Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Низкомолекулярные спирты и кислоты

    В неблагоприятных условиях эфирного масла теряется больше, чем образуется. Гидролиз глюкозидов проходит не полностью. Спирты окисляются до кислот. Ненасыщенные соединения окисляются по месту двойных связей. Резко уменьшается содержание спиртов, особенно терпеновых. Развивается самосогревание, и протекают процессы брожения, появляются низкомолекулярные спирты, кислоты с резкими неприятными запахами, их сложные эфиры с фруктовым ароматом. При этом содержание конкрета снижается либо остается на первоначальном уровне, но состав его изменяется, качество ухудшается. [c.204]


    Значение показателя К для смесей моторных масел с нефтяным топливом, органическими низкомолекулярными спиртами, кислотами и эфирами [c.39]

    В реакции этерификации целлюлозы, так же как при взаимодействии с низкомолекулярными спиртами, кислоты трехвалентного фосфора значительно более реакционноспособны, чем кислоты пятивалентного фосфора. Некоторые типы сложных эфиров целлюлозы с кислотами пятивалентного фосфора получаются значительно труднее или вообше не могут быть получены при непосредственном взаимодействии целлюлозы с-этими кислотами или с их производными. Поэтому более целесообразно получать эфиры кислот трехвалентного фосфора с последующим их окислением. [c.302]

    Из растворов же невысокой концентрации с температурами насыш ения ниже температуры перехода, например из парафиномасляных дистиллятов, из их растворов в избирательных растворителях, применяемых при депарафинизации, и т. д. парафин будет выкристаллизовываться только в пластинчатой форме. Волокнистые формы при невысокой концентрации парафина в растворах могут образовываться лишь в тех случаях, когда парафин растворен в растворителе, обладающем низкой растворяющей способностью, например, в одном из низших спиртов, в низкомолекулярных органических кислотах и если температура насыщения такого раствора лежит выше температуры перехода парафина. При этом волокнистую структуру даст только та доля парафина, которая выкристаллизуется из такого раствора выше температуры перехода. Парафин же, который будет выделяться далее из того же самого растворителя, но уже ниже температуры перехода, даст опять пластинчатую структуру. Поэтому наблюдение таких закристаллизовавшихся растворов при невысокой, например, комнатной температуре даст картину двоякой структуры, а именно волокон с рассеянными между волокнами пластинками. [c.63]

    Из результатов различных опубликованных исследований можно сделать следующие выводы. Чем выше давление при окислении, тем выше выходы спиртов и тем ниже выходы альдегидов и органических кислот. Высокие объемные скорости реагирующих газов благоприятствуют получению спиртов с более длинной цепью, а низкие скорости способствуют образованию низкомолекулярных спиртов и кислот, воды и двуокиси углерода. Повышение температуры влияет почти так же, как и уменьшение объемных скоростей. [c.436]

    Для извлечения сульфокислот, из сульфированных масел и кислых гудронов применяются два основных метода. В одном случае кислоты селективно удаляются при помощи адсорбентов или растворителей (обычно низкомолекулярных спиртов), а в другом случае их высаливают органическими солями или основаниями. Более подробный обзор очистки и промышленного применения нефтяных сульфокислот см. в [201—203]. Методы анализа маслорастворимых нефтяных сульфокислот см. в [204—206]. Фенол-< ульфокислоты могут присутствовать даже в высокоочищенных нефтяных сульфокислотах [207]. Сульфокислоты и нафтеновые кислоты можно отделить друг от друга в водном растворе добавлением хлористого натрия нафтеновые кислоты остаются в растворе, в то время как натриевые соли сульфокислот осаждаются 1208]. [c.573]


    При промывке воду добавляют в количестве 50 частей на 100 частей оксидата-сырца и нагревают до 80—90° при перемешивании. После отстаивания водный, окрашенный в желтоватый цвет слой спускают и промывку повторяют в тех же условиях. Вторые промывные воды почти бесцветные. При этом отмывается около 2—4% водорастворимых соединений, в основном низкомолекулярных жирных кислот, дикарбоновых кислот и веществ более высокой степени окисления, которые разлагаются при нагревании и окрашивают мыло в темный цвет. Эти вещества можно также отмывать разбавленной уксусной кислотой или спиртом. [c.456]

    Основные сульфонаты обычно получают взаимодействием средних сульфонатов с оксидом или гидроксидом, металла при нагревании. Известен метод, заключающ-ийся в нейтрализации продукта сульфирования водным раствором аммиака или едкого натра (едкого кали) и дальнейшем проведении обменной реакции с водным раствором хлорида кальция или гидроксида щелочноземельного металла при различных температурах [пат. США 3772198 а. с. СССР 526617]. Процесс можно интенсифицировать за счет увеличения скорости реакции и исключения высокотемпературной стабилизации продукта. Полученный таким путем сульфонат может быть превращен в высокощелочной сульфонат с различной степенью щелочности. Обменную реакцию можно проводить в присутствии промоторов — карбоновых кислот С —С4, алкилфенола или алифатического спирта [а. с. СССР 502930, 639873] с применением углеводородных растворителей, низкомолекулярных спиртов С1—С4 или их смесей. [c.78]

    Водный конденсат, называемый в технике также конденсаторной водой , образуется при охлаждении в трубчатых холодильниках отхо-.дящих газов процесса окисления парафинов. Получающийся при этом конденсат состоит из двух слоев верхнего, маслянистого, называемого также конденсаторное масло , и нижнего, упомянутого выше водного конденсата. Последний представляет 25—30%-ный раствор легколетучих низкомолекулярных жирных кислот, например муравьиной, уксусной, пропионовой и масляной, которые удерживают в растворе небольшое количество высших кислот. Вместе с ними присутствуют низкомолекулярные гидролизующиеся вещества, например лактоны, и, наконец, неомыляемые примеси в виде водорастворимых спиртов, альдегидов и кетонов. [c.469]

    Использование природных жиров в качестве сырья для гидрогенизации нецелесообразно, так как при этом процессе глицерин превращается в менее ценный изопропиловый спирт. Поэтому предварительно проводят двухступенчатую обработку жиров (гидролиз и этернфикация выделенных свободных кислот низшими спиртами) или одностадийную переэтерификацию триглицеридов низкомолекулярным спиртом (как правило, метиловым). Переэтерификацию можно вести в присутствии кислотных (H2SO4) и щелочных (MgO, aO, HjONa) катализаторов. [c.32]

    Сульфоновую и серную кислоты нельзя разделить экстракцией, их сухих нат()иевых солей спиртом, как это можно сделать в случае продуктов сульфоокисления высших парафиновых углеводородов, поскольку натриевые соли низкомолекулярных алкилсульфоновых кислот очень плохо растворимы в спирте. [c.488]

    Например, при этерификации низкомолекулярного спирта на каждой промежуточной стадии в реакционной системе находится четыре соединения спирт, кислота, сложный эфир и вода, — которые легко могут быть отделены друг от друга. При этерификации же высокомолекулярного поливинилового спирта [c.51]

    Исследована возможность применения некоторых органических соединений — парафинов, циклопарафинов, метилэтил-кетопа, фракций жирных кислот и жирных спиртов и этилацетата — для извлечения низкомолекулярных органических кислот из водного раствора методом экстракции. [c.93]

    Все типы порапака стабильны при 250°С, за исключением типа Т (200°С). Одним из исключительных свойств этих сорбентов является быстрый выход из колонки воды, спиртов, кислот, альдегидов, аминов, кетонов, эфиров и других высокополярных соединений, причем хвост у пиков почти не образуется. Порапак используется главным образом для эффективного разделения низкокипящих углеводородов, спиртов, сложных эфиров, кетонов, низкомолекулярных соединений, содержащих галогены и серу. Наиболее универсален порапак Q. [c.168]

    Этот метод разделения ие применим к низкомолекулярным спиртам и карбоновым кислотам, так как все они растворимы в воде. [c.286]

    На основании комплексного качественного и количественного анализа сложных низкомолекулярных летучих продуктов окисления высших моноолефинов методами ИК-спектроскопии и хромато-масс-спект-рометрии, в летучих продуктах жидкофазного окисления промышленных фракций а-олефинов идентифицированы следующие классы органических соединений углеводороды (предельные, непредельные, ароматические), альдегиды, спирты, кислоты, эфиры, перекиси. Основными компонентами легколетучих продуктов окисления являются альдегиды (до 87%), представленные главным образом соединениями, содержащими два или три углеродных атома в молекуле. За ними в количественном отношении следуют гидроксилсодержащие соединения и углеводороды, содержание которых с увеличением глубины окисления растет от 5—8% до 12—15% мол. Данные по составу летучих продуктов также представляют интерес для выяснения механизма жидкофазного окисления а-олефинов. [c.57]


    Было, однако, показано, что низкомолекулярные спирты в присутствии некоторых катализаторов реагируют с диазометаном [154]. Так, н-бутнловый спирт при взаимодействии с диазометаном образует в присутствии кислот Льюиса, например хлористого цинка и хлорного железа, метил-к-бутиловый эфир. То же вещество было получено при проведении реакции в присутствии М бутилата сурьмы или м-бутилата алюминия. В последнем случае выход составлял 83%. [c.500]

    Механизм ацетилирования целлюлозы до конца еще не выяснен. В присутствии кислотного катализатора, по аналогии с ацетилированием низкомолекулярных спиртов, ацетилирование целлюлозы уксусным ангидридом идет не по реакции замещения 8 (как при нитровании), а по особому типу реакции присоединения с ацильным расщеплением (т.е. расщеплением по связи ацил-кислород), катализируемому кислотой, Аас, по бимолекулярной реакции А 2 (механизм А) или мономолекулярной Ак1 (механизм Б). Возможны и другие механизмы (В и Г). [c.603]

    При алкилировании фенолов спиртами в паровой фазе в качестве катализаторов используют природные глины, алюмосиликаты, цеолиты, а также окислы алюминия, магния, титана, тория и их смеси. Обладает каталитической активностью также поли-фосфорная кислота, осажденная на термостойком носителе. Реакцию проводят при 250—500 °С, главным образом с низкомолекулярными спиртами С1—С4. Состав продуктов реакции зависит от условий процесса и селективности катализатора. Большинство известных катализаторов ориентируют алкильные заместители в орто-положение. Однако на многих из них при повышенной температуре также хорошо образуются м- и л-изомеры. Жесткие условия алкилирования способствуют протеканию побочных процессов. Так, при изучении превращений л-н-пропилфенола на алюмосиликатном катализаторе [98] при 300—350 °С отмечено образование фенола, ж-н-пропилфенола, ди- и триалкилфенолов ге-крезола и л-этилфенола, т. е. одновременно протекают деалкилирование, изомеризация, диспропорционирование и расщепление. При низких температурах основные продукты алкилирования— алкилфениловые эфиры, которые являются, по-видимому, промежуточными продуктами при образовании алкилфенолов. Выходы последних при парофазном алкилировании довольно высоки и при соответствующем подборе катализатора и оптимальных условий могут достигать 80—95%. [c.232]

    Висмут практически не сорбируется (Dg < 1) из растворов НС1 и НВг, если часть воды в них заменить соответствующим органическим растворителем, лучще всего низкомолекулярным спиртом [59, 60]. Таким способом висмут отделяют от U(VI), Th, Се(Ш), Al и Fe(III) (также в среде НВг). При отделении сурьмы на катионообменниках ее часто связывают винной кислотой в несорбируемые комплексы. Этим способом ионы Sn , Fe " , u - - и d2+ при подходящем pH отделяют от сурьмы. Последнюю десорбируют с катионообменников винной кислотой и некоторыми другими оксикислотами [61]. [c.253]

    В нелетучей части конкрета содержатся насыщенные спирты Сю—Сзо с преобладанием четных гомологов, сложные эфиры насыщенных монокарбоновых кислот с первичными спиртами и стеролами, терпеновых кислот и первичных низкомолекулярных спиртов, свободные кислоты, тритерпеноиды, насыщенные углеводороды i5—Сз1- [c.51]

    Способ ферментации в воде, предложенный В. А. Соколом и А. И. Фадеевым, осуществляется при температуре окружающей среды, при соотношении сырья и воды, равном 1 2, в течение 6—12 ч. При этом способе предъявляются высокие требования к воде. Для ферментации нельзя брать воду из открытых водоемов. В обогащенной микрофлорой воде при ферментации протекают процессы брожения, в результате которых образуются низкомолекулярные дурнопахнущие кислоты, спирты, понижающие качество масла. Заводы, обеспеченные качественной водой, должны предпочитать этот способ, принимая во внимание более высокий выход и качество эфирного масла. [c.178]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Данные кислоты относятся к классу депсидов, очень подвижных соединений, которые в присутствии гидролизующих агентов и низкомолекулярных спиртов легко подвергаются реакциям гидролиза и переэтерификации. Поэтому в зависимости от характера взаимодействия с лишайниковыми кислотами растворители делятся на две группы. К первой относятся метиловый и этиловый спирты, вступающие в химическое взаимодействие с лишайниковыми кислотами. Вторую группу составляют все остальные, инертные, растворители. [c.217]

    Азеотропная перегонка применяется для разделения узких фракций бензинов в тех случаях, когда перегонка в вакууме, судя по величинам упругостей паров данных углеводородов, не обещает хороших результатов. К пераздельпокинящей смеси угле-водорсдов прибавляют специальное вещество (из числа низкомолекулярных спиртов, кислот и др.), которое образует с одним из разделяемых углеводородов азеотроппую смесь и этим как бы освобождает второй углеводород. Образование азеотронных смесей вызывается отклонением свойств двух смешивающихся жидкостей от свойств идеальных растворов. Зависимость давления пара ог состава смеси в этом случае ие является линейной —кривая проходит через максимум или минимум. При максимуме давло ИЯ пара смесь кипит при более низкой температуре [c.81]

    Разделение сырых жирных кислот изо- и нормального строения, полученных окислением парафинов, осуществлено Н. К. Маньковской [306]. Условия разделения 15%-ный раствор карбамида в 96%-ном этаноле и 20%-ный раствор кислот в том ж спирте или в сухом четыреххлористом углероде смепшвали в соотношении 10 1, интенсивно перемешивали 2—3 мин и оставляли кристаллизоваться в течение 2 ч при 20—22° С. Установлено, что в этих условиях низкомолекулярные жирные кислоты нормального строения, содержащие до 12 атомов углерода в молекуле, и все изокислоты не образуют кристаллического комплекса с карба- [c.219]

    Пористые полимеры. В последние годы в газовой хроматографии применяют не только минеральные и природные адсорбенты, но и полимерные адсорбенты, синтезированные с такой структурой пор и химией поверхности, что они оказались пригодными для высокоэффективного разделения многих сложных смесей [9]. Эти адсорбенты различных типов прочно вошли в практику газовой хроматографии, в особенности для анализа газов [10], в том числе и агрессивных, водных смесей, смесей -низкомолекулярных спиртов, кислот, аминов и других высокополярных соединений [10]. Пока Для газохроматографического разделения применяют пористые полимеры на основе сополимеров стирола, этилстирола и ди-винилбензола. Стирол и дивинилбензол, смешанные в определенных соотношениях, полнмеризуются в инертном растворителе с образованием трехмерного пространственного полимера по схеме [c.103]

    Окисленный парафин освобождается в шлаыоотстойниках от катализаторного шлама п подается в промывную колонну, где от него отмываются низкомолекулярные водорастворимые кислоты. После промывкп окисленный продукт подается на омыление. Омыление производится в две ступени. На первой ступени синтетические жирные кислоты при температуре 90—95° С нейтрализуются 25%-ным раствором соды, на второй ступени осуществляется доомыление 30%-ным раствором едкого натра. Для отделения неомыляемых нейтрализованный оксидат проходит последовательно отстойники, автоклавы и термическую печь. В отстойниках путем простого отстоя отделяется 25—30% неомыляемых. В автоклавах при температуре 160—180° С и давлении 20 am дополнительно отделяется 30—40% неомыляемых. Окончательное отделение неомыляемых осуществляется в термической печи при температуре 320—340° С и повышенном давлении. Неомыляемые, полученные в результате термической обработки, известны в заводской практике под названием неомыляемых-П, в отличие от неомыляемых-0 и неомыляемых-1, получаемых при отстое и обработке в автоклавах омыленного оксидата. Неомыляемые продукты возвращаются на повторное окисление. На Шебекинском комбинате на повторное окисление возвращаются только нулевые и первые неомыляемые, неомыляемые-И направляются на извлечение высших жирных спиртов. [c.150]

    Окисление парафинов С4—в кислоты. Одним из промышленных методов синтеза низкомолекулярных монокарбоновых кислот с преимущественным вы-кодом уксусной кислоты является метод жидкофазного окисления индивидуальных углеводородов С4—С, или их технических смесей под давлением. Впервые промышленное окисление н-бутана в растворе уксусной кислоты осуществлено в США фирмой Се1апезе. Окисление проводится в реакторе из нержавеющей сталн Кислородом воздуха в присутствии солей кобальта или марганца. Основной продукт реакции — уксусная кислота, побочные продукты — муравьиная и пропио-Иовая кислоты, метиловый и этиловый спирты, метилэтилкетон, этилацетат, ацетон. На 1 т уксусной кислоты расходуется 752—875 кг бутана, причем уксусная кислота составляет 80—90% (масс.) от всех кислородсодержащих продуктов реакции. [c.177]

    Классификация ПАВ и их применение [7]. По механизму действия на поверхностные свойства растворов ПАВ следует разделить на четыре группы. К первой группе относятся вещества, поверхностно-активные на границе жидкость — газ и прежде всего на границе вода —воздух, но не образующие коллоидных частиц ни в объеме, ни в поверхностном слое. Такими ПАВ являются низкомолекулярные истинно растворимые в воде вещества, например низшие члены гомологических рядов спиртов, кислот и т. п. Понижая поверхностное натяжение воды до 50—30 эрг1см , они облегчают ее растекание по плохо смачиваемым гидрофобным поверхностям в тонкую пленку. Эти вещества также слабые пенообразователи, повышающие устойчивость свободных двусторонних жидких пленок в пене. Поэтому ПАВ первой группы нашли применение во флотационных процессах, в которых пена должна быть неустойчивой, легко разрушающейся. Наиболее широкое применение ПАВ этой группы получили (В качестве пе-ногасителей, резко снижающих устойчивость пены. Пеногасители приобрели значение во всех процессах, где возникновение устойчивых пен нарушает или затрудняет ход процесса, например в т1аровых котлах высокого давления, в промывочных растворах применяющихся в глубоком бурении скважин и др. [c.34]

    Влияние природы поверхностно-активных веществ на устойчивость пен начали изучать в 20-х годах XX в. О. Барч, исследуя устойчивость пен растворов низкомолекулярных спиртов и жирных кислот в воде, показал, что максимуму устойчивости пены отвечает определенная концентрация пенообразователя. Концентрация, при которой наблюдается максимум устойчивости пены, как правило, снижается с увеличением числа углеродных атомов в гомологическом ряду. Например, в ряду спиртов в оптимальной концентрации этилового и октилового спиртов соответственно равны 0,3 и 3-10 М, а в ряду кислот концентрации масляной и каприловой равны 1 и 2,5-10 М. В отличие от низкомолекулярных спиртов и органических кислот другая группа пенообразователей, к которой относятся мыла, сапонины (гликозиды, выделяемые из растений) и белки, способствует образованию пен в водных растворах, устойчивость которых непрерывно повышается с ростом концентрации. [c.192]

    При реакции низкомолекулярных спирта и кислоты образуется сложный эфир определенного строения, тоже низкомолекулярный. Если же реагирует, например, полиакриловая кислота с низкомолекулярным спиртом или поливиниловый спирт с низкомолекулярной кислотой, то в каждый момент времени реакции и по ее завершении в цепях содержатся сложноэфирные и непрореагировавшие кислотные или гидроксильные группы в разных соотношениях. Таким образом, каждая макромолекула содержит в своей структуре разные функциональные группы, а полимер в целом ком-пизиционно неоднороден. В результате реакционноспособность соседних функциональных групп повысится или понизится вследствие наличия рядом прореагировавшей функциональной группы ( эффект соседа ), а свойства продуктов эте-рификации будут различны. [c.221]

    В последние годы в нефтяной промышленности находят применение и побочные продукты или же отходы химических и нефтехимических производств бутилбензольная фракция, альфаметилстирольная фракция, этилбензольная фракция, щелочная дистиллярная жидкость, сернокислотные стоки нефтеперерабатывающих заводов, низкомолекулярные органические кислоты (НОК), кислые стоки (КС), полиоксиэтиленовое производное таловых масел, алкил-сульфатная смесь (АСС), побочный продукт производства мономеров для синтетического каучука и пиролиза прямогонного бензина, кубовые остатки от ректификации высших спиртов, смесь предельных углеводородов с числом атомов углерода 7—10, жидкие продукты пиролиза, суль-фатнатриевая соль ароматических углеводородов сланцевых смол (СНС) и др. [c.16]

    Эта реакция происходит при высоком давлении для первичных Спиртов, не имеющих разветвления в а-положении, поскольку промежуточным соединением, получающимся из соответствующего альдоля, является, по-видимому, а,р-ненасыщенный альдегид. В тех случаях, однако, когда в одном из спиртов отсутствует разветвление у а-углеродного атома, может происходить смешанная конденсация Гербе. В результате успешно проведенной реакции из первичного спирта с неразветвленной цепью получают также карбоновую кислоту с тем же числом атомов углерода и исходный спирт. Из-за указанных причин этот метод синтеза находит лишь ограниченное применение. Добавление небольших количеств медной бронзы подавляет окисление спирта в соответствующую кислоту в присутствии алкоголята натрия. В литературе имеются сведения, что добавление примерно 0,5% соли трехвалентного железа более чем вдвое ускоряет реакцию Гербе [261. Однако наиболее эффективны для ускорения реакции катализаторы дегидрирования, такие, как никель Ренея или палладий [27]. Выходы редко превышают 70%, если считать, что 3 моля более низкомолекулярного спирта дают 1 моль более высокомолекулярного спирта [28]. [c.276]

    Озонирование и озонолиз. Озонированием называют реакцию взаимодейстция озона с непрсде-пьны.ми соединениями, озонолизом расщепление продуктов озонирования с образонанием низкомолекулярных спиртов, карбонильных соединений, кислот. [c.200]

    Низкомолекулярные ПАВ — спирты, кислоты, другие органические соединения, молекулы которых имеют незначительную длину углеводородного радикала, в растворах находятся только в молекулярно-диспех)Сном состоянии. [c.176]

    Гарн и Гильрой [306] разработали методику определения малеинового ангидрида в полиэфирных смолах путем омыления полиэфиров щелочью и определения малеинового ангидрида в виде малеиновой кислоты. С целью исключения изомеризации малеиновой кислоты авторы предлагают проводить омыление в гетерогенной среде. Для этого полиэфир растворяют в бензоле или хлороформе и встряхивают с 1 М раствором NaOH в течение 3 ч. Аликвотную часть нейтрализованного раствора прибавляют к фону, содержащему 0,025 М серной кислоты и 0,2 М бромида тетраметиламмония, и полярографируют. Этот метод дает удовлетворительные результаты только при анализе полиэфиров, содержащих низкомолекулярные спирты (например, этиленгликоль), так как при наличии спиртов с большей молекулярной массой (диоктиловый) гидролиз полиэфиров в этих условиях практически не идет. [c.203]

    А — вещества с высокой летучестью (низкомолекулярные спирты, альдегиды, кетоны, кислоты, амины, нитрилы и хлорангидриды кислот) Б — вещества с низкой летучестью (многоатомные спирты, соли, альдегиды и кето-спирты, углеводы, амино- и гидроксикислоты) В — вещества с низкой летучестью (высшие кислоты, нитрофенолы) Г — вещества с высокой температурой кипения (фенолы, первичные и вторичные нитросоединения, сульфамиды, слабые кислоты) Д — вещества с высокой температурой кипения перегоняются с водяным паром (амины, содержащие небольшое число арильных групп, гидразин) Е — низколетучие вещества (третичные нитросоединения, нитроанилин, азо- и азоксисоеди-нения, эфиры азотной, азотистой, серной и фосфорной кислот) Ж — вещества с малой летучестью (спирты, альдегиды, метилкетоны и эфиры с числом С-атомов менее 9, простые эфиры, олефины) 3 — вещества с очень малой летучестью (спирты, альдегиды, кетоны, эфиры и тиоспирты с числом С-атомов более 9, простые эфиры, олефины) И — вещества с низкой температурой кипения (углеводороды, алкилгалогениды). [c.147]


Смотреть страницы где упоминается термин Низкомолекулярные спирты и кислоты: [c.96]    [c.147]    [c.330]    [c.74]    [c.376]    [c.84]    [c.469]    [c.147]    [c.147]    [c.22]    [c.143]    [c.69]    [c.528]   
Смотреть главы в:

Косметика сегодня -> Низкомолекулярные спирты и кислоты




ПОИСК





Смотрите так же термины и статьи:

Спирто-кислоты



© 2025 chem21.info Реклама на сайте