Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахар, определение мол. массы

    Основным аргументом в пользу теории малых блоков послужили опыты Гесса, изучавшего комплексообразование меди с целлюлозой в медноаммиачном растворе. Гесс установил, что концентрация комплекса не зависит от молекулярного веса целлюлозы, а подчиняется закону действующих масс, если расчет вести по количеству гидроксильных групп в молекулах целлюлозы, что справедливо и в случае низкомолекулярных сахаров. Определению молекулярного веса предшествовало длительное нагревание медноаммиачного раствора целлюлозы. Это, как нам теперь известно, приводит к интенсивному разрушению ее макромолекул. [c.15]


    Разделение органической массы углей, которая представляет собой сложную смесь самых различных соединений, на отдельные группы веществ, каждая из которых обладает общими свойствами в отношении действия органических растворителей, щелочей, минеральных кислот и других химических реактивов, называется групповым анализом. Предложено много методов группового анализа различных видов твердого топлива. Наиболее целесообразными для группового анализа торфа являются следующие обработки а) последовательное экстрагирование битумов в аппарате Сокслета эфиром и бензолом б) обработка водой при 60 °С с целью выделения простых сахаров в) обработка кипящей водой с целью гидролиза пектиновых веществ г) обработка на водяной бане 2%-ной соляной кислотой с целью гидролиза гемицеллюлозы д) обработка 2%-ным едким натром на водяной бане для экстракции гуминовых кислот е) обработка 80%-ной серной кислотой с целью гидролиза целлюлозы и ее определение по количеству образовавшейся глюкозы, причем остаток принимается за лигнин. [c.161]

    Сахарный тростник и сахарную свеклу вымачивают и перемалывают, после чего из них извлекают сахар путем промывки массы горячей водой. Загрязненный раствор сахара концентрируют, а сахарный сироп очищают. Применяют несколько технологических способов удаления окрашивающих частичек и нерастворимых примесей. Твердые примеси обычно удаляют с помощью извести, которая осаждает оксалаты и другие органические соли кальция, а затем раствор фильтруют при определенном значении [c.267]

    Слово материя может иметь в зависимости от обстоятельств различный смысл. В общем смысле оно используется для обозначения того, что заполняет пространство и имеет массу (правда, не так легко определить понятия пространство и масса), а также в тех случаях, когда речь идет об общих свойствах вещества. Совсем в другом смысле говорят о конкретных веществах — например, можно сказать, что для какого-либо эксперимента необходимы определенные вещества. Иногда слово вещество используется в еще более узком смысле, для обозначения химического элемента или соединения, как, например, железо или сахар. Понятия элемент и соединение имеют в химии соверщенно определенный смысл и будут рассмотрены в следующей главе. [c.19]


    Характеристика продукции, сырья и полуфабрикатов. Помадные конфеты — сахарные кондитерские изделия, которые состоят из мелких (10... 20 мкм) кристаллов сахарозы, распределенных в насыщенном водном растворе различных сахаров сахарозы, глюкозы, мальтозы и декстринов. Такую структуру изделий получают из помадной массы — полуфабриката, образованного в результате определенной технологической обработки сахара, при которой сахар из крупнокристаллического состояния переходит в мелкокристаллическое, отчего помадная масса легко растворяется и тает . В отличие от сахара в помадной массе содержится от 9 до 12 % воды. Кроме того, в ней находятся мельчайшие пузырьки воздуха, придающие ей некоторую пышность и белую окраску. [c.131]

    Таким образо.м, масс-спектрометрия применяется в химии сахаров, в первую очередь, для определения структуры моносахаридов. При помощи масс-спектрометрии можно определить для моносахаридов наличие и положение соответствующих функциональных групп, отсутствие или присутствие циклов и их размер. [c.71]

    Через 1—2 дня стаканы с дрожжеванным кормом взвешивают. Вследствие сбраживания сахара и испарения воды масса корма становится меньше. Берут среднюю пробу в количестве 10 г, вносят в колбу, содержащую 100 мл стерильной водопроводной воды, и взбалтывают в течение 5 мин. Затем на определенной площа-ди предметного стекла (4 см ) размазывают определенный объем суспензии (0,0Г мл—1 петля) и добавляют 0,01 мл молока. Препарат подсушивают на воздухе, фиксируют осторожно на пламени, красят метиленовым синим в течение 10 мин. Подсчитывают количество дрожжевых клеток в одном поле зрения (10 полей зрения). [c.203]

Таблица 3-14. Определение влажности кукурузного сахара сорта 80и по потере массы при высушивании [98] Таблица 3-14. <a href="/info/6156">Определение влажности</a> кукурузного сахара сорта 80и по <a href="/info/63320">потере массы</a> при высушивании [98]
    С, модифицированный метод де Брюина, отгонка с бензолом (воспроизводимость параллельных определений составляет 49,67 — 0,01% при отгонке в течение 12—70 ч) или с четыреххлористым углеродом дают сравнимые результаты и что перечисленные методы пригодны для определения влажности кукурузного сахара-сырца. Рекомендовано также предварительно перед высушиванием диспергировать анализируемый образец на бумаге фильтр-Цель. Следует отметить, что постоянная потеря массы при использовании перечисленных методов достигается только при длительных временах высушивания. [c.129]

Таблица 3-26. Определение воды [в % (масс.)] в сахаре [146] Таблица 3-26. <a href="/info/18643">Определение воды</a> [в % (масс.)] в сахаре [146]
    При анализе углеводородов для разрушения эмульсии добавляют, например, четыреххлористый углерод. Тормозная жидкость, в 500 мл которой содержится 0,03 мг воды (или выше), вызывает изменение окраски метиленового синего до глубокого синего цвета. Точно такое же действие оказывают на индикатор ракетное топливо, в образце которого массой 500 г содержится 0,08 мг (0,16 млн" ) воды, и турбинное масло, в 500 г которого содержится 0,03 мг воды. Для быстрого колориметрического определения влаги в кусковом сахаре и рафинированной патоке был использован фуксин [55]. Фуксин (розанилин) обычно используют в виде гидрохлорида [c.360]

    Олигосахариды. Дисахариды. Сложными называются углеводы, молекулы которых, присоединяя воду, расщепляются на молекулы моносахаридов или более простых полисахаридов. Они разделяются на две группы низкомолекулярные олигосахариды и высокомолекулярные — полисахариды. К первой группе относят сахара, которые по свойствам приближаются к свекловичному сахару. Они большей частью хорошо кристаллизуются, растворимы в воде, обладают сладким вкусом и определенной молекулярной массой. Простейшими из них являются дисахариды. Дисахаридами называются такие углеводы, молекула которых, присоединяя молекулу воды, расщепляется на две молекулы моносахаридов. [c.475]

    Содержание вещества в растворе (концентрацию) можно выразить по-разному. Говоря о процентном содержании, имеют в виду обычно проценты по массе (масс.%). Например, если в 900 г воды растворить 100 г сахара, то получают раствор, в котором в 100 г раствора содержится 10 г сахара, т. е. 10% сахара. Иногда используют также понятие объемного процента, означающее определенный процент по объему растворенной жидкости в общем объеме раствора. [c.28]

    Нужный штамм дрожжей обычно выращивают в лаборатории на скошенных питательных средах, из лиофилизованных культур или специальных активных сухих дрожжей. Через несколько последовательных циклов размножения через 3-4 дня полз ают конечную закваску, готовую к внесению в ферментер. Разведение дрожжей начинается в лаборатории с сухих дрожжей штамма Sa h. erevisiae. Сухие дрожжи определенной массы разводят в колбе со смесью теплой воды и тростникового сахара, оставляют на 15 мин, а затем вносят в дрожжанки. [c.341]


    Промышленное производство драже осуществляется в дражировочных котлах. Технология получения драже заключается в следующем. В дражировочный котел загружают крупнокристаллический сахар. При вращении котла сахар увлажняют сахарным сиропом определенной концентрации до равномерного смачивания и обсыпают сахарной пудрой. Операции полива сахарным сиропом, обсьш-ки сахарной пудрой и сушки повторяют многократно до формирования глобул (шаровидных гранул). С целью получения глобул одинакового размера их фракционируют с помощью барабанных сит с расчетом, чтобы в 1 г содержалось около 40 гранул. Полученные таким образом глобулы являются ядром, т.е. сердцевиной для дальнейшего наращивания лекарственных и вспомогательных веществ. С этой целью во вращающемся дражировочном котле глобулы увлажняют сахарным сиропом и обсьшают смесью лекарственных и вспомогательных веществ. После наслаивания проводят сушку теплым воздухом (40-45°С). Такие операции, как увлажнение, обсыпку и сушку повторяют многократно до получения определенной массы драже, т.е. до наслаивания рассчитанного количества лекарственных веществ. Затем проводят сглаживание или полировку драже с помопщю сахарного сиропа. Для окрашивания драже в состав сахарного сиропа вводят красители. После чего осуществляют глянцевание драже подобно дражированным таблеткам (см. подразд. 22.1). [c.379]

    Измеряемые в методе Гитторфа концентрации и вычисляемые по ним изменения количества вещества в катодном и анодном пространствах определяются на самом деле не только количеством катионов и анионов, поступивщих в эти пространства и покинувших их, но, как получалось в рассмотренных выше случаях, и количеством растворителя, перенесенного этими ионами в виде сольватных оболочек. Оболочки ионов разных знаков неодинаковы по величине. Пусть средние числа молекул воды, входящих в сольватные оболочки ионов Н и С1, равны соответственно п и т. Тогда в разобранной выше схеме электролиза раствора H I при прохождении 1 фарадея электричества в катодном пространстве масса растворителя увеличится на T+/I — х-ш моль, а в анодном пространстве уменьшится на ту же величину. Здесь т+ и т- — уже истинные числа переноса. Существование рассмотренного эффекта можно легко установить, прибавив к электролиту недиссоциирующее на ионы вещество, например сахар или мочевину. После электролиза концентрация прибавленного неэлектролита (вычисленная по отношению к воде) окажется по-разному изменившейся у электродов, причем у одного из иих она увеличится, а у другого уменьшится. Учитывая изменения концентрации прибавленного неэлектролита при определении чисел переноса, можно ввести поправку на перенос воды из анодного пространства в катодное в виде сольватных оболочек и найти истинные числа переноса т+ и Т-. [c.448]

    ЧУК (СКС, Буна-З и др.) — продукт сополимеризации бутадиена и стирола, осуществляющейся эмульсионным методом. Б.-с. к. производят с различным содержанием стирола. Средняя молекулярная масса СКС-30, определенная по вискознметрическому методу, 200— 300 тысяч. Б.-с. к. имеет нерегулярную структуру и потому не кристаллизуется. Получают его холодным и горячим способами (при 5 и 50° С) полимер, образующийся при 5 С, имеет меньшую степень разветвленности и лучшие свойства, его обозначают СКС-ЗОА. Для инициирования реакции полимеризации применяют персульфаты, пербора-ты, пероксид водорода, органические пероксиды и гидропероксиды. Для обеспечения полимеризации при низкой температуре применяют активаторы (сульфиты, сахара) в комбинации с окислителями и восстановителями, из которых создаются так называемые окислительновосстановительные (редокс) системы. Для получения менее разветвленного полимера с желаемой молекулярной массой применяют регуляторы (меркаптаны, дисульфиды и др.). Значительная часть Б.-с. к. вырабатывается в виде маслонаполненного каучука. Минеральное масло, содержащее до 30% ароматических соединений, вводится в полимер (20,— 30% от его массы). Б.-с. к. является универсальным видом каучука, из которого изготовляют автомобильные шины, транспортерные ленты, резиновую обувь, различные резиновые детали и др. СКС-10 отличается высокой морозостойкостью, приближаясь по своим свойствам к натуральному каучуку. [c.49]

    МИ методами. В отсутствие подходящего изотопа-осадителя, анализ проводят косвенным методом. Ишибаши и Киши предложили метод определения Са и Ы, основанный на осаждении их в виде фосфатов действием фосфорной кислоты с последующим растворением осадка и определением выделившейся кислоты при помощи радиоактивного изотопа свинца. (В то время еще не был известен радиоактивный изотоп Аналогичные определения можно проводить, используя принцип соосаждения радиоактивного изотопа с определенным веществом. При этом должны быть известны коэффициенты распределения веществ все процессы осаждения следует проводить в одинаковых условиях. Эренберг применил указанный метод для определения щавелевой кислоты, осаждая ее действием раствора СаС12, содержащего ТЬВ [171. Метод радиоактивных изотопов позволяет с высокой точностью проводить определение высокомолекулярных веществ (сахар, крахмал) и продуктов полимеризации по их концевым группам другие методы анализа указанных соединений дают довольно большую ошибку. При проведении анализа методом осаждения с применением радиоактивных индикаторов массу осадка можно определить, даже если реакция осаждения протекает нестехиометрически или в результате реакции образуется довольно растворимое соединение, так как распределение радиоактивного изотопа между двумя фазами постоянно. [c.316]

    Зависимость с = с(х, I) позвох[яет определить коэффициент диффузии В и затем по формуле Эйнштейна (V. 3) рассчитать размер диффундирующих частиц. Так, диффузионный метод был применен Герцогом для определения эффективного размера молекулы тростникового сахара в водном растворе. Экспериментальное значение коэффихщента диффузии составило X) = 0,384 см /сут. Применяя уравнение (V. 3) и полагая, что молекулы имеют сферическую форму и плотность, равную плотности сахара в кристаллическом состоянии (р= 1,588), получаем для молекулярной массы значения Л/= /з рЛ л = 332, лишь немного отличающегося от истинного — 342. [c.175]

    Кристаллы. При переходе веществ из жидкого (или рае-твореииого) состояния в твердое могут иметь место два типичных случая одни вещестра выделяются в виде более или менее крупных частиц определенней формы, другие — в виде бесформенной массы. Твердые вещества первого типа (например, соль, сахар) называют кристаллическими, второго (папрн-мер, клей, каучук) —-аморфными. [c.377]

    Водка Водка . Для приготовления этой водки на 1 дал сортировки расходуют 1 г пищевой соды (NaH Oa), 0,308 г пищевой лимонной кислоты и 10 г рафинированного сахара-песка. Пищевую соду вводят непосредственно в сортировку в виде водного раствора. Сахар в сортировку вводят в виде инвертного сахара. Из указанного количества лимонной кислоты 0,3 г вносят в сортировку в виде раствора для создания определенной кислотности, а 0,008 г используют для получения инвертного сахара (0,08% от массы сахара). [c.264]

    ИСКУССТВЕННАЯ ПИЩА, пищ. продукты, к-рые олуча -ют из разл. пищ. в-в (белков, аминокислот, липидов, углеводов), предварительно выделенных из прир. сырья или полученных направленны.м синтезом из минер, сырья, с добавлением пищевых добавок, а также витаминов, минер, к-т, микроэлементов и т. д. В качестве прир. сырья используют вторичное сырье мясной и молочной пром-сти, семена зерновых, зернобобовых и масличных культур и продукты их переработки, зеленую массу растений, гидро-бионты, биомассу микроорганизмов и низших растений прн этом выделяют высокомол. в-ва (белки, полисахариды) и иизкомолекулярные (липиды, сахара, аминокислоты и др ) Низкомол. пищ. в-ва м. б. получены также микробиол. синтезом из глюкозы, сахарозы, уксусной к-ты, метанола, углеводородов, ферментативным синтезом из предшественников и орг. синтезом (вкл очая асимметрич. синтез для оптически активных соед ). Высокомол. в-ва должны обладать определенными функциональными св-вамн, такими, как р-римость, набухание, вязкость, поверхностная активность, способность к прядению (образованию волокон) и гелеобразованию, а также необходимым составом и способностью перевариваться в желудочно-кишечном тракте. Низкомол. в-ва химически индивидуальны или являются смесями в-в одного класса в чистом состоянии их св-ва не зависят от метода получения. [c.273]

    К ареометрам постоянной массы относятся денсиметры (рис. 1,а), шкалы к-рых градуируются в единицах плотности, и приборы для определения концентраций р-ров (шкалы градуируются в % по объему или по массе), имеющие спец. названия лактомеры-измеряют жирность молока, спиртомеры-содержание спирта в воде, сахаромеры-содержание сахара в сиропах и т.д. [c.578]

    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    Созревание сыра — комплекс биохимических, микробиологических и физикохимических процессов в сырной массе, в результате которых все составные части (молочный сахар, белки, жир, минеральные вещества) претерпевают определенные изменения с образованием различных веществ, формирующих органолептические показатели (вкус, запах, консистенцию) и рисунок. Все изменения происходят под влиянием, главным образом, микробных и частично молокосвертывающих ферментов. В начальный период созревания сыров в течение 15... 20 сут температура в помещении составляет 10... 12 °С, на следующем этапе созревания в течение 30 сут температуру повышают до 15... 20 °С, а к концу созревания температуру снижают до [c.1083]

    Для получения тритурационных таблеток лекарственное вещество, как правило, смешивают в определенных соотношениях с молочным сахаром или с глюкозой (отсюда и название тритурационные ). Полученную смесь с помощью воды, спирта или каких-либо других жидкостей превращают в густую кашицеобразную массу, которую втирают в специальные пластинки, имеющие многочисленные цилиндрические отверстия. Массу следует втирать таким образом, чтобы она полностью и ровно заполнила все отверстия пластинки. Затем с помощью небольших поршней-пуансонов образовавшиеся таблетки выталкивают из отверстий пластинки и подвергают сушке обычно при температуре не выше 40 °С. [c.342]

    Определение биологической активности инсулина проводят на здоровых кроликах массой 2,5—3,5 кг. Животных массой 1,8—2,3 кг предварительно не менее 14 сут содержат в условиях вивария, где они получают овес, сено или свежую траву, корнеплоды, комбинированный корм и воду. По истечении этого срока определяют чувствительность кроликов к инсулину. Для этого кроликам дважды с интервалом 7—8 сут после 18 ч голодания вводят подкожно раствор стандартного образца инсулина из расчета 0,5 ЕД на 1 кг массы тела животного и определяют величину снижения концентрации сахара в крови в процентах. Кровь для исследования берут из краевой вены уха животных до введения инсулина и через 1,5 и 2,5 ч после его введения (для расчета берут среднюю концентрацию сахара в крови из двух определений после введения инсулина). Кровь берут в условиях, не допускающих чрезмерного волнения кроликов. Из опытов исключают животных с исходной концентрацией сахара в крови ниже и выще пределов, установленных для используемого метода определения содержания сахара в крови (ниже 75 мг % и выше 120 мг % для феррицианидного метода, [c.176]

    Из приведенной схемы следует, что в процессе биосинтеза появляются карбонильные соединения,— отличающиеся высокой реакционной способностью. Ацетальдегид может практически мгновенно связаться с молекулярно растворенным диоксидом серы и с ионами гидросульфита и сульфита, а триозы — с первыми двумя из них. Эти карбонилгидросульфитные соединения, как уже описано в 8.1.1, весьма стойки и недоступны для ферментативного воздействия. Таким образом, по мере их накопления в субстрате биохимический процесс будет заторможен или прекращен. Аналитическим показателем этих отрицательных реакций является повышение в бродящем растворе содержания альдегидов при одновременном снижении концентрации спирта. При этом определенное время еще продолжается потребление сахаров, создающее впечатление о нормальном течении процесса. Наряду с этими карбонильными соединениями в процессе брожения накапливаются в небольшой массе валерьяновый и изовалерьяновый альдегиды и в следах — пропионовый альдегид и некоторые другие. [c.266]

    Использование изопропилиден- и бензилиденацеталей полиолов и сахаров позволяет повысить не только летучесть этих соединений, но и информативность масс-спектров для определения структуры и стереохимии [331]. [c.192]

    Идентификацию и количественное определение сахаров можно осуществить различными хроматографическими методами хроматографией на бумаге [202, 204, 213, стандарт TAPPI Т 250 рт-7Ъ тонкослойной хроматографией [235] газовой хроматографией частично в комбинации с масс-спектроскопией [18, 102, 204, 244, стандарт TAPPI Т 249 ргп-75]. Позднее для определения полисахаридного состава древесины и технических целлюлоз применили автоматизированный анализ сахаров методом ионообменной хроматографии через боратные комплексы [73, 75, 76, 200]. Описан быстрый спектроскопический метод определения сахаров [192, 193, 194], основанный на измерении поглощения при 322 и 380 нм продуктов дегидратации сахаров (производных фурана), образовавшихся после полного гидролиза древесины или технической целлюлозы. [c.30]

    Здесь [ ] — характеристическая вязкость, определяемая для данной КМ-целлюлозы из зависимости т от от концентрации субстрата X — параметр уравнения Марка-Хоувинка, для определения численного значения которого можно воспользоваться литературными данными [66] М — среднечисловая молекулярная масса исходной КМ-целлюлозы, которая может быть определена из зависимости концентрации восстанавливающих сахаров от концентрации субстрата [ ] — концентрация фермента т от.о — исходная относительная вязкость субстрата т]от/(И — скорость падения относительной вязкости. Две последние величины целесообразно определять графически, поскольку истинное значение от,о может заметно отличаться от значения Го/Гб за счет разбавления исходного раствора КМ-целлюлозы при внесении ферментного препарата и изменения ионной силы. [c.147]

    Биологическое сквашивание дает возможность получить дукт с выраженным молочнокислым вкусом и ароматом, смет образной консистенции и определенной кислотности. Арс квашеного молока во многом определяется присутствием ди тила СНзСОСОСНз и ацетоина СН3СНОНСОСН3. В водно лочную среду добавляют водорастворимые компоненты с сахар, консерванты и др. Подготовленные фазы смешивают эмульгируются. Полученная грубая эмульсия поступав эмульгатор для получения тонкой эмульсии с размером ча 6—15 мкм, последняя поступает в переохладитель (темпер ра 12—14°С), а затем в кристаллизатор. При охлажден механической обработке эмульсии происходят процессы воз новения и разрушения кристаллов триацетилглицеринов про приобретает необходимую консистенцию и пластичность. Зат девшая, однородная, пластичная и плотная масса светло-жел или белого цвета (для неокрашенных маргаринов) поступае фасовку. Основные виды маргаринов содержат до 82 % жр В последнее время начато производство диетических и низк рных (содержание жира 50—60 %) маргаринов. Физико-х ческие показатели некоторых видов маргаринов приведе1 табл. 19, а химический состав в приложении 27—29. [c.124]

    Метод определения биологической активности Определение биологической активности инсулина проводят на здоровых кроликах массой 2,5—3,5 кг. Животных массой 1,8— 2,3 кг предварительно не менее 14 сут содержат в условиях вивария, где они получают овес, сено или свежую траву, корнеплоды, комбинированный корм и воду. По истечении этого срока определяют чувствительность кроликов к инсулину. Для этого кроликам дважды с интервалом 7—8 сут после 18 ч голодания вводят подкожно раствор стандартного образца инсулина из расчета 0,5 ЕД на 1 кг массы тела животного и определяют величину снижения концентрации сахара в крови в процентах. Кровь для исследования берут из краевой вены уха животных до введения инсулина и через 1,5 и 2,5 ч после его введения (для расчета берут среднюю концентрацию сахара в крови из двух определений после введения инсулина). Кровь берут в условиях, не допускающих чрезмерного волнения кроликов. Из опытов исключают животных с исходной концентрацией сахара в крови ниже и выше пределов, установленных для используемого метода определения содержания сахара в крови (ниже 75 мг % и выше 120 мг % для феррици-анидного метода, ниже 52 мг % и выше 94 мг % для глюкозоок-сидазного метода), а также тех животных, которые реагируют на введение инсулина судорогами или у которых снижение концентрации сахара в крови составляет менее 15 % по отношению к исходной концентрации. Определение биологической активности инсулина проводят не ранее, чем через 7—8 сут после испытания на чувствительность. [c.297]

    Определение СО2. Углекислый газ, обра--зующийся при брожении, определяют по разности массы колбы при постановке опыта и после его окончания. Конец броже-.ния устанавливают по прекращению газообразования. Брожение обычно продолжается 2—3 даш. Не- смотря на то что колбу взвешивают только на технических весах, уч т углекислого газа получается достаточно точный, так как его в процессе брожения выделяется -много (на долю СО2 приходится почти 50% сброженного сахара)  [c.89]

    Для исследования процессов образования полисахаридов большое значение имеет использование меченых соединений, например Oq, меченых сахаров и их производных. Предполагается, что биосинтезирующая система растений не различает соединений, содержащих С и С, и в обоих случаях реакции протекают одинаково, Включение СОз в состав воздуха, окружающего растущее растение, и анализ образцов, собранных через определенное время после начала эксперимента, позволили сделать ряд интересных выводов. За очень короткие промежутки времени в процессе фотосинтеза образуется большое количество меченых соединений. Тем не менее у большинства растений основная масса С уже в первые минуты концентрируется в углеводах. Когда в питательную среду вводится радиоактивная глюкоза, радиоактивность прежде всего обнаруживается в полисахаридах и только потом — в иротеинах, липидах и других полимерах. Если учесть, что глюкоза и ее соединения являются исходным веществом для синтеза большинства биополимеров, то можно полагать, что путь иревра- [c.24]

    При возрастании концентрации восстановителя и достижении ею величины, превышающей определенный предел (1,3 г/л иивертного сахара), увеличивается скорость реакции восстановления серебра. Но при этом снижаются масса и толщина получаемого покрытия. Оптимальная концентрация восстановителя определяется в основном содержанием серебра и щелочи в растворе. Количество молей Ag NOз, которое может восстановить один моль глюкозы при заданной щелочности раствора, приведено в табл. 31. [c.90]

    Если рассматривать удаление воды как чисто физический процесс, то ему должно способствовать повышение температуры, и, действительно, вся вода удаляется при 365 °С, т. е. при достижении критической температуры воды [238]. Однако для большинства органических веществ повышение температуры сопровождается выделением других летучих соединений. На рис. 3-4 показаны кривые зависимости давления паров воды от температуры для некоторых органических веществ. (Кривые построены в полулогарифмическом масштабе по табличным данным, опубликованным Стуллом [333 ].) Даже при относительно низких температурах давление паров воды над растворителями обычно превышает соответствующее парциальное давление паров воды в окружающей среде, что обеспечивает испарение значительных количеств воды в процессе относительно длительного высушивания. На ранних стадиях высушивания вместе с удаляемой водой могут также удаляться жиры, свободные кислоты, азотистые основания и т. д. [270]. При повышенных температурах заниженные результаты могут быть обусловлены гидролизом таких веществ,, как соли, дисахариды или крахмал [270]. После того как свободная вода будет в основном удалена, дальнейшее высушивание может сопровождаться выделением дополнительных количеств воды за счет протекания реакций окисления и конденсации, например самоокисление жиров [270], кислотная конденсация сахаров [129, 159, 229], конденсация восстанавливающихся соединений с производными аминокислот [58, 192, 310]. Таким образом, при определении воды по потере массы получаются заниженные результаты, если высушивание сопровождается гидролизом или окислением, или же завышенные результаты, если при высушивании происходят реакции конденсации. [c.73]

    Мони и Кристиан [252 ] выполнили сравнительное определение воды в белом сахаре тремя методами а) высушиванием в вакуумном сушильном шкафу при 70 °С, б) титрованием реактивом Фишера и в) десорбцией воды из образцов массой 6—8 г током перегретого ( 112 °С) воздуха в течение 30 мин при этом температура образцов поддерживается при 70 °С. Результаты анализов нескольких образцов сахара представлены ниже [в % (масс.) НаО]  [c.127]

    Клеланд и Фетцер [96] описали цельностеклянный вариант аппарата Лобри де Брюина [231 ], предназначенный для определения потери массы при 37—38 °С и давлении 0,1 мм рт. ст. При этих условиях сахар и сахарсодержащие продукты остаются стабильными, так что полученные результаты могут быть использованы для стандартизации более быстрых методов анализа. Такой цельностеклянный аппарат показан на рис. 3-22. Пробу патоки или других вязких сахаристых продуктов отвешивают в одной из колб, содержащей сухой диспергирующий материал фильтр-Цель (см. разд. 3.1.3). При необходимости для облегчения распределения пробы на этом материале добавляют известное небольшое количество воды. Большую часть воды удаляют путем высушивания в течение ночи в обычном вакуумном сушильном шкафу при 38 °С. Затем колбу присоединяют к одному из шлифов показанного на рис. 3-22 аппарата, другой шлиф которого соединен с такой же колбой с Р2О5. Аппарат откачивают через вакуумный кран до давления около 0,1 ммрт. ст. и помещают колбу с пробой в воздушную баню с температурой 37—38 °С. Одновременно колбу с Р2О5 охлаждают проточной водой для обеспечения градиента температуры в приборе. Постепенно снимают вакуум, заполняя аппарат сухим воздухом, отсоединяют колбу с пробой, закрывают ее пробкой (колпачком) и взвешивают. При этом считают, что потеря массы целиком соответствует количеству содер- [c.154]

    Маковер и Нильсен [240] предложили метод определения содержания воды в высушенных овощах. Вначале взвешенные образцы насыщают водой, давая частицам пробы набухнуть, а затем замораживают. Охлажденную примерно до —70 °С пробу переносят в аппарат для лиофильной сушки и сушат в течение ночи до содержания влаги 2—3%. Благодаря набуханию частиц предварительное размачивание резко увеличивает скорость сушки. Последующее сжатие частиц в процессе сушки оказывается незначительным, а пористость материала при набухании дополнительно увеличивается за счет извлечения из растительной ткани растворимых веществ, например сахаров. Процесс сушки завершают Б вакуум-термостате при 60—70 °С или в эксикаторе с перхлоратом магния при комнатной температуре. Без предварительной лиофильной сушки обезвоженные овощи продолжают терять влагу более 100 ч. После лиофильной сушки некоторые овощные продукты достигают постоянной массы в течение относительно короткого времени. На рис. 3-28 представлены кривые сушки сладкого картофеля при 60 и 70 °С. Для проб, подвергнутых размачиванию и лиофильной сушке, постоянство массы достигается за 38 и 22 ч при 60 и 70 °С соответственно. Полученные результаты равны 8,3% при 70 °С и 8,2% при 60 °С и хорошо совпадают с результатами высушивания в вакуум-эксикаторе при комнатной температуре в течение 4 дней. Аналогичные данные получены для свеклы и для белого картофеля. Однако в случае моркови более предпочтительной представляется сушка в вакуум-термостате при 60 °С. При использовании этого метода были получены результаты [c.169]

    Поглощение сверхвысоких частот используется для определения содержания воды в терпингидрате и в некоторых других фармацевтических препаратах. Бензар и Юдицкий [11] показали возможность применения этого метода для контроля качества продукции в промышленности. Интересная спектроскопическая методика, предложенная Фельнер-Фельдегом [30а], основана на измерении отражения прямоугольных импульсов длительностью от 30 ПС до 200 НС, что соответствует частотам от 1 МГц до 5 ГГц. С помощью этой методики в течение долей секунды можно измерить в тонких слоях изучаемого материала значения диэлектрической проницаемости, соответствующие низким и высоким частотам, времена релаксации и диэлектрические потери. Леб и сотр. [57а] развили этот метод, обеспечив возможность измерения диэлектрических проницаемостей в области высоких частот (10 МГц — 13 ГГц). С помощью разработанной аппаратуры можно измерять диэлектрические характеристики твердых и жидких веществ относительно воздуха. В работе [57а] приведены данные для полярных жидкостей, в том числе для спиртов и водных растворов сахаров. Те же авторы предложили применять при описанных измерениях электронно-вычислительную машину, обеспечивающую сбор и обработку экспериментальных данных и Фурье-преобразование получаемых спектров. Новый импульсный метод нашел применение для определения влаги в молочных порошках. Кей и сотр. [44а ] приводят методику измерений, включающую следующие операции 1) из порошка готовят шарик массой 63 мг 2) взвешивают образец и помещают его в коаксиальную воздушную линию 3) измеряют высоту импульса с помощью осциллоскопа с градуированной шкалой, аналогового или цифрового вольтметра, двухкоординатного самописца или автоматической системы обработки данных 4) устанавливают соотношение между высотой импульса и массой воды в образце. [c.510]


Смотреть страницы где упоминается термин Сахар, определение мол. массы: [c.124]    [c.15]    [c.116]    [c.198]    [c.199]    [c.227]    [c.64]    [c.168]    [c.416]   
Практикум по общей химии Издание 5 (1964) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Масса определение



© 2025 chem21.info Реклама на сайте