гидратации ионов. В связи с этим представляет значительный интерес разработка методов нахождения вкладов в термодинамические функции гидратации, которые бы характеризовали структурные изменения воды в указанных ионных процессах. Концепция структурных вкладов получила довольно широкое распространение при интерпретации термодинамических свойств водных растворов. Уровень современного развития теории растворов не позволяет пока производить теоретическую оценку структурных вкладов. Поэтому они определяются как разность между экспериментально найденными величинами и суммой неструктурных вкладов, оцениваемых на основе соответствующих модельньгх представлений. [c.148]

    Растворенные вещества в большей или меньшей степена изменяют структуру жидкой воды. Эти изменения зависят от характера взаимодействия между молекулами растворенного вещества и растворителя, а также от того, каким способом молекулы растворенного вещества могут заполнять структурные пустоты или замещать молекулы в структуре жидкой воды. Этот опособ в овою очередь зависит не только от сил, возникающих при взаимодействии между молекулами воды и растворенного вещества, но и от размеров этих молекул. Если растворенные молекулы существенно не нарушают расположения молекул растворителя и характер связей между ними, то влияние растворенного вещества можно учесть довольно просто. Напротив, если структура жидкости изменяется достаточно сильно, то это приводит к изменению ее свойств, которое можно наблюдать непосредственно. Имеется существенное различие в характере влияния на свойства воды нейтральных молекул и положительно или отрицательно заряженных ионов. [c.72]

    Структурные и динамические свойства воды, находящейся в непосредсшенной близости к дипептиду, в так называемой сольватной оболочке , могут быть охарактеризованы путем разделения молекул воды, участвующих в моделировании, на группы в соответствии с тем, находятся они около полярных групп растворенного вещества (полярные), около неполярных групп (неполярные) или вне первого сольватного слоя (объемные). Это разделение схематически представлено на рис. 2.5. Центральная пустая область, непосредственно окружающая молекулу дипептида, представляет собой область, из которой центры (т. е. атомы кислорода) молекул растворителя исключены растворенным веществом. Внешний квадрат соответствует стенкам ячейки, которая включает все 195 молекул воды. Индивидуальные молекулы воды классифицируются на группы в соответствии со средним расстоянием между их атомом кислорода и каждым из амидных атомов водорода или карбонильным атомом кислорода двух пептидных звеньев и тремя метильными атомами водорода среднее значение берется по всему времени моделирования. Каждая из 195 молекул воды относится к одному из трех типов молекул растворителя полярному — если среднее расстояние по отношению к любому из четырех полярных атомов меньше 4 А, неполярному — если среднее расстояние до полярного атома больше 4А, но меньше 5А до ме- [c.40]

    Возникает вопрос, какова же физическая природа активности (или инактивности) растворенного вещества, в частности органических жидкостей в отношении воды как растворителя. Несомненно, что природа этого свойства связана со структурными особенностями—воды, с одной стороны, и органических жидкостей, с другой. Вода, как известно, является полярной жидкостью, а ее молекулы—диполями (вследствие того, что атомы водорода и кислорода распсшожены не на одной прямой). Органические жидкости подразделяются на две группы неполярные (без постоянного дипольного момента) и полярные (с постоянным дипольным моментом). [c.70]

    Роль гидратных оболочек белков. Д/к. Бернал (1956) отмечает, что вода, занимающая пространство между белковыми молекулами, монмет передавать силы, действующие между частицами, даже если она находится в жидком состоянии. Отсюда делается вывод о роли воды как стабилизирующего молекулу фактора, скорее, механического свойства. Молекула НаО может насыщать избыточные положительные и отрицательные заряды па остатках аминокислот, что приводит к повышению молекулярной стабильности, устойчивости конфигураций аминокислот и предупреждает незапланированное скручивание цепей вследствие образования дополнительных внутримолекулярных водородных связей. Наконец, вода как растворитель обеспечивает транспорт ионов, а структурная организация воды в гидратированных белках по адсорбционной теории — ионную селективность клеток. [c.103]

    Вода занимает особое положение в ряду растворителей, обусловленное созданием за счет Н-связей структуры высокой степени упорядоченности. Согласно О. Я- Самойлову (1965), четко выраженный ближний порядок в воде обусловлен тем, что каждая молекула воды может участвовать в четырех Н-связях, а расположение атомов в молекуле Н2О энергетически и геометрически благоприятно для создания тетраэдрического каркаса. При этом тепловое движение молекул может происходить внутри пустот этого каркаса, без нарушения его структуры и, следовательно, без заметного снижения степени упорядоченности. Такое уникальное свойство воды как повышение плотности с температурой в интервале О—4°С также сЬязано со структурной особенностью — переходом открытой льдоподобной структуры в более упакованную структуру. Как пишут К. П. Мищенко и Г. М. Полторацкий (1968), в делении на водные и неводные растворы ведущими факторами являются неповторимая структура воды и специфика сил ближнего действия в ней . Детальное описание особенностей строения воды имеется в упомянутой книге К. П. Мищенко и Г. М. Полторацкого, книге Р. А. Робинсона и Р. X. Стокса Растворы электролитов и в специальной монографии [D. Eisenberg, D. Kauzmann, 1969]. [c.42]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    В настоящее время внимание исследователей обращено на систематическое изучение термодинамических свойств растворов электролитов в свете успехов, достигнутьгх в структурном анализе подобных систем. Изучению природы водных растворов электролитов и характеристике состояний отдельных ионов в растворе уделено особое внимание в работах А. Ф. Капустинского и его сотрудников. Введение кристаллохимических характеристик ионов позволило обобщить обширный фактический материал по энтропиям, теплоемкостям и парциальным o бъeмaм ионов, а также представить картину гидратации в виде своеобразного замещения ионами молекул воды в ее подвижной квазикристалличе-ской структуре. Еще Д. И. Менделеев обратил внимание на то, что вода имеет различную степень химического родства с растворенным веществом, т. е. часть вo ды имеет большую связь с раст-воренньгм веществом по сравнению с остальной массой растворителя. Действительно, как показали многолетние работы [c.128]

    Аскорбиновая кислота содержит два асимметричных атома углерода в 4-м и 5-м положениях, что позволяет образовать четыре оптических изомера. Природные изомеры, обладающие витаминной активностью, относятся к Ь-ряду. Аскорбиновая кислота хорошо растворима в воде, хуже—в этаноле и почти нерастворима в других органических растворителях. Из представленных структурных формул видно, что наиболее важным химическим свойством аскорбиновой кислоты является ее способность обратимо окисляться в дегидроаскорбиновую кислоту, образуя окислительно-восстановительную систему, связанную с отщеплением и присоединением электронов и протонов. Окисление может быть вызвано различными факторами, в частности кислородом воздуха, метиленовым синим, перекисью водорода и др. Этот процесс, как правило, не сопровождается снижением витаминной активности. Дегидроаскорбиновая кислота легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной (и даже в нейтральной) среде происходит гидролиз лактонового кольца, и эта кислота превращается в дикетогулоновую кислоту, лишенную биологической активности. Поэтому при кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается. Аскорбиновая кислота оказалась необходимым пищевым фактором для человека, обезьян, морских свинок и некоторых птиц и рыб. Все другие животные не нуждаются в пищевом витамине С, поскольку он легко синтезируется в печени из глюкозы. Как оказалось, ткани витамин-С-чувствительных животных и человека лишены одного-единственного фер- [c.238]

    Дейтерирование молекул мочевины изменяет их донорно-акцеп-торные свойства, усиливая по аналогии с водой [27] электроноакцепторную способность амидных атомов водорода. Влияние Н/О-изотоп-ного замещения на электронодонорную способность карбонильного атома кислорода весьма незначительно, поскольку, в соответствии с данными табл. 3.2, практически не затрагивает колебательные характеристики группы С=0, т.е. 1. По этой причине, например, появление в среде более структурированного изотопомера воды -ОзО-молекул дейтеромочевины сопровождается более существенными, чем в протонированной системе, структурными изменениями растворителя у амидных КВ-групп (при температурах ниже стандартной [28]). [c.118]

    С другой стороны, как показано в разделе 3.1.2, дейтерирование молекул мочевины также изменяет их донорно-акцепторные свойства, усиливая по аналогии с водой [27] электронодонорную способность амидных атомов водорода. По этой причине появление в массе более структурированного растворителя (ВгО) молекул дейтеромочевины сопровождается более существенными структурными изменениями его у амидных групп КВ. Последнее в целом приводит к образованию более плотноупакованного гидратного окружения молекулы (КВ2)гСО при Г <298 К. [c.137]

    Неоднозначно и влияние воды на свойства и структуру растворителя. В работе [87] на основании анализа значений параметра взаимодействия Флори-Хаггинса для систем моногидрат МММО-вода и безводный NMMO-вода сделано предположение, что наличие воды может оказывать влияние на структурную организацию растворителя, т.е. может изменяться энтропийный фактор системы в целом. Молекулы воды изменяют структуру растворителя, что приводит к возникновению совершенно иного растворителя с другими свойствами. Присутствие молекул воды приводит к ослаблению взаимодействия между молекулами исходного гидрофильного растворителя [88]. Молекулы аминоксидов, по экспериментальным данным [89-91], в большой степени склонны к самоассоциации, что уменьшает растворяющую способность аминоксида. Присутствие воды в небольших количествах (для NMMO максимальная растворяющая способность наблюдается при содержании воды 2-4% [92]) скорее всего уменьшает взаимодействие молекул растворителя друг с другом, так как появляется сильное конкурирующее влияние молекул воды. Высокая эффективность молекул воды в снижении самоассоциации растворителя обусловлена ее высокой диэлектрической проницаемостью чем выше диэлектрическая проницаемость разбавителя, тем быстрее уменьшается степень самоассоциации молекул растворителя и тем быстрее они могут проникнуть в структуру целлюлозы. [c.380]

    Процессы, связанные с реставрацией объектов или предметов из дерева, имеют несколько направлений очистка поверхности, в случае мокрой древесины — обезвоживание или замещение воды, антисепти-рование, огнезащитная обработка, глубинная пропитка консервантами, защитная и декоративная обработка поверхности. При этом используются растворы консервантов в воде или органических растворителях. Количество поглощенного консерванта зависит от степени разрушенности древесины и свойств поглощаемого материала. При поглощении растворов полимеров наблюдается постепенное проникновение раствора в структурные элементы древесины, причем полимер отстает от фронта растворителя. После завершения пропитки происходит перераспределение полимера между раствором в межклеточном пространстве и структурными элементами древесины - древесина постепенно обогащается более высокомолекулярными фракциями полимера, что положительно сказывается на физико-механических свойствах образующегося композита. Это определяет желательность длительной пропитки древесины с целью более глубокого проникновения консервантов в структуру древесины. [c.110]

    Особенного типа взаимодействия наблюдаются при появлении в таком структурированном растворителе, как вода, соединений, диссоциирующих на ионы, когда сочетаются чисто физические явления, обусловленные присутствующими в стехиометрических соотношениях положительными и отрицательными частицами, с явлениями нарушения структурных элементов среды, характеризуемых общим термином — гидратация ионов . Физикохимические свойства таких систем и соответствующих им по составу природных вод будут различны в зависимости от наличия в них однозарядных (На+ и К+) или двухзарядных катионов (Са + и Мд2+), а также одноатомных (СЬ) или многоатомных (НСО3- и 304 -) анионов. Важность высказанного положения становится ясной, если напомнить, что при исследованиях химических процессов водоподготовки еще недостаточно внимания уделяется изучению влияния ионных примесей воды на их кинетику. Это затрудняет статистическую обработку накопленных огромных материалов по эксплуатации станций водоподготовки с различной минерализацией, необходимую для создания систем автоматического управления. [c.78]

    Даже в случае ультрачистых материалов кинетические данные обычно весьма чувствительны к их структуре (монокристалл или поли кристалл) и подготовке поверхности (тип и концентрация структурных дефектов, кристаллографическая ориентация). Во многих исследованиях по кинетике электродных Процессов использовались поликристал-лические электроды из твердого металла. Подготовка поверхности состояла из полировки корундом или окисью алюминия и дальнейшей промывки органическим растворителем сомнительной чистоты или окисляющей минеральной кислотой (что делалось в надежде удалить органическую примесь). После этого электрод хранили в дистиллированной воде или растворе электролита, использовавшемся для дальнейших кинетических исследований. Окисляющая кислота может разрушить полированную поверхность металла,и поэтому поверхностные свойства обработанных таким образом электродов неизвестны и обычно невоспроизводимы. Это - одна из важнейших причин ограниченной воспроизводимости результатов и расхождения кинетических данных, полученных многими авторами на, казалось бы, одних и тех же твердых электродах. [c.169]

    Впервые еще в 1899 г. М. С. Вревскшг [26], исследуя теплоемкости растворов электролитов, высказал мысль, что температура вызывает в свойствах раствора изменения того же порядка, как изменение концентрации . В 1933 г. Бернал и Фоулер [271 ввели представление о структурной температуре , отнеся это понятие к случаям разрыхления или упорядочения структуры воды введенными в нее ионами, что приводит растворитель в состояния, отвечающие повышенным или пониженным температурам. [c.173]


Смотреть страницы где упоминается термин Структурные свойства воды как растворителя: [c.426]    [c.107]    [c.6]    [c.39]    [c.39]    [c.143]    [c.26]    [c.227]   
Смотреть главы в:

Современная химия координационных соединений -> Структурные свойства воды как растворителя




ПОИСК





Смотрите так же термины и статьи:

Вода как растворитель для ГПХ

Вода, свойства

Свойства воды как растворителя



© 2025 chem21.info Реклама на сайте