Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая структура центров связывания

    Химическая структура центров связывания [c.371]

    Итак, молекулы действительно способны производить вычисления . Если субъединицы в зависимости от числа и расположения атомов в них имеют совершенно определенные пространственные структуры и совершенно определенные центры связывания (химики когда-нибудь скажут нам это совершенно точно), то они могут не только объединяться в макромолекулы, но и считать и, следовательно, наводить порядок . Разумеется, упорядоченность такой макромолекулы отражает только тот порядок, который уже существует в химических связях субъединиц. [c.406]


    Клеточные рецепторы избирательно взаимодействуют с самыми разнообразными по химическому строению веществами — от органических соединений с небольшой молекулярной массой до высокомолекулярных белков. Размеры молекул рецепторных белков, число образующих их полипептидных цепей варьируют (табл. 1). Вполне закономерно поэтому стремление выявить характерные для каждого рецептора особенности структуры участка, ответственного за распознавание лиганда. Вместе с тем анализ функциональных свойств различных по специфичности (т. е. распознающих различные лиганды) рецепторов выявляет определенные черты сходства между ними. Как было показано в гл. 2, прн взаимодействии рецепторов со своими лигандами происходит их активация, выражающаяся либо в усилении ферментативной активности рецепторов, либо в изменении их сродства к внутриклеточным белкам или ДНК. Этот процесс связан с глубокой конформационной перестройкой рецепторных белков, распространяющейся на участки, находящиеся на большом удалении от центров связывания лигандов (активные центры рецепторов). Последнее дает основание считать, что внеклеточные участки различных по специфичности рецепторов, в пределах которых находятся активные центры последних, должны использовать сходные принципы структурной организации, обеспечивающие при связывании любого по строению лиганда изменение конформации внутриклеточных участков молекул рецепторов. [c.43]

    Серия нащих работ посвящена изучению принципов связывания гормонов со специфическими для них рецепторами [7, 4]. В то же время разработанная нами методология анализа связи химической структуры и биологической активности аналогов гормонов может быть использована и в энзимологии при изучении активных центров ферментов. [c.122]

    В реальных системах ни субстрат, ни фермент не являются жесткими молекулами. Поэтому при связывании претерпевают конформационные изменения, как правило, молекулы обоих реагентов, о означает, что провести четкую грань между различными механизмами катализа (рис. 17, II и III) не представляется возможным. Более того, даже обычный механизм ориентации реагирующих групп (см. 3 этой главы) в ряде случаев можно трактовать как создание некоторых напряжений в структуре молекул реагентов. Поэтому, чтобы не дать себя дезориентировать изобилием предложенных теорий и механизмов (а также поправок и уточнений к ним), важно помнить, что отличие между ними состоит лишь в используемых терминах (таких как принудительная ориентация, индуцированное соответствие, механизм дыбы , щелевой эффект и т. п.) и некоторых частных предпосылках о строении активного центра. Термодинамическая же сущность всех этих теорий одна потенциальная свободная энергия связывания (сорбции) субстрата на ферменте тратится на понижение барьера свободной энергии активации последующей химической реакции. [c.60]


    Может ли взаимодействие между группами приводить к увеличению значений констант, характеризующих последовательные этапы присоединения лигандов С первого взгляда это кажется невозможным, поскольку означает, что истинная константа связывания для второго протона больше, чем для первого, а здравый смысл подсказывает нам, что первый протон будет соединяться с тем центром, для которого константа связывания больше, а не меньше. Посмотрим, однако, на экспериментальную кривую связывания протонов с анионом тиамина (рис. 4-4). По сравнению с аналогичной кривой для ацетат-иона она не только не растягивается, а, напротив, становится вдвое более крутой. Это явление объясняется некоторыми удивительными особенностями химического строения тиамина (витамина В ). При определенных условиях этот витамин может кристаллизоваться в виде натриевой соли желтого цвета структура соответствующего аниона показана ниже. Слабое связывание протона с одним из атомов азота [уравнение (4-31)] приводит к уменьшению электронной плотности на соседнем атоме углерода, к которому присоединяется отрицательно заряженный атом серы, замыкая кольцо неустойчивой трициклической формы тиамина.  [c.261]

    После того как субстрат связывается в активном центре, могут начинаться химические процессы. Субстрат превращается в продукт по каталитическому механизму, образуя комплекс фермент-продукт (схема (1) . Процесс заканчивается, когда продукт удаляется из активного центра и образуется свободный фермент, готовый начать новый цикл. Не следует, однако, упускать из виду комплекс фермент-продукт. Ясно, что структура продукта весьма близка к структуре субстрата. Это фактически та же молекула, за исключением связей, образовавшихся или разорванных в процессе данной реакции. Однако важно, чтобы продукт, образующийся в центре, предназначенном для специфического и эффективного связывания субстрата, сам был связан как можно слабее, в противном случае его удаление и тем самым регенерация свободного фермента будут замедлены, и число каталитических циклов уменьшится. Эти требования подтверждают сложность механизма связывания. [c.453]

    Наиболее важным отличием ферментативного катализа от обычного химического является наличие стадии связывания, приводящей к образованию фермент-субстратного комплекса. Как мы уже видели, при попытках достижения скоростей и специфичностей, характерных для ферментативного катализа, в бимолекулярных реакциях между простыми соединениями эта стадия наиболее трудна в воспроизведении. Ясно, что связывающие центры ферментов должны иметь высокоорганизованную структуру. В связи с этим наиболее полную информацию об этих центрах можно получить, как это и можно предположить, нз данных рентгеноструктурного анализа. [c.510]

    При изучении механизма химической реакции, катализируемой ферментами, исследователя всегда интересует не только определение промежуточных и конечных продуктов и выяснение отдельных стадий реакции, но и природа тех функциональных групп в молекуле фермента, которые обеспечивают специфичность действия фермента на данный субстрат (субстраты) и высокую каталитическую активность. Речь идет, следовательно, о точном знании геометрии и третичной структуры фермента, а также химической природы того участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов, поэтому было высказано предположение, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента. Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 4.2). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы. [c.122]

    Углеродные материалы находятся на стыке металлических и неметаллических электрокатализаторов. С одной стороны, возможно варьирование их каталитических и электрокаталитических свойств в широких пределах путем изменения кристаллической структуры и химического состава поверхности [39]. Химическое строение поверхностных групп углеродных материалов является определяющим в электрокаталитических явлениях. С другой стороны, графитированные и даже переходные формы углерода имеют весьма узкую запрещенную зону, что существенно приближает их по поведению к металлическим материалам [40]. В связи с этим при интерпретации электрокаталитических явлений следует учитывать в общем случае как локальные эффекты, обусловленные связыванием субстрата в активном центре, так и коллективные, обусловленные полупроводниковым характером углеродных материалов. [c.16]


    В цикле работ советских авторов [140, 192] были исследованы образцы, полученные разложением различных соединений молибдена. Испытания их были проведены в реакции гидрирования о-ксилола с добавкой 3% тиофена. Из полученных результатов можно сделать вывод, что эффект промотирования обусловлен химическим связыванием на поверхности Мо( )52 катионов N 2+, введение которых увеличивает активность дисульфида молибдена (вольфрама) без изменения кинетических параметров реакции (рис. 35). Структура активных центров смешанных сульфидных катализаторов наиболее удовлетвори- [c.79]

    Различия в конформации разных белков и конформационные изменения, сопровождающие связывание лигандов или изменение окислительного состояния железа обнаруживаются методом рентгеноструктурного анализа. Некоторые примеры уже были приведены в разд. 7.4. Ниже мы опишем еще несколько примеров (см. также работу [94]). Различия структуры вокруг дистального координационного центра включают наличие или отсутствие групп, способных образовать водородную связь (разд. 7.4), т. е. они отражают явные различия сольватации лиганда. О конформационных переходах и различиях в конформации разных белков можно судить также по данным ЯМР, спектрам кругового дихроизма и дисперсии оптического вращения (см., например, работу [204] и ссылки в работе [8]). Особенно интересен тот факт, что связывание СО или кислорода вызывает существенные изменения спектров кругового дихроизма гемоглобина, небольшие изменения спектра кругового дихроизма изолированных химически модифицированных р-це-пей и совсем не влияет на спектры миоглобина или изолированных и химически модифицированных а-цепей [41]. Этот результат представляет собой веский аргумент в пользу предположения о том, что белок имеет более гибкую структуру в гемоглобине, чем в миоглобине. Такой вывод подтверждается и при исследовании моделей этих двух белков [169]. Различная гибкость, вероятно, связана с тем, что в гемоглобине атом железа может далеко выходить за пределы плоскости порфиринового кольца, тогда как в миоглобине такое искажение структуры гема не наблюдается (табл. 14). [c.174]

    Независимо от типа катализаторов первичным актом химического превращения, протекающего на их поверхности, является адсорбция реагентов. Последнюю подразделяют на физическую адсорбцию, определяемую дисперсионными силами, и хемосорбцию, зависящую от химического связывания адсорбата с активными центрами поверхности катализатора. В связи с этим важными характеристиками гетерогенных катализаторов являются величина их поверхности, размер и структура пор, равновесие и энергетика взаимодействия адсорбата с адсорбентом-катализатором. [c.273]

    Как известно, функция рибонуклеазы состоит в гидролитическом расщеплении рибонуклеиновых кислот и олигонуклеотидов. Как мы видели, это один из первых белков, изучавшихся с помощью ЯМР, хотя спектры, полученные на ранних стадиях, не обнаруживали характерных деталей. Рибонуклеаза близка по размеру (молекулярная масса 13700, 124 аминокислотных остатка) и форме к лизоциму и является удобным объектом для изучения методом ЯМР. В ее молекуле имеются 4 дисульфидных мостика, 18 остатков основных аминокислот (10 Лиз, 4 Apr и 4 Гис) и только 10 остатков кислых аминокислот (5 Глу и 5 Асп). Таким образом, в растворе при нейтральных pH молекула заряжена положительно. По сравнению с лизоцимом она содержит несколько меньше а-спиральных структур и больше -структур (остатки 42—49, 71—92 и 94—110). В дополнение к 4 Гис имеются также 6 Тир и 3 Фен, но нет остатков триптофана. Полная трехмерная структура рибонуклеазы известна из рентгеноструктурных исследований, проведенных двумя группами авторов [37, 38, 38а]. Форма ее глобулы близка к сферической имеется большая щель, в которой происходит связывание субстрата. С одной стороны этой щели расположены в непосредственной близости друг от друга остатки Гис-12, Гис-119 и Лиз-7, а с другой стороны находится Лиз-41. По данным подробных химических исследований все эти четыре остатка входят в активный центр. [c.363]

    Линкомицин. Этот антибиотик (рис. 103) также действует только на бактериальные 70S рибосомы, но не на эукариотические 80S рибосомы. Место связывания антибиотика — пептидилтрансферазный центр на 50S субчастице. Линкомицин конкурирует с хлорамфениколом за связывание с рибосомой. По-видимому, он ингибирует взаимодействие акцепторного субстрата с пептидилтрансферазным центром по конкурентному механизму. Химическая структура линкомицина, как и хлорамфеникола, характеризуется наличием амидной связи и группы, имитирующей пептидную группу, смежную с С -атомом аминокислотного остатка (только вместо кислоты здесь опять спирт). [c.190]

    Ферменты природного происхождения, являясь катализаторами биохимических реакций, отличаются от обычных химических катализаторов высокой специфичностью, в силу которой действуют строго на одно вещество (субстрат) или очень небольшое число близких по химической структуре веществ. Данная особенность обеспечивается уникальной структурой активных центров ферментов, определяющих эффективность связывания только со своим субстратом и исключающих связывание других веществ. Классическим постулатом энзимологии является стерическое соответствие структуры молекулы субстрата структуре активного центра фермента, то есть каждый фермент подходит к субстрату, как ключ к отпираемому замку. В то же время степень специфичности ферментов варьирует. Принято различать абсолютную, абсолютную групповую, относительную групповую и оптическую виды специфичности. Абсолютная предусматривает только сродство к одному субстрату, не взаимодействуя даже с родственными по структуре субстратами. Примером может служить фермент уреаза (карбамидаминогидролаза), катализирующая гидролиз мочевины. Этот фермент был выделен в ГНЦЛС из семян столовых арбузов доказана его специфичность, изучены основные биохимические свойства [18, 19]. [c.163]

    Очевидно, что для выявления ключевых стадий вероятного механизма каталитического действия фермента существенно количественное описание металл-лигандного центра как до, так и после связывания субстрата. Поэтому необходимо знать стереохимию координационного окружения иона металла и его ориентацию относительно ближайших аминокислотных остатков, вовлекаемых в связывание субстрата. Кроме того, детальное выяснение химической природы реакционной способности иона металла в ферментах тре- бует установления корреляции между молекулярной структурой, . Гч стереохимией, электронной структурой и биологической функцией. Описание принципиального механизма стадий ферментативной реакции на основе сведений о структуре должно соответствовать результатам кинетических исследований, указывающих на срод-ство к субстратам, вероятную природу промежуточных продуктов реакции и лимитирующие стадии. Предлагаемый механизм должен также находиться в согласии со спектроскопическими данными, которые характеризуют электронные и атомные перегруппировки, включающие фермент и молекулы субстрата. Как и в простых координационных комплексах, детальная информация о строении молекулы позволяет определить электронную структуру и характер связывания ионов металлов и лигандов в белках. Кроме того, характер изменении стереохимии металл-лигандных центров в ходе катализа позволяет понять, какие изменения электронной структуры ответственны за каталитическое действие. Исходя из этого, большое значение для понимания регуляции биологической активности и функции белков приобретает взаимосвязь между молекулярной структурой, стереохимией и электронной структурой центров координации металла. Экспериментальные средства, при по-мошл которых это понимание становится возможным, основываются на точном, детальном описании структуры белковой молекулы и [c.17]

    Вот тут-то нужно сказать следующее многие известные исследователи полагают, что мнение, согласно которому третичная структура определяется исключительно первичной структурой, еще нуждается в доказательствах. Вместо многочисленных аргументов, которые можно было бы привести в пользу этого утверждения, опишем два эксперимента. Первым мы обязаны проф. Гауровицу, одному из крупнейших исследователей в области белков и в области иммунохимии. Он брал антигенные белки, содержащие дополнительную азотсодержащую детерминантную группу — так называемую азогруппу,— и вводил их, во-первых, курице и, во-вторых, кролику у обоих животных образовались антитела к одному и тому же антигену. Однако оба вида антител химически были совершенно различны — у них не совпадал аминокислотный состав и, вероятно, также последовательность аминокислот. Несмотря на это, и те и другие имели одну и ту же специфичность. Очевидно, одна и та же третичная структура (речь идет о конфигурации центров связывания в молекуле антител, комплементарной детерминантной группе антигена) может возникать при различной первичной структуре  [c.346]

    В очень редких случаях может наблюдаться перекрестная реактивность моноклональных антител по отношению к неродственным антигенам. Это связано со сходным пространственным распределением зарядов, полярности и гидрофобности на отдельных участках таких молекул. Подобная ситуация реализуется, например, при взаимодействии эндорфинов и алкалоидов с одними и теми же клеточными рецепторами. Однако по отношению к моноклональным антителам перекрестная реактивность подобного рода наблюдается крайне редко. Размеры структур, распознаваемых моноклональными антителами, меньше, и распознаются они точнее, чем структуры, распознаваемые смесью поликлональных антител. Учитывая то, что антигенсвязывающий центр антител имеет полицентровую структуру, необходимо помнить, что направленность моноклональных антител к одному эпитопу и высокая специфичность не исключает возможности их перекрестной реактивности с эпитопами схожей химической структуры, хотя при этом обычно наблюдается различие констант связывания. [c.170]

    Классическое конкуретное ингибирование основано на связывании ингибитора с субстратсвязываю-щим (каталитическим) центром. Химическая структура аналога субстрата, действующего как ингибитор (I), обычно сходна со структурой субстрата (S). Поэтому ингибитор может обратимо связываться с ферментом, образуя вместо Enz — S комплекс Enz — I, т.е. фермент-ингибиторный комплекс. Когда в реакционной смеси одновременно присутствуют и субстрат, и ингибитор указанного типа, они конкурируют за один и тот же связывающий центр на поверхности фермента. Один из наиболее подробно изученных примеров конкурентного ингибирования — это ингибирование сукцинатдегидрогеназы малонатом (I), конкурирующим за один и тот же центр с субстратом сукцинатом (S). [c.88]

    В исследованиях, проводимых на аденилатциклазе, почти не изученными являются два вопроса каково строение центра связывания гуаниловых нуклеотидов и какие особенности химической структуры нуклеотидов являются необходимыми и достаточными для активации  [c.110]

    Ферменты могут быть выведены из строя веществами, которые образуют очень прочные ковалентные связи с группами, расположенными внутри активного центра, и которые препятствуют тем самым образованию комплекса 5. Взаимодействия такого рода могут привести к необратимому ингибированию. Для внутриклеточных процессов в норме, однако, более характерно обратное ингибирование двух типов. Первый — конкурентное ингибирование — становится все более эффективным при увеличении субстрата, тогда как второй — неконкурентное ингибирование— от концентрации субстрата не зависит. Установлено, что конкурентные ингибиторы реагируют непосредственно с активным центром фермента, тогда как неконкурентные — с участком фермента вне активного центра. Конкурентные ингибиторы представляют собой обычно структурные аналоги субстрата, неконкурентные — напротив, могут совершенно не походить по химической структуре и составу на субстрат. Конкурентный ингибитор конкурирует с молекулами субстрата за активный центр. Поэтому при увеличении концентрации одного из этих компонентов уменьшается вероятность связывания другого. Поскольку неконкурентный ингибитор связывается с участком фермента вне активного центра, молекулы субстрата не могут конкурировать с ним за его место связывания, поскольку не обладают сродством к аллостери-ческому центру. [c.37]

    Взаимодействие молекул без изменения их ковалентной структуры образование олигомерных белков из протомеров самосборка клеточных органелл, включая мембраны образование двойной спирали ДНК присоединение аминоацил-тРНК к мРНК и рибосомам присоединение аллостери-ческих эффекторов к регуляторным центрам ферментов присоединение кислорода к гемоглобину и др. Все эти взаимодействия представляют собой физико-химические процессы. Наиболее характерной чертой молекулярных физико-химических процессов в живых организмах является соединение молекул за счет комплементарных поверхностей центров связывания (узнавание). [c.179]

    Какова структура активных центров Благодаря кристаллографическим исследованиям мы можем неиосредственно увидеть , как устроено все большее и большее их число. Однако рентгеноструктурный анализ обычно не позволяет получить четкого представления о конформацион-ных изменениях, обеспечиваюш их индуцированное соответствие. Кроме того, кристаллографические исследования с высоким разрешением проведены лишь для относительно небольшого числа ферментов. Поэтому для выяснения структуры активного центра энзимологи продолжают широко использовать традиционные химические методы картирования , измеряя константы связывания ингибиторов, структуру которых последовательно изменяют, и исследуя, как влияют изменения структуры субстратов на связывание и скорость реакции. Хорошим примером исследования такого рода может служить работа Мейстера (Meister) и его сотрудников, исследовавших глутаминсинтетазу из мозга овцы. Субстратами фермента являются как D- и L-глутаминовая кислоты, так и а-аминоадипиновая кислота. В то же время из десяти монометильных производных D- и L-глутаминовой кислот субстратами глутаминсинте-тазы могут служить только три. Если допустить, что субстраты связываются в полностью вытянутой конформации, то все атомы водорода, замена которых не приводит к исчезновению активности, лежат с одной стороны остова молекулы (за плоскостью рисунка на следующих двух схемах)  [c.43]

    При повышении температуры и концентрации катализатора вследствие усиления взаимодействия карбкатиона с противоионом роль реакции I схемы 5.1 уменьшается. Преобладающим становится процесс деполимеризации ПИБ в результате взаимодействия карбониевого центра с электронами в р-положении к С-С-связи, что приводит к фрагментации ПИБ, т.е. р-распаду макромолекул по реакции II, схема 5.1. Условием протекания фрагментации карбониевых ионов в растворе является высокая устойчивость образующихся конечных карбкатионов, например за счет процессов внутренней стабилизации при сопряжении или индукции. В случае каталитической деструкции ПИБ арен, вероятно, выполняет роль внешнего стабилизатора ионов карбония, облегчая фрагментацию полимера по реакции II (схема 5.1), при этом возникающий в процессе деструкции ПИБ макромолекулярный фрагмент исходного карбкатиона вступает в реакцию сопряженного алкилирования с образованием аренониевых структур полиизобутиленароматических соединений с молекулярной массой М<Мо. При переходе от бензола и толуола к более основным аренам глубина деструкции ПИБ уменьшается, что связано с увеличением стерических препятствий при фрагментации полимера. Одновременно выделяющийся изобутилен алкилирует новую молекулу арена с образованием третбутилто-луола по реакции III (см. схема 5.1). Химическое связывание изобутилена толуолом (подобно удалению мономера из зоны реакции иным путем) уменьшает равновесную концентрацию мономера и приводит к снижению Тпр при деструкции полиизобутилена. [c.222]

    Специфичность ферментов связана с комплементарностью структуры их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента и формируется из различных участков цепи белковой глобулы. Согласно теории Кошланда, эта комплемен-тарность является индуцированной субстрат в момент взаимодействия с активным центром вызывает такое изменение геометрии фермента, которое соответствует оптимальной для данной реакции ориентации групп, непосредственно участвующих в химическом превращении субстрата (каталитических групп). В случае объемных субстратов происходит многоцентровая сорбция в активном центре за счет дисперсионных, гидрофобных и электростатических взаимодействий и водородных связей. Малые молекулы, такие как О2, N2 и Н2О, вступают в непосредственное взаимодействие с атомами переходных металлов. Однако и в этом случае связывание обычно носит много-центровый характер, например в биядерных комплексах или с участием безметальных групп. Так, в случае комплексования молекулы О2 в гемоглобине с ионом Fe " " происходит образование водородной связи с протонированным гистидиновым остатком в районе активного центра. [c.550]

    Таким образом, приведенные сведения о химической природе активного центра и аллостерических участках свидетельствуют о том, что в энзиматическом катализе, как и в реакции связывания субстрата, участвует не ограниченная и небольшая часть фермента, как предполагалось ранее, а значительно большая часть молекулы белка-фермента. Этими обстоятельствами, вероятнее всего, можно объяснить большие размеры и объемность трехмерной структуры молекулы фермента эти же обстоятельства следует учитывать в программах создания искусственных низкомолекулярных аналогов ферментов (синзимов), обладающих свойствами нативных ферментов (см. ранее). [c.126]

    В случае соединений типа 224-227 управление селективностью связывания достигалось путем варьирования структуры мультидентатных лигандов. Можно ли, однако, построить химические модели, способные имитировать не только ферментоподобное связьшание, но и его вариабельность, управляемую внешними условиями Такое свойство представляет особый интерес из-за очевидного родства со способностью ферментов изменять свою каталитическую активность или даже включаться и вьжлючаться в ответ на внешние воздействия (такие, как изменение pH, присутствие или отсутствие некоторых ионов металлов, низкомолекулярных регуляторов и т. п.). Имеются также обширные данные о том, что конформация активного центра фермента, ответственного за его каталитическую активность, может изменяться при воздействии на удаленные от этого центра участки белковой глобулы (аллостерические эффекты). Эти явления имеют особое значение как один из основных механизмов управления в живых системах, позволяющих воздействовать на состо-Я1ше и активность ферментных систем с помощью химических сигналов, продуцируемых эндогеьшо, т.е. самой клеткой, или поступающих извне [34d]. [c.481]

    Проанализированы и обобщены данные по исследованию структуры и стереорегулирующей способности различных типов активных центров (АЦ) при полимеризации диенов. Большое внимание уделено рассмотрению существующих в литературе механизмов ионно-координационной полимеризации диенов. Приводятся сведения о том, что в этих системах имеется распределение активных центров по их строению, реакционной способности и стереоспецифичности действия. Продемонстрированы возможности методов квантовой химии в исследовании АЦ, получение которых обычными химическими методами невозможно или экспериментально затруднено. На основе квантово-химических исследований показано, что из различных типов активных центров, образование которых возможно при полимеризации бутадиена на ионно-координационных каталитических системах на основе соединений переходного металла, одни типы активных центров (содержащие в координационной сфере переходного металла электроноакцепторные атомы хлора) характеризуются л-аллильным связыванием концевого звена растущей полимерной цепи с атомом лантанида и являются г<ыс-регулирующими. Для других типов АЦ характерны а-алкильное строение и преимущественно транс-стереоспецифичность действия. [c.302]

    Анализ показал, что возможно ограничиться рассмотрением шести различных типов АЦ [42, 44] (табл. 1). Центры, представленные в табл. 1, отличаются составом ближайшего лиганд-ного окружения связи Nd- . У центров типа I максимальное количество атомов хлора, а у центров VI - углеводородных радикалов. Конечно, связь Nd-R, скорее всего, в таком виде (табл. 1) не существует, а стабилизируется за счет координации молекул ароматического растворителя либо за счет образования слабых мостиковых связей при взаимодействии Nd-R с AIR3. Для каждого типа АЦ были проведены квантово-химические расчеты геометрического и электронного строения пяти возможных изомерных структур (табл. 1, рис. 5), отличающихся между собой способом связывания концевого звена растущей полимерной цепи с атомом лантанида [42, 44]. Для АЦ I-V типов энергетически выгоднее л-структуры относительно о-структур. При этом, при переходе от I к V типу АЦ различие в энергиях между п- и а-структурами снижается с 44.8 до 13.9 кДж/моль. Для VI типа АЦ более выгодной является о-структура. [c.314]

    Химические исследования, проведенные в последние 20 лет, показали, что пространственные структуры белков необычайно сложны, а формы их молекул имеют решающее значение для осуществления каждым белком его специфической биологической функции. Полипептидная цепь, состоящая из сотен связанных друг с другом аминокислот, принимает такую пространственную форму (называемую конформацией), которая определяется его аминокислотной последовательностью. Например, молекула коллагена — белка, придающего прочность коже и костям, — имеет форму стержня. Антитела представляют собой молекулы -образной формы с выемками, которые служат для распознавания чужеродных веществ и запуска реакций, обеспечивающих их эффективное обезвреживание. Ценная информация об их архитектуре была получена в рентгеноструктурных исследованиях. Молекулы ферментов имеют щели, называемые активными центрами , в которых связывание реагентов осуществляется таким образом, что становится возможным образование новых химических связей между ними. Таким образом, определенной биологической функции белка соответствует определенная конформация. Основные успехи в исследовании конформации белков были получены с помощью рентгеновских лучей, а также нейтронных и электронных пучков и других методов, которые позволяют нам как бы увидеть белок под увеличением в миллион раз и более. Выяснение конформаций белка показывает, как он выполняет свою биологргаескую функцию. [c.173]

    В заключение остановимся на реакции химических гаптенов и комплексных антигенов с химической детерминантой с антителами. Известно, что взаимодействие антигена с антителом обусловливается силами, действующими только на очень близком расстоянии. Так, например, активный центр антитела превосходит по своим размерам гаптенную детерминанту всего на 0,3—0,5 нм. На таком расстоянии связь мож т быть обусловлена гидрофобным взаимодействием, электростатическими силами, силами ван дер Ваальса, водородными связями или диполь-дипольным взаимодействием. Каждому гаптену в зависимости от его структуры свойственны те или иные типы связей (табл. 8). При взаимодействии антител против р-азобензойной кислоты со специфичными антителами константа связывания равна 1,0. Если уменьшить (замена гексилом) или полностью исключить (замена ме-тильной группой) гидрофобные взаимодействия, обусловленные бензольным кольцом, то константа связывания уменьшается в 500—1000 раз. Если ослабить электростатические силы, связанные с отрицательным зарядом карбоксильной группы, введением добавочных радикалов в бензольное кольцо или заменой карбоксила на АзОз, то константа связывания также уменьшается в 7—1000 раз. [c.47]

    Интересные результаты были получены Ричардсом при попытке химической модификации З-пептида. Связывание 3-пептида с 3-белком мало зависит от электростатических сил. Оказалось, что можно ацетилировать все 3 боковые аминогруппы в 3-пептиде, а также связать в метиловый эфир все 4 боковых карбоксила (в пределе заряд изменяется от — 4е до Ч-Зе), и при этом сохраняется способность З-пентида присоединяться к 3-белку и приводить к активному ферменту. С другой стороны, метионин, находящийся на 17-м месте в 3 -пептиде, весьма важен для связывания З-пептида с 3-белком. Если окислить метиониновую группу надмуравьиной кислотой до метиопинсульфона, т. е. превратить гидрофобный белковый фрагмент в заряженный и гидрофильный, то способность пептида[присоединяться к белку чрезвычайно ослабляется. Исходный З-нептид реактивирует полностью З-белок при концентрации 10" М после окисления метионина в пептиде требуется концентрация пептида в 1000 раз более высокая, чтобы образовался комплекс пептид—белок. Однако в результате каталитическая активность РНК-азы восстанавливается полностью. Значит, метиониновая боковая группа — ЗСНд нужна, чтобы создавать прочную связь между хвостом и основным ядром макромолекулы. Но к структуре активного центра метионин прямого отношения не имеет. [c.145]

    Под отравлением ионимается химическая дезактивация катализатора, отличающаяся от таковой механической из-за блокировки поверхности, например коксом, и термической, например из-за спекания. Отравление является следствием связывания активных центров поверхности катализатора ядом путем адсорбции, химического взаимодействия или перестройки структуры поверхности. Яд или его предшественник (соединение, из которого он получается реакцией с поверхностью) могут привноситься извне в виде примеси к реакционному потоку или образовываться в ходе самого каталитического процесса в результате побочных реакций либо даже основной реакции. Далее будет рассматриваться в основном примесное отравление. [c.96]


Смотреть страницы где упоминается термин Химическая структура центров связывания: [c.15]    [c.567]    [c.481]    [c.155]    [c.125]    [c.190]    [c.85]    [c.130]    [c.275]    [c.208]    [c.448]    [c.268]    [c.351]    [c.94]   
Смотреть главы в:

Вирусы растений -> Химическая структура центров связывания




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте