Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия Типы спектров

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]


    Спектральный анализ — физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров [1—4]. Физическая основа спектрального анализа — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров [7, 8,10—13]. Атомный спектральный анализ определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный спектральный анализ — молекулярный состав вещества по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света [1, 3, 4, 7]. [c.213]

    В наиболее распространенном варианте (в УФ и видимой областях спектра, 200—800 нм) электронная спектроскопия применяется для обнаружения и определения основных структурных типов ароматических ядер, для выявления наличия и протяженности цепей полисопряжения, решения других задач, связанных с проявлениями и свойствами хромофорных и ауксохромных групп. [c.26]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]


    В зависимости от характера спектров поглощения исследуемой системы для ее изучения должны быть использованы различные приборы. Возможности приборов, применяемых в абсорбционной спектроскопии для решения различных задач спектрофотометрического анализа, их пригодность для измерений в определенной области спектра и принадлежность к тому или иному типу обусловлены характеристиками узлов схемы, рассматриваемых далее. [c.71]

    ЭПР-спектроскопия позволяет непрерывно измерять концентрацию макрорадикалов и следить за переходом одних радикалов в другие. Благодаря этому она дает беспрецедентную возможность исследовать химические реакции макрорадикалов. Удобным методом генерирования макрорадикалов является механическая деструкция полимера в вакууме. Вводя в сосуд с полимером, обработанным таким образом, те или иные газы или пары, можно ио изменению интенсивности и типа спектра наблюдать химические реакции макрорадикалов с кислородом. Мономерами и веществами, легко отдающими водород [7]. Так как большая часть макрорадикалов оказывается расположенной вблизи поверхности частиц полимера, удается наблюдать истинную кинетику радикальных реакций, не искаженную процессом диффузии. [c.199]

    Исследование химиками-спектроскопистами достаточно сложных органических молекул, начавшееся приблизительно с 1935 года, распространилось на ближнюю инфракрасную область, и, пожалуй, ни один из физических методов определения структуры не развивался с такой быстротой, как инфракрасные спектры поглощения и раман-спектроскопия. Инфракрасные спектры обладают существенными преимуществами перед спектрами ближней ультрафиолетовой и видимой областей, поскольку они пригодны для соединений любого типа и дают значительно больше сведений о структуре однако недостатками этих спектров являются большая сложность и значительно меньшая возможность теоретического истолкования с помощью приближенных методов. Действительно, применение инфракрасной спектроскопии для качественного структурного анализа сложных молекул оказывается почти полностью эмпирическим. [c.333]

    Определение констант равновесия комплексообразования. Спектрофотометрический метод широко применяется не только для определения констант ионизации кислот и оснований, но и может быть использован для нахождения констант равновесия процессов образования различных комплексов. На примере взаимодействия иода с циклогексеном в гексане рассмотрено применение УФ-спектроскопии для определения константы равновесия реакции образования комплексов донорно-акцепторного типа. На рис. 13 приведены УФ-спектры растворов иода и циклогексана в гексане и их смеси. Поглощение в области 300 нм связано с образованием комплекса с переносом заряда  [c.26]

    Комплектные приборы для атомно-абсорбционной спектроскопии выпускаются во многих странах. В настоящее время известно свыше 50 моделей таких спектрофотометров. В нашей стране выпускается атомно-абсорбционный спектрофотометр типа Спектр-4 , Сатурн и др. [c.99]

    ИК-спектроскопия. Колебательные спектры. Виды колебаний— валентные, деформационные. Понятие о характеристических частотах. Типы задач и возможности ИК-спектроскопии отнесение полос, сопоставление спектра и строение вещества, идентификация, функциональный анализ. [c.222]

    Конечно, всегда ценно иметь и спектр КР и ИК-спектр соединения, особенно в случае структур с симметрией, поддающейся определению. Правила отбора в названных спектрах различаются, и часто невозможно получить все фундаментальные частоты только из одного типа спектров. Кроме того, вода представляет превосходный растворитель для спектроскопии КР, поскольку рассеивает очень слабо. Для умеренно концентрированных растворов часто оказывается возможным получить спектр вплоть до ЗЮО см без каких-либо помех со стороны растворителя. Низкочастотные колебания также могут быть легко изучены методом спектроскопии КР. Соблюдая определенные предосторожности при приготовлении растворов, можно получить спектр водного раствора вплоть до 150 см . В случае чистых жидкостей можно наблюдать линии КР, расположенные вплотную к возбуждающей частоте. В случае мелкокристаллических порошков возможность изучения низкочастотных колебаний существенно зависит от конструкции монохроматора. С двойными монохроматорами, снабженными дифракционными решетками, обычно удается получить спектр, начиная от 100 см , без применения специальной техники. Для наблюдения более низких частот обычно необходимо применять узкие щели или узкополосные интерференционные фильтры для ослабления интенсивного излучения на возбуждающей частоте, которое в противном случае отражается от поверхностей кристалликов непосредственно в монохроматор. В настоящее время наряду со спектроскопией КР при изучении низкочастотных колебаний, которые более важны в неорганической химии, чем в органической, стали применяться выпускаемые промышленностью длинноволновые ИК-спектрометры, позволяющие получать спектры приблизительно до 33 см- . [c.15]


    Однако основным техническим достижением явилось появление лазерных источников излучения, в результате чего спектроскопия КР стала столь же распространенным методом структурного анализа, как и ИК-спектроскопия. Бесспорно, каждый из этих методов имеет преимущества и недостатки, но по возможности должны исследоваться оба типа спектров. Это обусловлено тем, что правила отбора для ИК-спектра и спектра КР обычно отличаются тем самым объединенные результаты в большинстве случаев дают наиболее полное описание колебательного спектра. Взаимосвязь между ИК-спектроскопией и спектроскопией КР настолько тесная, что значительную часть материала данной главы можно отнести и к ИК-спектроскопии. Вот почему мы будем часто использовать данные ИК-спектроскопии для подтверждения или обобщения выводов, основанных исключительно на спектрах КР. [c.356]

    По данным ИК-спектроскопии и спектрам комбинационного рассеяния, промышленный ПВФ имеет атактическую структуру [304]. Степень кристалличности и температура плавлення ПВФ сильно зависят от температуры полимеризации (табл. 4.12). С повышением температуры полимеризации от О до 180°С температура плавления ПВФ снижается с 230 до 165°С [286, 305], что объясняется увеличением содержания звеньев, соединенных по типу голова к голове . [c.101]

    В настоящее время последние два типа спектров широко исследуются в связи с развитием более прямого метода — спектроскопии медленных нейтронов. [c.236]

    По типам спектров различают эмиссионную спектроскопию, изучающую спектры испускания, и абсорбционную спектроскопию, изучающую спектры поглощения. [c.307]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Молекулы взаимодействуют с излучением в широком диапазоне длин волн, поэтому их спектры лежат в разных областях (рис. 5.2), Для измерений в каждом спектральном диапазоне используется специальное оборудование. Одни типы спектров получить довольно легко, и соответствующие методы широко используются биохимиками в повседневной работе. Однако есть область спектроскопии, где применяется довольно сложное оборудование. Соответствующие методы используются лишь для детального исследования биологических макромолекул и других субклеточных структур. [c.143]

    Б. Спектроскопические методы. На первый взгляд кажется, что оптическая спектроскопия является идеальным методом для изучения неустойчивых промежуточных продуктов, однако во многих случаях применение этого метода встречает существенные трудности. Причина заключается в малой концентрации присутствующих промежуточных веществ, а также в сложности выделения спектров промежуточных веществ (эмиссионных или абсорбционных) из спектров других присутствующих веществ. Тем не менее имеется большое число примеров успешного использования этих методов. Так, спектры испускания возбужденных радикалов, атомов и ионов наблюдались в случае тлеющих и дуговых разрядов, а также во взрывных реакциях и пламенах. В частности, при электрически возбуждаемом излучении [16, 17] были идентифицированы радикалы Сг, СН, Н8, 82, О, СК, КН, ОН, PH, HgH. Подобным же образом в пламенах и взрывах [18] наблюдались, в частности, радикалы С2, СН, ОН, КН, 80, Н, С1, СНО. Однако в обоих этих примерах наблюдаемые спектры испускания могут дать сведения только об относительном количестве возбужденных радикалов и ничего не говорят о типе или количестве радикалов, присутствующих в невозбужденных состояниях и не способных к излучению. [c.96]

    Исследование дифференциальных ИК-спектров фракций топлива парафинового основания не позволило выявить специфических пиков, характерных для известных ингибиторов окисления, например типа фенолов. Возможно, что окисление в этих топливах ингибируют серосодержащие соединения, которые при малых концентрациях трудно идентифицировать с помощью ИК-спектроскопии. [c.86]

    Электронные спектры поглощения ароматических соединений широко используются в изучении углеводородной части нефтей, нефтепродуктов и других природных горючих ископаемых. Когда перешли к исследованию состава неуглеводородной части тех же продуктов, в частности соединений, содержащих серу и азот, наряду со всеми другими методами анализа стали привлекать и спектроскопию в ультрафиолетовой области. Возникла необходимость сбора и систематизации спектров поглощения нужных соединений, т. к. они были разбросаны по отдельным статьям и зарубежным каталогам, в которых, из-за отсутствия удобной системы, их было нелегко разыскать, не легче было добыть и сами каталоги. Это вызвало появление справочных книг [1, 2], которые в той или иной мере помогали идентифицировать выделенные из исследуемых продуктов типы соединений. [c.158]

    ИНУЛИН, резервный полисахарид. Содержится в клубнях сложноцветных и нек-рых др. растений. Макромолекулы линейны, состоят из 2-)-1-связанных остатков -D-фруктофураноэы и оканчиваются a-D-глюкопиранозным остатком, как в сахарозе. Мол. м. не превышает 6000 [а]о от —34 до —40°. Получ. экстракцией из клубней георгина горячей водой. Использ. для получ. D-фруктозы. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИК спектроскопия), раздел молекулярной оптич. спектроскопии, изучающий спектры поглощения и отражения электромагн. волн в ИК области (волновые числа 50—5000 см ). ИК спектры возникают в результате переходов между колебат. уровнями осн. электронного состояния изучаемой системы. Их измеряют с помощью спектрометров разных типов (см. Молекулярная оптическая спектроскопия). Спектральный диапазон ИК спектрометров составляет обычно 200—4000 см , разрешение 0,5—0,1 см (иногда 10 см ). Для регистрации спектров сильнопоглощающих твердых и жидких образцов (в т. ч. полимеров) и тонких поверхностных пленок разработан т. н. метод нарушенного полного внутр. отражения. Он основан на поглощении поверхностньп слоем в-ва энергии электромагн. излучения, выходящего из призмы полного внутр. отражения, к-рая находится в оптич. контакте с изучаемой пов-стью. [c.223]

    Рассмотрим в порядке возрастания числа атомов в парамагнитной частице с одним неспаренным электроном некоторые достаточно простые радикальные системы. Ряд интересных проблем возникает при использовании спектров ЭПР в исследованиях двухатомных радикалов типа АН и АВ, позволяющих проверить современные представления об их электронном строении. Определены компоненты тензоров --фактора и сверхтонкого взаимодействия гидроксильного радикала ОН и ион-радикала ЫН в разных средах, характеризующие распределение электронной и спиновой плотности. К так называемым л-радикалам типа АВ относят, например, N2 , Ог, N0, СЮ и др., а к ст-радикалам — Рг , СЬ , РС1 , ХеР, КгР и др. Из данных спектроскопии ЭПР по этим радикалам сделан, в частности, вывод об убывании относительной электроотрицательности атомов в ряду Кг>Р>Хе>С1. [c.68]

    Морфология и атомная структура изучались методом просвечивающей электронной микроскопии (JEM-100 ), электронная структура - методом электронной спектроскопии (RIBER), химический состав - методами рентгеновской и Оже спектроскопии, тип связи определялся из ИК-спектров. [c.83]

    Характер спин-спинового расщепления позволил получить большое количество ценных данных о строении соединений, исследуемых методом ЯМР-спектроскопии. Протонный спектр ал-лилмагнийбромида относится к типу АХ (стр. 290—293) и поддается анализу только при допущении, что равновесие BrMg H2 H= Hj Hj= H H2MgBr [c.319]

    Благодаря значительным различиям в УФ спектрах линеарно, ангулярно и периконденсированных систем электронная спектроскопия дает информацию о характере сочленения ароматических циклов в молекуле проще и надежнее, чем многие другие спектральные методы. Так, с помощью УФ метода установлено отсутствие гомологов акридина в нефтяных концентратах, изучавшихся в работах (20, 26]. Сведения о характере сочленения колец можно получить и из эмиссионных или абсорбционных спектров флуоресценции таким способом были идентифицированы структурные типы нефтяных бензокарбазолов [26]. [c.27]

    Методом инфракрасной спектроскопии исследованы спектры молекул НгО и D2O, адсорбированных цеолитами типа NaA, NAX и NH4X в широкой области заполнений и температур [2]. При полном заполнении полостей цеолита молекулами воды наблюдались полосы поглощения жидкой воды (3400 и 1640 см ). При заполнении полостей каналов цеолита меньше чем на 15% наблюдалась узкая полоса 3550 см и слабая полоса между 1700 и 1600 см- . Полоса поглощения 3550 см остававшаяся в спектре после обработки при 400—600° С, приписывалась структурным гидроксильным группам цеолита. Спектры молекул воды, адсор- бированных синтетическими и природными цеолитами, исследовались также в работах [3, 4]. [c.382]

    В ЯМР-спектроскопии свертка спектра заключалась в подборе интервалов во всей области химических сдвигов, обеспечивающих получение дополнительной информации для веществ, масс-снектрально неразличимых. По ЯМР-спектрам, записанными во внешней памяти ЭВМ типа ЕС, весь участок химических сдвигов был разделен на 8 частей, что добавило 8 единиц информации, необходимой для дифференциации олефиновых и циклоалкановых углеводородов [116]. [c.83]

    Результаты ДТА о влиянии длины олигомерного блока на скорость полимеризации хорошо согласуются с данными ИК-спектроскопии. Из спектров исходных образцов следует, что они обнаруживают интенсивную полосу поглощения в области 3300 см , которая указывает на сильную водородную связь типа —Н...0 = ==С0Н. Наличие плеча в области 3425 см- свидетельствует о наличии свободных групп NH. Последующий прогрев образцов при 110°С сопровождается значительным уширением полосы 3300 см которое можно объяснить как дальнейшим увеличением числа свободных ЫН групп, так и существованием нескольких типов водородных связей. Интенсивность полос в этой области повышается с увеличением длины олигомерного блока. Полоса 3060 см- также связана с колебаниями групп ЫН и характеризует межмолекуляр-ные водородные связи. Наиболее резко эта полоса проявляется у олигоуретанметакрилатов с большой длиной олигомерного блока. Все это свидетельствует о том, что интенсивность межмолекулярного взаимодействия, обусловленная образованием водородных связей, возрастает с увеличением длины и гибкости олигомерного блока. Это, по-видимому, является причиной увеличения интервала между продолжительностью плавления образцов и началом их полимеризации с увеличением длины олигомерного блока. [c.177]

    УФ-Спектроскопия. УФ-Спектры цнс-гранс-изомеров непредельных соединений во многих случаях обнаруживают характерные различия (табл. 3.1). В особенности это касается соединений типа стильбена (дифенилэтилена). Цензольные ядра и двойная связь стильбена образуют единую сопряженную систему. Если ничто не препятствует осуществлению сопряжения, то в УФ-спектре (рис. 3.1) будут наблюдаться увеличение интенсивности полосы поглощения ароматического ядра и ее сдвиг в длинноволновую область по сравнению с бензолом. Сопряжение требует обязательного расположения бензольных колец и двойной связи в одной плоскости, т. е. копланарности молекулы. Однако это возможно только в гране-форме в цнс-стильбене бензольные ядра мешают друг другу и в одной плоскости расположиться не могут. [c.119]

    Метод, описанный выше, был развит Зандстрой и Вейсманом [238]. Дальнейшие исследования Атертона и Вейсмана [239] показали, что при помощи ЭПР-спектроскопии можно разделить ионные пары натрийнафталина и свободные ион-радикалы нафталина (или, возможно, контактные и сольватно разделенные пары натрийнафталина, см. работу [70]). В присутствии частиц обоих типов спектры ЭПР исследуемых растворов содержат два набора линий интенсивность каждого набора пропорциональна концентрации соответствующих частиц. [c.377]

    В настоящее время по мере того, как изучение состава нефти продвигается в область соединений с большим молекулярным весом, определение индивидуальных углеводородов становится почти безнадежным. Даже путем комбинации химических и физических методов труднс, а часто и невозможно выделить требуемую простую фракцию. Даже если бы это и можно было сделать, для калибровки hj kho было бы такое большое количество индивидуальных соединений, которое нельзя получить в ближайшем будущем. Поэтому химики-нефтяники вынуждены ограничиться сведениями о типе молекул углеводородов и структурных групп. Возможно, что это является наиболее ценным применением спектроскопии. Другой вопрос, с которым иногда сталкивается химия нефти, это установление структуры отдельного соединения. Для этой цели пользуются характеристическими частотами, наблюдаемыми в спектрах для определенных структур. Никогда нельзя написать структурную формулу соединения только на основании спектральных данных. Однако, сопоставляя спектральные данные с данными, полученными другими методами, часто мо кно сделать выбор между несколькими взаимно исключающимися структурами. [c.320]

    Более информативным представляется метод ИК-спектроскопии. В ИК-спектрах цеолитов рассматриваемого типа проявлякртся, как известно, две полосы поглощения в области валентных колебаний ОН-грунп, которые [c.350]

    Для простых молекул удалось добиться некоторых успехов [72] при попытках идентифицировать адсорбированные частицы методом инфракрасной спектроскопии. Так, олефины, адсорбированные на N1 согласно ожидаемому по вышеприведенной схеме [73], не дают ника ких полос, соответствующих двойным связям, а в спектре адсорбиро ванной на N1 окиси углерода найден целый ряд частот, интерпретиро ванных как указание на существование нескольких типов адсорбции например [74]  [c.34]

    В нефтяном анализе спектроскопия ЭПР до сих пор использовалась главным образом при изучении асфальтово-смолистых и металлсодержащих соединений. Данные ЭПР указывают на присутствие в нефтях стабильных радикалов в концентрациях Ю — 10 г-1, растущих симбатно общей ароматичности нефтяного концентрата [12, 247—250]. В ЭПР спектрах ВМС нефти обычно обнаруживаются два типа поглощения синглетная полоса с ё -фак-тором 2,0025, близким к -фактору неспаренного электрона <2,0032), и мультикомпонентная сверхтонкая структура (СТС) резонансного поглощения с -фактором 2,0183, соответствующая ионам У+ в составе ванадилпорфириновых комплексов.Обнаружены также сигналы с -фактором 1,9995, указывающие на присутствие парамагнитных ядер Со и Си [247, 251, 252]. Сходство СТС асфальтенов и синтетического этиопорфиринового ванадильного комплекса послужило основой для ряда способов определения концентрации ванадия в нефти методом ЭПР [251, 253 и др.]. [c.32]

    Обнаруженный ранее с помощью спектроскопии ЗПР [192, с. 1997 211, с. 337] эффект поглощения кислорода системой этилбензол — А1Вгз, вследствие которого в спектрах ЗПР наблюдается два типа сигналов, можно объяснить протеканием в данных условиях процессов диспропорционирования, а также позиционной изомеризации. Первоначально образующийся сигнал ЭПР в изучаемой системе можно отнести к радикальным частицам на основе зтил-, ж-диэтил- и 1,3,5-триэтилбензолов, поскольку константа сверхтонкого сопряжения от взаимодействия неспаренного электрона с протонами, находящимися в л ет а-положении, ароматического кольца, близка к нулю. Сигнал второго типа является, вероятно, налояСением первоначального спектра ЭПР и сигнала парамагнитных частиц, образованных о- и я-диэтилбензолами. Образование орто- и пара-изомеров подчиняется кинетическому, а накопление мета-п о-изводных — термодинамическому контролю, поэтому в спектрах ЭПР при добавлении новой порции кислорода или воздуха происходят с течением времени взаимопревращения сигналов первого и второго типов. [c.221]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Усовершенствования, внесенные за последнее время в методику масс-спектрометрического анализа, позволили применить ее и к относительно высококипящим нефтяным фракциям. Однако спектры различных типов соединений, составляющ их масляные фракции, обычно накладываются друг на друга, поэтому масс-спектрометрический анализ этих фракций приходится сочетать с предварительным разделением их па более однородные группы. Чем однороднее исследуемый продукт по типу углеводородов и молекулярному весу, тем более точные данные могут быть получены о структуре и характере составляющих его углеводородов. При масс-спектроскопии, например, газойлевых и масляных фракций различных нефтей, предварительно лишенных ароматической части (адсорбцией на силикагеле или алюмогеле), удается установить количественно содержание парафиновых и нафтеновых углеводородов, характер строения нафтеновых углеводородов, пяти- и шестичленных колец в них, а также структуру парафиновых углеводородов, содержание в них изоцепей и в некоторых случаях даже характер этих цепей. Аналогично определяется строение ароматических, нафтено-ароматических углеводородов и их сернистых производных с указанием не только группового содержания их во фракциях нефти (включая и высококипящие), но и количества отдельных циклических структур. [c.9]

    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    Спектроскопия играет важную роль при определении типа нитрил-металл взаимодействия. Эффект координации в полосах (СН) ИК-спектров нитрильных комплекхов традиционно используются для определения их стр> ктуры. Считается, что сдвиги к высоким частотам определяют концевую координацию нитрилов, а сдвиги к низким частотам характеризуют боковую координацию нитрилов. Однако, недавно стало очевидным, что концевая координация может являться причиной сдвига у(СМ) как к высшим, так и к низшим частотам. [c.149]

    Применение импульсных спектрометров ЯКР позволяет обнаруживать сигналы большой ширины ( 2% от значения частоты против - 0,02% при стационарных методах). Это сделало возможным исследование структур с неустранимыми элементами беспорядка. К таким системам относятся, в частности, кристаллические полимеры. Данные спектроскопии ЯКР позволяют судить о структуре, характере расположения и подвижности полимерных молекул в кристалле. Изучены спектры ряда хлорсодержащих полимеров. У поливинилхлорида, например, в спектре найдено восемь компонентов сигнала, которым должно соответствовать восемь типов кристаллографически неэквивалентных атомов хлора. Частотный диапазон сигнала от 36,56 до 38,18 МГц свидетельствует о наличии химической неэквивалентности (различном химическом окружении) атомов С1 в полимере. Изучались и неорганические полимеры с малой степенью беспорядка и достаточно уакими линиями, например, на основе (МГал2) и (МГалз)п, где М —металл, а Гал —галоген. [c.104]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]


Смотреть страницы где упоминается термин Спектроскопия Типы спектров: [c.201]    [c.365]    [c.312]    [c.302]    [c.26]    [c.127]    [c.68]    [c.149]   
Теория резонанса (1948) -- [ c.207 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Спектров типы

спектроскопия спектры



© 2024 chem21.info Реклама на сайте