Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение изменение при титровании определения

    Подвижности ионов имеют большое значение для кондуктометрических определений, так как на основании этих величин, изменяющихся в связи с изменением состава ионов, можно предвидеть характер изменения электропроводности в процессе титрования. [c.12]

    Слабые кислоты обычно титруют сильными основаниями н слабые основания — сильными кислотами, так как тогда в точке эквивалентности происходит наибольшее изменение величины pH. Однако в ряде случаев фактически приходится титровать слабую кислоту слабым основанием или обратно когда нужно, например, определить слабую кислоту в присутствии катионов слабого основания (уксусную кислоту в присутствии хлорида аммония) или слабое основание в присутствии анионов слабой кислоты (гидроокись аммония в присутствии ацетата натрия). Другим примером, имеющим практическое значение, может служить определение свободной кислотности или щелочности в ацетате аммония или в аммонийной соли какой-либо другой слабой кислоты. Для того чтобы правильно подобрать индикатор для такого титрования и рассчитать, с какой точностью может быть [c.163]


    В табл. 23 (см. стр. 188) показана точность, с какой могут быть сделаны различные определения этого типа при разных условиях. В ней приведены значения показателя титрования рТ (рТ равен pH раствора в точке эквивалентности, когда слабая кислота количественно замещена сильной), а также значения pH непосредственно перед и после точки эквивалентности, показывающие, насколько резко происходит изменение pH у точки эквивалентности при титровании растворов разной концентрации. При вычислении этих значений pH учитывалась, конечно, диссоциация выделяющейся слабой кислоты. Если эта кислота к тому же п мало растворима, расчет осложняется, так как тогда приходится учитывать и ее произведение растворимости. Несколько таких случаев будет разобрано подробно далее. [c.187]

    Если описываемый метод используют для определения микроколичеств сульфатов (0,12—12 мг сульфата в 10 мл), в методику необходимо внести некоторые изменения. Титрование в этом случае проводят в 80%-ном этаноле при эффективном значении pH = 2,5—4,0, которое автоматически достигается после пропускания раствора образца через катионообменную колонку. Образец должен содержать не слишком высокие концентрации посторонних солей, максимальная молярная концентрация солей должна быть не более 5—10-кратной концентрации сульфатов. В описываемом варианте используют раствор титранта, приготовленный на 80%-ном этаноле. [c.527]

    Учащиеся должны освоить приемы графического определения точки эквивалентности. Поскольку при кондуктометрическом титровании решающее значение имеет не абсолютное значение удельной электропроводности раствора, а величина изменения сопротивления в процессе титрования, определение постоянной ячейки не является обязательным. График можно строить в координатах объем приготовленного раствора — сопротивление — и по нему находить точку эквивалентности. Однако в учебных задачах целесообразно вычислять удельные электропроводности и по ним строить график. [c.222]

    При фотометрическом титровании эти факторы также имеют очень важное значение, но для обеспечения той же воспроизводимости условия могут быть менее строгими, чем при визуальном титровании, поскольку интервал значений рМ для определения конечной точки титрования значительно шире. Если для визуального титрования можно использовать только такие индикаторы, которые обеспечивают изменение окраски раствора в области скачка на кривой титрования, то в фотометрическом титровании применяют разнообразные индикаторы, в том числе такие, переход окраски которых выходит за пределы скачка на кривой титрования и наблюдается или раньше (рис. 7,33, а) или позже [c.225]


    Точность кондуктометрического титрования обычно оценивается примерно в 2—3%. Особое значение для кондуктометрических определений имеет температура в связи с довольно большим температурным коэффициентом электрической проводимости — изменение температуры на 1 ° вызывает изменение электрической проводимости на 2—3%. Термостатирование растворов при титровании существенно увеличивает точность метода. [c.106]

    При изменении периодов экстрагирования от 7 до 61 мин. не было заме чено разницы в значениях содержания воды, определенных методом титрования (10,4 + 0,2%). На основании полученных данных нельзя установить какой-либо закономерности например, при 7 мин. экстрагирования было найдено значение 10,4%, при 19 мин.— 10,5%, при 21 мин.— 10,2%, при 48 мин. — 10,3% и при 61 мин. — 10,6%. [c.210]

    Выше указывалось, что признаком достижения точки эквивалентности служит приобретение раствором определенного значения pH. Индикаторами в методе кислотно-основного титрования служат вещества, окраска которых меняется в зависимости от изменения Ех личины pH. Поэтому эти вещества называют кислотно-основными индикаторами. Окраска каждого из индикаторов изменяется внутри определенного узкого интервала значений pH, причем этот интервал зависит только от свойств данного рН-индикатора и совершенно не зависит от природы реагирующих между собой кислоты и основания. [c.238]

    В 56 было показано, что точка эквивалентности может находиться в нейтральной, кислой или щелочной средах в зависимости от природы титруемых веществ. Для того чтобы правильно выбрать индикатор, нужно знать, как изменяется pH в процессе титрования, вблизи точки эквивалентности, какое значение pH имеет раствор в точке эквивалентности. Чтобы ответить на все эти вопросы прибегают к расчету и построению кривых титрования./Кривые титрования в методе кислотно-основного титрования являются графическим изображением изменения pH раствора при постепенном прибавлении рабочего раствора к определенному количеству исследуемого раствора., Для упрощения вычислений (что не приводит к заметным ошибкам) обычно не учитывают [c.256]

    Для исключения ошибки, связанной, в основном, с присутствием в растворе СОг, проводят также предэлектролиз фонового раствора. Для этого в ячейку вносят раствор фона и фенолфталеина, доводят объем до 20 мл дистиллированной водой и титруют до изменения окраски индикатора. Повторяют опыт с новыми порциями раствора фона несколько раз и вычисляют среднее значение времени предэлектролиза. При расчете время, затраченное на предэлектролиз фона, вычитают иЗ времени, затраченного на титрование кислоты в этом фоне. Повторяют определение с новыми аликвотными порциями раствора, используя потенциометрический метод индикации конечной точки титрования. При этом поступают согласно описанию в разд. 2.6.1. [c.168]

    Приступают к точному титрованию в области скачка э.д. с. (pH), для чего после тщательного промывания мешалки, соединительного мостика и индикаторного электрода (или соответствующей обработки последнего в зависимости от выполняемой работы) в чистый стакан для титрования переносят новую порцию испытуемого раствора и выполняют операции, указанные в пп. 4—8. атем к титруемому раствору прибавляют титрант в объеме на 1 мл меньше (VI), чем это соответствует значению к. т. т., найденному при ориентировочном титровании (по данным табл. 10, 1/1 = 5,5—1,0 = 4,5 мл). После достижения постоянного значения э.д. с. (pH) продолжают титрование раствором реагента по каплям для нахождения к. т. т. при минимально возможном прибавляемом объеме титранта (число прибавляемых капель приводится в описании определения для каждой выполняемой работы). Число капель диктуется величиной ожидаемого скачка потенциала чем больше таковой, тем меньшими порциями титранта можно оперировать (минимальный объем — одна капля). Запись результатов титрования ведут по форме, указанной в табл. 11. После достижения скачка э.д. с. (pH), как и прежде, убеждаются в уменьшении и малом изменении АЕ (АрН) при дальнейшем титровании по каплям. Отмечают общий объем затраченного титранта (например, согласно данным табл. И 1/2 = 5,92 мл). [c.138]

    Кривые титрования являются графическим изображением изменений pH раствора при постепенном прибавлении рабочего раствора к определенному количеству испытуемого раствора. На оси абсцисс записывают количество прибавленного рабочего раствора, а на оси ординат — значение pH раствора. Отдельные точки кривой титрования рассчитывают по обычным формулам для вычисления pH растворов соответствующих электролитов. [c.314]

    На рис. Д.56 приведены зависимости трех членов уравнения (113) от значений pH. Из рисунка следует, что в случае сильных кислот ошибка титрования для большой области значений pH сравнительно мало чувствительна к изменениям pH в точке перехода индикатора (вертикальный участок кривой), в случае очень слабых кислот (p/ s = 7) кривая пересекает ось (штриховая линия) под большим углом, что указывает на возникновение большой ошибки при небольшом изменении pH. Точность титрования кислоты при определении конечной точки титрования с помощью индикатора быстро уменьшается с изменением силы кислот. [c.150]


    Горизонтальные участки на кривой титрования сильной кислоты сильным основанием (см. рис. 6.2) свидетельствуют о малом изменении pH раствора в начальный и конечный моменты титрования. Незначительное изменение pH раствора в начале титрования объясняется тем, что в растворе кислота находится еще в большем избытке по отношению к количеству прибавленной щелочи. Способность раствора поддерживать определенное значение pH называется буферным действием. Буферное действие раствора измеряется буферной емкостью, т. е. тем количе- [c.321]

    В некоторых случаях ионизация полиэлектролита в определенном интервале а может сопровождаться кооперативным конформационным переходом молекулярных цепей, т. е. достаточно резким изменением формы макромолекул в растворе. Тогда величина А<3эл включает в себя не только электростатическую составляющую энергии Гиббса полиэлектролита, но и энергию конформационного перехода. Если конформационный переход происходит в достаточно узком интервале значений pH (или а), то эти две составляющие удается разделить и из кривых потенциометрического титрования определить термодинамические параметры соответствующего конформационного перехода. [c.118]

    При кондуктометрическом определении слабых электролитов большое значение имеют величины констант диссоциации, так как они дают возможность рассчитывать равновесные концентрации иоиов при данном разбавлении и предугадывать характер изменения проводимости раствора при титровании. [c.76]

    Если проводить титрование при потенциале, соответствующем потенциалу полуволны, то также будет наблюдаться прямая пропорциональность между силой тока и концентрацией иона, дающего электродную реакцию. В этом случае сила тока при титровании будет равна половине силы диффузионного тока. Однако малейшее отклонение потенциала от значения потенциала полуволны вызовет заметное изменение силы тока, что скажется на точности определения. [c.183]

    СЛОЙ. Если в растворе присутствуют катионы или анионы красителя, то они могут адсорбироваться на заряженной поверхности осадка. При этом вследствие образования поверхностных соединений электронная система молекулы красителя деформируется. Это тотчас приводит к смещению поглощения света в длинноволновую область спектра. Адсорбционные равновесия можно охарактеризовать изотермой адсорбции по Ленгмюру (с.м. стр. 331) (341. Если перезарядка поверхности осадка происходит в точке эквивалентности, то начинающееся притяжение или отталкивание ионов индикатора приводит к изменению окраски индикатора, что и указывает на окончание титрования. Адсорбционные индикаторы отличаются очень высокой чувствительностью к значительным концентрациям посторонних ионов. Так как применяемые красители всегда являются протолитами, следует поддерживать определенное, строго фиксированное значение pH. [c.73]

    Кондуктометрическое титрование [103]. Кондуктометрию можно применять также для индицирования в объемном анализе, замеряя изменение электропроводности (необходимы лишь относительные измерения) в ходе титрования. Предпосылкой применимости кондуктометрии для определения точки эквивалентности является замена ионов с большими значениями ионных электропроводностей (называемыми также подвижностями ионов) ионами с незначительной электропроводностью или изменение числа ионов в процессе титрования. Электропроводность раствора после добавления каждой [c.164]

    После перевода пробы в специальный сосуд начинается титрование. В процессе титрования, проводимого вручную, кран бюретки оставляют открытым вплоть до достижения точки эквивалентности, определяемой, например, по изменению окраски индикатора. Вблизи точки эквивалентности титрант добавляют медленнее. Потенциометрическое титрование ведут иначе в этом случае титрант добавляют порциями и часто через определенные промежутки времени и затем оценивают зависимость Д /ДК от объема добавляемого титранта (V ). В серийных анализах, при приблизительно известном значе-иии точки эквивалентности, титрование ведут, приливая раствор титранта сразу в количестве, почти соответствующем точке эквивалентности, что значительно сокращает длительность анализа. Этот факт следует учесть при внедрении техники в процесс титрования. Механизацию указанных процессов и операций, проводимых вручную, можно осуществлять различным образом. При помощи специального устройства можно регулировать подачу раствора титранта из бюретки в простейшем случае устройство состоит из рН-индикатора (например, стеклянного индикаторного электрода), усилителя и реле. При этом появляется возможность от управления процессом (наблюдения за стрелкой прибора и работы с бюреткой вблизи точки эквивалентности) перейти к его регулированию. Для регулирования подачи титранта из бюретки применяют электромагнитные стеклянные клапаны. Запорное устройство может представлять собой также эластичный шланг, закрепленный на носике бюретки, с электромагнитным зажимом в виде клина. Расход титранта замеряют, применяя фотоэлектрическую следящую систему измерения уровня раствора. Приборы такого типа дороги и часто недостаточно надежны в условиях производства. Для дозирования титранта применяют также поршневые бюретки. Поршень, передвигаясь, выдавливает из калиброванной трубки раствор титранта. По перемещению поршня судят о расходе титранта. Поршень приводится в действие синхронным или шаговым мотором, число оборотов которого легко подсчитывается. Поршневые бюретки бывают разных типов с ручным или автоматическим заполнением (автоматическая установка нуля), с микрометрическим устройством или с цифровым указателем. Наиболее эффективно титрование осуществляют следующим образом. Быстрым передвижением поршня до определенного положения приливают титрант в количестве, почти соответствующем точке эквивалентности последующее титрование вблизи точки эквивалентности осуществляют при импульсной или медленной подаче титранта поршнем. Значительно чаще скорость движения поршня регулируют в зависимости от крутизны кривой потенциометрического титрования или от разницы между полученным значением потенциала и предварительно выбранным, соответствующим точке эквивалентности. [c.429]

    Из трех групп методов измерения мостового, Z-метрического и Q-метрического — точные измерения с прямым отсчетом позволяют производить только некоторые мостовые методы. При измерениях Z-метрическим и Q-метрическим методами практически невозможно получить не только прямой отсчет, но и вычислить величину активного сопротивления исследуемого раствора. Преимущества ВЧ-методов особенно сильно проявляются при использовании нх для ВЧ-титрований, когда не требуется точного определения величины активного сопротивления раствора, а измеряются только относительные изменения высокочастотной проводимости раствора при добавлении титранта и, следовательно, абсолютная величина электропроводности исследуемого раствора не имеет никакого значения. В дальнейшем речь пойдет только о методах высокочастотного титрования. [c.135]

    Из рассмотренных выше кривых титрования слецует, что точка эквивалентности может находиться при самых различных значениях pH. Для определения точки эквивалентности применяют индикаторы. В общем смысле индикаторами можно назвать системы, изменяющиеся с изменением концентрации тех или иных ионов в растворе, причем это изменение ползкио быть легко наблюдаемо изменение цвета (цветные индикаторы), появление или исчезновение флуоресценции (флуоресцентные индикаторы), появление или исчезновение осадка (турбициметрические индикаторы) и др. [c.73]

    Определение магния титрованием стеаратом калия в присутствии индикатора эриохром черного Т после осаждения кальция в виде оксалата (без отделения осадка) [606] не имеет преимуществ перед комплексонометрическими методами. Описан метод определения магния гетерометрическим титрованием раствором 8-оксихинолина [557]. Эквивалентную точку находят графически — по кривой изменения оптической плотности. Титрование длится 30—40 мин., поэтому метод не имеет практического значения. Фототурбидиметрическое титрование раствором фосфата аммония для определения магния [1042] также не заслуживает внимания, так как количественное осаждение фосфата магния и аммония происходит довольно медленно. Микрометод определения магния, состоящий в титровании водой взвеси, возникающей при добавлении к раствору соли магния смеси уротропина и КВг, до полного растворения [267], также не представляет интереса. [c.103]

    Из косвенных методов чаще других используется метод, основанный на изучении рН-зависимости некоторых параметров реакции, таких, например, как максимальная скорость или константа Михаэлиса. Изменение этих параметров в зависимости от pH часто напоминает по своему характеру титрование одной ионизируемой группы (см. гл. VI). Можно поэтому определить соответствующее значение pi a этой группы и попытаться идентифицировать ее путем сравнения полученного значения рЛТ с известным значением p7i для боковых цепей различных аминокислот. Все это сопряжено с известными трудностями. В результате взаимодействия с соседними группами в белке, а также с субстратом или буфером величина pZ для ионизируемой группы в белке может заметно отличаться от соответствующей величины для той же группы, присутствующей в свободном виде в растворе. Кроме того, величины pifa для различных титруемых групп белков в значительной степени перекрываются. Например, группа с pif 10 может быть либо аминогруппой, либо фенольной гидроксильной группой, либо сульфгидрильной группой. В некоторых случаях определение величины A/i ионизации помогает приписать данное значение рЛТ той или иной группе, однако нередко однозначное отнесение полученного значения рЖ к определенной функциональной группе оказывается все же невозможным. Известно также, что рН-зависимость может отражать титрование нескольких остатков, а не какой-либо одной индивидуальной группы. Наконец, крутые перегибы кривых, описывающих зависимость скорости реакции от pH, могут вызываться ие только титрованием, но также и другими факторами, например изменением стадии, лимитирующей скорость реакции. К счастью, все эти ослол<иения возникают не всегда. Часто заключения, сделанные на основании рН-зависимости, удается подкрепить другими методами. Исходя из данных по зависимости максимальной скорости реакции от pH, следует, например, считать, что у всех ферментов, перечисленных в табл. 29, в каталитическом акте участвует остаток гистидина. Для химотрипсина это заключение подтвернодается тем, что соответствующий хлоркетон, являющийся аналогом субстрата химотрипсина, избирательно реагирует с одним остатком гистидина и вызывает таким путем инактивацию фермента. На основании [c.199]

    НИИ слабой кислоты. На рис. 30 показано изменение электропроводности во время нейтрализации смеси 10 мл 0,01-н. соляной кислоты, 0 мл 0,01-н. уксусной кислоты и 10. . воды 1-н. гидроокисью натрия. Этот случай имеет практическое значение, например, для определения следов минеральных кислот в уксусе. Если, скажем, на расстоянии оО , , или менее от первой точки эквивалентности не происходит практически полного подавления диссоциации второй кислоты, то авторы рекомендуют проводить ттрование в присутствии соответствующего количества этанола. Кондуктометрическое титрование может примениться при определении чистоты сульфофталеинов. Сульфоновая группа ведет себя, как сильная кислота, и нейтрализуется первой электропроводность после первого изгиба повышается, а после нейтрализации фенольной группы происходит второй изгиб. Йодная кислота ведет себя,как двуосновная кислота. Первая константа ионизации очень большая, и изгиб появляется на линии электро-эквива.1ентности. Вторая кон-следовательно, второй изгиб [c.175]

    Титрованные растворы для ультрамикроанализа готовят в меньших количествах, чем для микроанализа, но не в слишком малых (5—10 мл), так как в случае малых объемов изменение титра раствора в связи с их испаренйем или растворимостью стекла велико. Следует, однако, иметь в виду, что для получения правильных результатов при вычислениях необходимо пользоваться значением нормальности титрованного раствора, определенным в условиях эксперимента. [c.120]

    В [I] отмечалось, что при объективной регистрации изменение интенсивности люминесценции в процессе титрования можно с достаточной точностью и хорошей воспроизводимостью определять 1—50 мкг галлия. Однако более целесообразно определение выполнять при pH 2,3—2,5, что значительно улучшает селективность. Так, например, при этих значениях pH раствора определение галлия возможно в присутствии 200-кратных количеств ионов кальция, бария и магния 20-кратных количеств ионов марганца и кадмия 1000-кратных количеств хлорид- и нитрат-ионов, а также 500-кратных количеств фосфат- и арсенат-ионов (последнее особенно ценно при определении галлия в полупроводниковых арсенидных стеклах). Ионы трехвалентного железа мешают определению в очень малых количествах, однако после восстановления аскорбиновой кислотой возможное соотношение [Оа +] [Ре +] становится равным 1 1. [c.26]

    Особое значение для кондуктометрических определений имеет pH среды. При больших концентрациях водородных или гидроксильных ионов раствор имеет высокую электропроводность, что создает неблагоприятные условия для кондуктометрических определений, так как в процессе титрования электропроводность сравнительно мало изменяется. Поэтому при титровании используются по возможности слабокислые или слабощелочные среды. В этих условиях изменение концентрации высокоподвиж-иых водородных или гидроксильных ионов в процессе реакций, наоборот, способствует изменению электропроводности раствора при титровании. [c.110]

    Кривые титрования имеют значение для общего представления об изменениях концентраций реагирующих веществ во время титрования и о скачкообразном изменении вблизи точки эквивалентности. По кривым титрования можно установить вс13Мож-кость применения объемного анализа для определения отдельных компонентов в тех или других условиях. [c.277]

    Эти кривые показывают, в какой мере реакция протекает цо конца, цают возможность судить о точности соответствующих определений и находить точку эквивалентности, а следовательно, и выбирать подходящий индикатор. Известны цва типа кривых титрования линейные и логарифмические кривые. В первом случае на оси абсцисс отклацывают объем прибавленного в раствор титранта, на оси ординат - значения величин, линейно изменяющихся с изменением концентрации реагирующих веществ (например, оптическую плотность, электропроводность и т.п.). Во втором случае на оси абсцисс также отклацывают объем прибавленного в раствор титранта, а на оси ординат - величины, линейносвязанные с логарифмами концентраций веществ, участвующих в реакции к таким величинам относятся pH, окислительно-восстановительные потенциалы и цр. [c.60]

    В методах кислотно-основного титрования чаще всего применяют цветные индикаторы, окраска которых зависит от pH. Причем цля каждого индикатора окраска меняется в строго определенном интервале значений pH. Зги икцикаторы называются кислотно-основными, к ним предъявляются следующие требова- ия 1) окраска инцикатора при различных значениях pH цолжна явно различаться 2) изменение цвета инцикатора должно происходить резко в небольшом интервале значений pH 3) окраска индикатора должна быть интенсивной 4) количество кислоты или основания, необходимое для изменения окраски инпи-катора, должно быть настолько мало, чтобы не искажались результаты титрования 5) изменение окраски индикатора должно быть обратимым процессом. [c.73]

    Важной задачей аналитической химии является нахождение новых методов установления конца титрования, поскольку с этим связано расширение типов реакций, применяемых в объемном анализе. Тенденция развития направлена в сторону физических методов индикации, которые в отличие от химических не вносят изменений в аналитическую систему и тем самым обусловливают принципиально большую точность индикации. Кроме того, это способствует автоматизации титриметрических определений, что имеет большое значение для химической промышленности. Однако наиболее пригодны для автоматизации методы, не связанные с измерением объемов, например метод меченых атомов, измерение УФ- и ИК-поглощения, УФ- и рент-геноэмиссионный спектральный анализ. [c.120]

    Определение систематической индикаторной ошибки из диаграммы [до—pH. Систематическую индикаторную ошибку можно определить, нанося на диаграмму lg с—pH титруемой кислоты значение интервала перехода окраски соответствующего индикатора. На рис. Д.57 приведена логарифмическая диаграмма 0,1 н. раствора сильной кислоты и интервалы перехода окраски некоторых индикаторов с допущением, что титрование проводят до первого изменения окраски. При этом отрезок прямой, соответствующий интервалу перехода окраски индикатора, левым концом касается прямых Н3О+ или 0Н соответственно. По уравнению (115) и из диаграммы, приведенной на рис. Д. 57, можно рассчитать систематическую относительную индикаторную ошибку при титровании сильных кислот. В кислотной области сон-<СснзО+. а в щелочной области сНз0+<С0Н-, поэтому / г —СН3О+/С0 или Рг сон-1Со. Значение общих концентраций можно взять из диаграммы, так что ошибку легко рассчитать. [c.151]

    Оптимальную чувствительность измерений получают при максимальном изменении измеряемой величины в зависимости от удельной электропроводности. Для обоих типов кривых это имеет место в областях с наибольщей крутизной, т. е. в области их точки перегиба. При этом нужно помнить, что колоколообразная кривая имеет две точки перегиба иначе говоря, для методов, в которых используется активная составляющая, существуют две области оптимальных измерений (численные значения в них противоположны по знаку). З-образная кривая имеет только одну точку перегиба. Таким образом, измерения реактивной составляющей могут быть проведены только в одной оптимальной области электропроводности. На рис. Д. 139 представлена взаимосвязь между показаниями прибора, удельной электропроводностью пробы, оптимальной рабочей областью и чувствительностью, а также типичные кривые титрования. Из кривых, приведенных на рис. Д. 139, можно сделать вывод, что при одинаковых параметрах приборов оптимальная область при измерении реактивной составляющей находится посередине между двумя рабочими областями метода активной составляющей. Положение указанных областей зависит от параметров приборов, поэтому перед проведением измерений нужно один раз снять характеристическую кривую для определения оптимальной рабочей области. В общем в обоих методах, повышая рабочую частоту, можно охватить также и область более высоких значений электропроводности, т. е. область более Ьысоких концентраций электролитов, как это видно из рис. Д.140 и Д.141. [c.333]

    Последовательнссть выполнения работы. В стакан для титрования налить 10 мл сильной или слабой кислоты определенной концентрации, добавить 10—15 мл дистиллированной воды и тщательно перемешать раствор, затем внести такое количество кристаллического хингидрона, чтобы часть его не растворилась. Опустить в стакан гладкий платиновый электрод и выдержать раствор 5—8 мин. При помощи солевого мостика хингидронный электрод соединить с каломельным электродом. Собранный гальванический элемент включить в потенциометрическую схему и провести потенциометрическое титрование. Сначала реагент добавить по 0,5 мл, тщательно перемешивая раствор мешалкой. После каждой порции прилитого реагента измерять э. д. с. гальванической цепи компенсационным методом. Когда изменение э. д. с. от каждой порции добавленного реагента становится значительным, то количество прибавленного реагента уменьшить до 0,1 мл. После точки эквивалентности добавление реагента вести по 0,5 мл до постоянного значения потенциала. По полученным данным вычертить потенциометрическую кривую. По количеству израсходованного реагента на титрование (точка эквивалентности на кривой) вычислить концентрацию исследуемого раствора и определить графически буферную емкость. [c.314]

    Определение концентрации титранта раствора ЭДТА). Пробу 10 мл титрованного раствора сульфата цинка пипеткой переносят в стакан вместимостью 100 мл, разбавляют дистиллированной водой до 60-70 мл и нейтрализуют избыточную кислотность 2%-м раствором аммиака по индикатору метиловому красному до перехода окраски из розовой в желтую (почти бесцветную). После этого прибавляют 5 мл аммиачного буфера, несколько капель индикатора эриохрома черного Т до окрашивания раствора в винно-красный цвет и устанавливают выбранный светофильтр. Полученный раствор титруют из микробюретки раствором ЭДТА, записывая в каждой точке значение оптической плотности. Титрование продолжают до тех пор, пока не обнаружат резкое изменение оптической плотности, после чего измеряют оптическую плотность еще в 3-4 точках. Строят кривую титрования (рис. 15.19), находят точку эквивалентности и рассчитывают концентрацию титранта. [c.179]

    В процессе титрования к исследуемому, например кислому, раствору, содержащему индикатор, приливают определенные порции щелочи. При этом концентрация ионов в растворе будет уменьшаться, что, согласно принципу Ле Шателье, приведет к изменению в нем концентрации ионов и молекул индикатора.В определенной области значений pH, называемой областью перехода индикатора, концентрация одной из этих форм, ионной или молекулярной, станет преобладающей и раствор приобретет ее окраску. К числу индикаторов, представляющих собой слабые органические кислоты, принадлежат лакмус, фенолфталеин, феноловый красный, ализариновый желтый. К индикаторам, представляющим слабые основания, относятся, например, метиловый оранжевый, метиловый красный, кри-сталлвиолет. Выбор того или иного индикатора определяется интервалом pH, в котором необходимо поддерживать кислотность исследуемого раствора (табл. 18). [c.162]

    Как следует из кривой в координатах. — к (см. рис. 21, а), величина возрастает значительно быстрее слева от максимума характе-, ристической кривой, нежели справа от него, при одной и той же скорости изменения к. Поэтому определение состава растворов, измерение концентраций бинарных растворов и титрование могут быть проведены с большей точностью и при большей чувствительности измерительных устройств именно в диапазоне значений концентраций, лежащих слева [c.120]

    Кривые титрования по методу окисления — восстановления. Наиболее четко связь между системами титруемого или соответственно титрующего веществ и степенью оттитровывания т проявляется при титровании по методу окисления — восстановления. В этом случае т рассматривают в качестве параметра, являющегося функцией потенциала. Соединения, содержащие элементы, способные существовать в нескольких степенях окисления, перед титрованием следует перевести в одно определенное окислительное состояние. Если предположить, что окислительно-восстановительная система состоит только из окисленной или только из восстановленной формы, то по уравнению Нернста (см. стр. 50) это соответствует бесконечной величине потенциала, что практически неосуществимо. Благодаря способности очень многих веществ к окислению или восстановлению всегда имеется возможность изменения другой окислительно-восстановительной системы (хотя бы, например, за счет окисления или восстановления воды). Несмотря на то что концентрация сопряженных окислителя и восстановителя в этом случае все еще остается исчедающе малой, она все-таки составляет конечную величину. Поэтому значение потенциала в начальной точке кривой окислительно-восстановительного титрования непосредственно по уравнению Нернста определить нельзя. Дальнейшее описание окислительно-восстановительного, равновесия при титровании по реакцииЯ [c.64]

    В табл. 3.7 приведены наиболее важные сопряженные кислотно-основные пары. Для кислот с р/Сд < —1,74 алкалиметрически титруется НдО , образовавшийся вследствие нивелнру1ош,его эффекта воды. Кривые титрования слабых электролитов представлены иа рис. 3.4, из которого следует, что с увеличением значения рКд скачкообразное изменение pH в точке эквивалентности уменьшается. Чем слабее кислота, тем дальше сдвигается показатель титрования в щелочную область. Этим руководствуются при выборе окрашенного индикатора. Четкого определения конечной точки нельзя достигнуть уже при титровании кислот с рА д 9. [c.78]


Смотреть страницы где упоминается термин Значение изменение при титровании определения: [c.186]    [c.226]    [c.237]    [c.314]    [c.32]    [c.286]    [c.178]   
Химико-технические методы исследования Том 1 (0) -- [ c.322 ]




ПОИСК







© 2025 chem21.info Реклама на сайте