Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правило замещения водорода также

    В. В. Марковникову принадлежат крупные заслуги в постановке и выяснении проблемы взаимного влияния атомов в органических соединениях. Хорошо известны сформулированные им правила присоединения, а также замещения водорода галогенами. Многие молодые ученые желали работать в его лаборатории, чтобы усовершенствовать свои знания под руководством В. В. Марковникова. Так, у него работал А. П. Сабанеев (1843— 1923), впоследствии профессор общей химии Московского университета. Ему принадлежит в частности исследование по определению молекулярной массы коллоидов. Среди учеников В. В. Марковникова в 80-х гг. следует назвать М. И. Коновалова (1858—1906), получившего известность своими работами по нитрованию парафиновых углеводородов. В 1893 г. в диссертации [c.200]


    В соединениях с водородными связями при замещении водорода на дейтерий изменяется также равновесное расстояние До-Для несимметричных связей оно увеличивается, причем приращение ДЛо = о(О) — о(Н) для различных соединений варьирует от 10 до 6 10" А. В симметричных связях, например (РНР) , происходит, наоборот, небольшое укорочение (порядка 10 А). Изотопное изменение испытывает также равновесная длина А—Н. Согласно нейтронографическим данным, нри замещении Н на В в несимметричных связях О—Н---0 оно, как правило, уменьшается на 10 —10 А. [c.64]

    Работами Броуна и его школы показано, что правила ориентации при электрофильном замещении водорода в ароматических соединениях зависят также от химической активности реагента. Высокой его активности соответствует нивелирование различий по отношению к реакциям замещения у неравноценных атомов (орто-, мета- и пара-положения). Замещение мало селективно, и выходы изомеров приближаются к условию статистической равновероятности, т. е. к 40% орто-, 40% мета-и 20% пара-изомера. Установлено, что логарифм фактора парциальной скорости реакции замещения в пара-положении (1 /р) линейно связан с фактором селективности Рз, который равен логарифму отношения факторов парциальной скорости замещения в пара- и мета-положения (Рв = % /р//тп)- [c.344]

    На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя (т. е. электрофильная или нуклеофильная природа действующего реагента). Подавляющее большинство наиболее важных реакций замещения в бензольном кольце — это реакции электрофильного замещения (замена атома водорода, отщепляющегося в виде протона, положительно заряженной частицей) — реакции галогенирования, сульфирования, нитрования и др. Поэтому в нашем небольшом курсе правила замещения будут рассмотрены лишь для этих реакций. [c.118]

    Замещение третьего атома водорода при центральном атоме углерода новой группой, например карбоксильной, и во второй молекуле другого водорода также карбоксильной группой и приведет к тому, что обе молекулы молочной кислоты станут асимметричными (в них отсутствуют плоскость и центр симметрии) и будут содержать атом углерода, связанный с четырьмя различными заместителями,— асимметрический атом углерода, обозначаемый обычно звездочкой. Обе молекулы молочной кислоты не могут совместиться, так как их пространственное строение различно. Они являются зеркальными изображениями и относятся друг к другу, как перчатки с правой и левой руки или как винты с правой и левой нарезкой  [c.184]


    Для гидридов наблюдается такое же постепенное изменение природы химической связи и характера соединения, как и у других соединений в каком-либо данно.м периоде, как, например, у метильных производных элементов этого периода. Гидриды щелочных металлов, подобно метильным производным щелочных металлов, — кристаллические твердые соединения ионного характера гидриды бериллия и магния представляют собой твердые полимерные вещества, которые, по-видимому, по своей природе являются промежуточными между ионными и ковалентными соединениями, в то время как гидриды щелочноземельных металлов — ионы. И хотя гидриды В, С, Ы, О и Р преимущественно ковалентны, увеличение кислотности атомов водорода в ряду В, С, О, N и Р заметно сказывается на свойствах этих гидридов. Многие реакции гидридов, а также методы их получения аналогичны реакциям соответствующих металлоорганических соединений, и к гидридам, по-видимому, применимо и правило замещения (см. гл. 3). В качестве примера приведем, например, реакцию обмена между гидридом электроположительного металла и галогенидом менее электроположительного металла  [c.348]

    Различие в химических функциях соединений, принадлежащих к одному и тому же типу, Жерар объясняет природой замещающих групп Образующийся каждым типом в отдельности ряд имеет свои крайние концы, которые могут быть названы положительной или левой стороной н отрицательной пли правой стороной. Органическая группа (например, метил, этил, амил и т. д, — М. Ф.), расположенная на положительной стороне, при замещении водорода будет давать соединения, также принадлежащие к этой стороне [155, стр. 124]. Дальше Они действительно ведут себя подобно калию или другому, так называемому электроположительному металлу окиси (спирты.— М. Ф.) и алкалоиды, образующиеся при этом, ведут себя подобно основаниям, поскольку они способны со- [c.267]

    Одноосновные карбоновые кислоты способны к диссоциации. Они проявляют кислые свойства, окрашивая лакмус в красный цвет. Как правило, карбоновые кислоты являются слабыми. Одноосновные карбоновые кислоты участвуют в реакциях замещения водорода карбоксила (например, металлом), в реакциях замещения гидроксильной группы, в реакциях присоединения к карбоксилу (например, воды), а также в реакциях замещения атомов водорода в радикалах, что свойственно углеводородам (даже предельным). [c.91]

    Молекулярная рефракция систем с сопряженными двойными связями, как уже говорилось, более чувствительна к конститутивным влияниям, чем молекулярная рефракция при других видах связей. Расположение и тип заместителей в сопряженных системах при известных условиях оказывают очень сильное влияние на экзальтацию при этом сопряженная система нарушается. Такие нарушения, в частности, наступают при замещении водорода у среднего атома в таких случаях говорят о центральном нарушении в отличие от бокового нарушения, которое вызывается замещением крайних атомов углерода 1 или 4 и часто бывает очень слабым [79]. При ациклических сопряжениях центральное нарушение, вызванное алкилом, приводит к значительному понижению экзальтации. Таким образом, поляризуемость по сравнению с изомерами с ненарушенной системой оказывается ослабленной. Также уменьшается, хотя в большинстве случаев не так значительно, как рефракция, и молекулярная дисперсия в видимой области спектра, которая в ненарушенных сопряженных системах особенно велика. Это правило соблюдается очень часто, даже с приближенно установленной количественной точностью, если речь идет [c.152]

    Необходимо также избегать разделения промежутками тех названий, которые этих промежутков не имеют. Как правило, соединение, полученное замещением атома водорода каким-либо другим атомом или группой называется следующим образом к названию незамещенного соединения присоединяется без промежутка приставка, соответствующая заместителю. Метилбензол правильно писать слитно, потому что бензол — это название соединения, в котором метил присутствует как заместитель. С другой стороны, уксусная кислота пишется раздельно, потому что кислота это не название конкретного соединения. [c.212]

    В момент образования, а другой — его дальнейшему превращению в ходе реакции. И та и другая стадии могут определять скорость всего процесса, т. е. промежуточное соединение может либо терять протон и давать продукты реакции, либо терять электрофильный заместитель и превращаться в исходные соединения. Если теперь водород, подвергающийся замещению, заменить на дейтерий или на тритий, то в тех соединениях, где связь С — Н заметно ослаблена в переходном состоянии, мы будем наблюдать первичный кинетический изотопный эффект, причем немеченые молекулы будут реагировать быстрее. Этот изотопный эффект должен наблюдаться как при одноступенчатом механизме, так и при двухступенчатом, если вторая ступень определяет скорость всей реакции. Однако изотопный эффект будет отсутствовать при таком двухступенчатом механизме, в котором скорость реакции определяется первой ступенью, потому что в этом случае разрыв связи С — Н в переходном состоянии не оказывает влияния на скорость реакции. Именно таким образом Меландер сформулировал проблему и именно здесь, как он сам считал, следует искать ее решение. Он установил, что реакции замещения различных ароматических соединений,, содержащих небольшие количества трития, протекают одинаково как для немеченых соединений, так и для соединений, меченых изотопами водорода. Из этого Меландер заключил, что в данном случае акт отщепления протона не сказывается на скорости реакции. В частности, это было найдено на примере реакций нитрования бензола с образованием л-динитро-бензола, нитрования нитробензола в лета-положение, нитрования толуола, нитробензола, 4-нитробензола и, вероятно, также 4-нитротолуола в орто-положение и нитрования нафталина в а-положение. Отношение наблюдаемых эффектов н/ т никогда точно не было равно единице, но,, как правило, оно было меньше 1,3. Однако если разрыв связи углерод — тритий происходил бы в определяющем скорость реакции переходном состоянии, то это отношение равнялось бы 10—20. [c.446]


    Действием электростатических противоположных сил притяжения и отталкивания объясняются также и так называемые правила ориентации. Эти закономерности касаются определения места вступления нового заместителя при реакциях замещения атомов водорода у предельных углеводородов и в ядре у производных ароматических углеводородов. В этом отнощении наиболее изучены процессы замещения атомов водорода при нитровании, сульфировании, галогенировании производных бензола. Известно, что электронная плотность в циклах замещенных бензола, гетероциклических соединениях ароматической природы, конденсированных ароматических системах распределена неравномерно. Отсюда вступающий заместитель направляется в положение, которое определяется как самой природой атакующего реагента, так и характером уже имеющегося в соединении заместителя (ориентанта). [c.160]

    Первые исследования О. Лорана были посвященьГреакциям амещения. В результате этих работ он дополнил правила замещения Ж. Дюма, указав, что одним из продуктов замещения одорода в соединениях хлором и бромом является хлороводо-од или бромоводород. О. Лоран показал также, что азотная ислота должна быть включена в число веществ, замещающих одород в соединениях, а также отметил, наконец, что при замещении водорода хлором он играет ту же роль, какую играл одороД в первоначальном соединении. [c.107]

    Изменение химической природы реагента и свойств среды дает также возможность выявить разные стороны взаимного влияния атомов в молекуле одного и того же вещества. Так, при реакциях электрофильного замещения водорода в ароматических соединениях обычно превалирует эффект сопряжения, а при реакциях протофильного замещения водорода на первый план выступает эффект индуктивного сдвига электронов. Если заменить электрофильный реагент на нуклеофильный, то происходит обращение правил ориентации замещения водорода в ароматическом кольце мало того, они изменяются даже в том случае, когда резко повышается химическая активность pea гснтов данного типа. [c.370]

    Атом фтора, обладающий наибольщей электроотрицательностью среди всех элементов периодической системы,является в то же время самым малым по размеру атомом после водорода. В связи с этим фтор — это единственный элемент, который может замещать любое число атомов водорода в органических соединениях. При этом, поскольку энертя связи С —F больше энергии связи С—Н (табл. 1.2), органические соединения фтора, как правило, более стабильны, чем соответствующие углеводородные соединения. Специфической особенностью соединений фтора является также то, что при замещении водорода на фтор молекулярная масса соединения значительно увеличивается, а температуры плавления и кипения почти не изменяются. Замещение водорода хлором не дает такого эффекта [c.10]

    Для приготовления мыл поливалентных металлов, а также кальциевых мыл повышенной чистоты используют реакцию двойного обмена. Вначале получают мыло одновалентных металлов калия или натрия, а затем обменной реакцией этого мыла с водорастворимой солью соответствующего поливалентного металла — мыло этого металла. Степень замещения водорода жирной кислоты на желаемый катион поливалентного металла зависит от концентрации щелочи в мыле исходного одновалентного металла. Готовое мыло поливалентного металла отмывают от ионов кислоты, соль которой использовалась в обменной реакции. В большинстве случаев мыло приготовляют под атмосферным давлением в контакторах-смесителях, обогреваемых теплоносителем [259, 260]. Для более эффективного использования жирового сырья и омыления трудноомыляемых продуктов (таких, как воска) процесс проводят под давлением в автоклавах. Как правило, процесс изготовления мыла периодический. В последние годы разработаны схемы непрерывного получения сухих мыл [358]. Такие схемы положены в основу весьма перспективных непрерывных и полунепрерывных процессов производства высококачественных консистентных смазок [358—360]. [c.260]

    Благодаря высокой подвижности атомов водорода ароматического ядра ариламинов они легко вступают в различные реакции замещения, а также конденсации, что широко используется для получения производных. При реакциях замещения сохраняется правило ориентации (см. стр. 129). Аминогруппа как заместитель первого рода направляет следующие заместители в орто- и пара-положения. [c.397]

    Существенное влияние на степень ограничения трансляционного движения атомов благородных газов при растворении оказывает природа и строение молекул неводного растворителя (рис. 1), Из рис. 1 следует, что влияние замены одних функциональных групп на другие различно. Замещение водорода метильной группой вызывает, как правило, повышение х. Так, в рядах нормальных первичных спиртов (метиловый—октиловый), алифатичеких кетонов (ацетон—дипропилкетон), альдегидов предельного ряда (уксусная — масляная), ароматических углеводородов (этилбензол — метилизопропилбензол) с увеличением числа СНз-групп значения х увеличиваются. Для ароматических аминов (анилин — диэтиланилин), циклогексана и его производных, а также предельных углеводородов характерно уменьшение х с ростом числа углеводородных атомов. Замещение в бензоле водорода галоидом, амино- и нитро- или альдегидогруппами, а также замещение в циклогексане радикала метилена карбонильной группой и водорода в парафинах гидроокислом способствует повышению х. Рассматривая некоторые изомерные, нормальные и разветвленные молекулы растворителей, можно заметить, что повышение геометрической симметрии молекул и их ветвления уменьшает значение х. В целом, анализируя значения степени ограничения трансляционного движения молекул Не, Ме, Аг, Кг, Хе и Кп во всех рассмотренных растворителях, можно составить следующий ряд по степени увеличения х в порядке увеличения компактности их структуры предельные углеводороды <первичные спирты < алифатические кетоны < альдегиды предельного ряда < [c.67]

    К веществам, которые могут присоединяться к соответствующим олефинам но радикальному механизму, относятся галоиды, бромистый водород, полигалоидные алкилы, альдегиды, спирты, амины, меркаптаны и другие сернистые соединения, пекоторые фосфорные и кремниевые соединения, а также несколько производных менее распространенных элементов. Лтом, па котором протекает замещение, т. е. атом А в реакции (2), является, как правило, или водородом, илн галоидом, хотя известны случа1[ замещения па серу и, возможно, на кислород. Интересно, что было обнаружено всего несколько случаев замещений у насыщенного атома углерода даже тогда, 1 огда эти процессы могли быть энергетически благоприятными. Этим реакции радикального ирпсоедииеиия отличаются от полярных реакций, для которых замещение на углероде является обычным процессом. [c.189]

    Правило о преимущественном 7п./ акс-элиминировании диаксиальных заместителей нашло свое отражение в своеобразной, быстрой перегруппировке г ис-вицинально замещенных циклогексанов в гел -замещенные углеводороды. (Элиминируемые группы в данном случае аксиальный атом водорода — гидрид-ион и мигрирующий метильный заместитель.) В реакциях сушения цикла первым этапом является элиминирование экваториального атома водорода. В реакциях, протекающих без изменения размеров цикла, элиминируется (также в виде гидрид-иона) аксиально ориентированный водород. В реакциях расширения цикла большое значение имеет конформация заместителя в исходной молекуле. Именно эта конформация определяет структурные и стереохимические особенности протекания реакции расширения циклов и. связь между пространственным расположением замещающих групп в исходных и образующихся при изомеризации углеводородах. Для углеводородов со средними размерами циклов характерной реакцией является одностадийное сжатие цикла с образованием изомерных углеводородов ряда циклогексана, имеющих ту же степень замещения, что и исходные углеводороды. [c.246]

    Аминонафталинсульфокислоты ведут себя при обработке щелочью неодинаково, в зависимости от их строения, концентрации щелочи и температуры реакции. Подробное исследование действия водных растворов едкого натра различной концентрации на эти кислоты проведено Фирцем [342]. При этом, как правило, образуется смесь нескольких соединений, так как имеет место несколько однов[)еменно и последовательно протекающих реакций — замещение сульфогруппы на гидроксил или на водород и замещение аминогруппы на гидроксил. Так, из 1-ампнонафталин-4-сульфо-кислоты (нафтионовоп кислоты) получаются варьирующие количества 1-нафтола и 1-нафтол-4-сульфокислоты, а также следы [c.242]

    Характеристические полосы в длинноволновой части спектра (области отпечатков пальцев X > 7 мкм) при отсутствии дополнительной информации обычно не могут служить убедительным доказательством наличия соответствующих группировок. В этой сложной области спектра, как правило, много полос скелетных колебаний с широкими диапазонами частот, накладывающихся на характеристические полосы галогенов, треха омных групп СНг, NO2, SO2, деформационных колебаний водорода при двойных связях и кольцах ароматических и гетероароматических соединений. В таких условиях полезным дополнительным критерием при отнесении полос может быть высокая интенсивность некоторых характеристических полос (валентных колебаний NO2, SO2, 5=0, G—О, N—О), но почти всегда необходимы дополнительные сведения о происхождении, составе и структуре исследуемого вещества. Обнаружение полосы в данном диапазоне Частот само по себе еще не может служить достаточным основанием для ее однозначного отнесения. Предполагаемое отнесение спектральной полосы должно быть подтверждено наличием в спектре других характеристических полос данного структурного фрагмента. Так, например, наличие максимумов поглощения на участке 1500—1600 см еще не доказывает, что исследуемое вещество относится к ароматическим соединениям. Этот вывод можно сделать только при одновременном присутствии в спектре полос, которые могут быть приписаны валентным и деформационным колебаниям водородных атомов бензольных колец (см. рис, 1.8), а также характерного для каждого типа замещения слабого поглощения на участке 1650—2000 см" . Совокупность всех этих признаков не только подтверждает [c.19]

    Карбоновые кислоты декарбоксилируются [211] под действием тетраацетата свинца, давая разнообразные продукты, включая сложные эфиры типа ROA (образующиеся при замещении СООН на ацетокси-группу), алканы RH (см. т. 2, реакцию 12-39) И, если субстрат содержит 3-атом водорода, алкены, получающиеся в результате элиминирования Н и СООН, а также ряд других продуктов, являющихся результатом перегруппировок, внутримолекулярных циклизаций [212] и взаимодействия с молекулами растворителя. Если R — третичная группа, основным продуктом обычно является алкен, который часто образуется с хорошим выходом. Высокие выходы алкенов достигаются также в случае первичных или вторичных групп R, но для этой цели вместо тетраацетата свинца используют систему u(0A )2 — РЬ(0Ас)4 [213]. В отсутствие ацетата меди неразветвленные кислоты дают в основном алканы (хотя выходы, как правило, низки), а кислоты, имеющие разветвление в а-положении, могут давать сложные эфиры или алкены. Сложные эфиры с хорошими выходами получены из некоторых разветвленных кислот, из р,у-ненасыщенных кислот, а также из кислот, где R = бензильная группа. у-Кетокислоты с хорошими выходами приводят к а,р-ненасыщенным кетонам [214]. В окислительном декарбоксилировании использовались и другие окислители, включая соединения Со(П1), Ag(II), Mn(III) и Се (IV) [215]. [c.289]

    По направлению, идущему с образованием дегидробензола, как при взаимодействии с пара-, так и с лйта-замещенными галогенпроизводными получают смесь анилинов, однако при взаимодействии с орто-замещенными галогенпроизводными получают только Л е/иа-замещенный анилин (пример в.1). Точно предсказать относительные скорости реакции по обоим этим направлениям трудно, но, как правило, чем выше основность реагента и кислотность ви-цинального водорода, а также чем менее реакционноспособен галоген, тем больше будет участие образующегося в качестве промежуточного соединения дегидробензола. 1-Галогеизамещенный нафталин и амид натрия, по-видимому, реагируют исключительно через стадию образования дегидронафталина, давая 33% 1- и 67% [c.508]

    Ориентация присоединяющейся группы в случае несимметричных олефинов определяется тем, что радикал А на стадии а присоединяется обычно к менее замещенному атому углерода. Классическим примером этого, так называемого антимарковниковского, присоединения является присоединение бромистого водорода к олефинам в присутствии пероксидов, которое было открыто Карашом и Майо в 1933 г. (см. табл. 2.2.1, пример 8). Такую ориентацию объясняют обычно тем, что главную роль играет устойчивость образующегося радикала поскольку из двух возможных радикалов более замещенный является более устойчивым, то присоединение на стадии а происходит против правила Марковникова отметим, однако, что эта точка зрения не является общепринятой [76]. Другая особенность проявляется при радикальном присоединении к олефинам спиртов и аминов, которое приводит к образованию а-С—С-связи (табл. 2.2.1, примеры 4 и 7). Этот результат противоположен ионному присоединению, которое приводит к образованию связей С—О и С—N. и является следствием высокой энергии разрыва связей О—Н и N—Н, а также относительной устойчивости радикалов, имеющих в а-положенин атом кислорода нли азота. [c.214]

    Деструкция под влиянием физических воздействий. Стойкость полимеров к различным видам физического воздействия зависит не только от прочности валентных связей цепей, но и от природы функциональных групп и заместителей в макромолекуле. Как правило, введение заместителей снижает устойчивость полимера, но если все атомы водорода при углероде карбоцепных полимеров замещены, стойкость снова возрастает. При неполном замещении галогенами, группами ОН и т. д. и повышенных температурах легко отщепляются HHal, вода и др. Этот вид деструкции почти всегда сопровождается окислительными процессами за счет кислорода воздуха, нередко имеет место также образование сетчатых полимеров и т. д. Подбирая соответствующие условия, можно усилить или ослабить роль указанных вторичных процессов. [c.631]

    Эти исследователи обнаружили также, что в отсутствие фенолятов натрия относительная легкость гидрирования крезолов аналогична наблюдавшейся для ксилолов [369], т. е. снижается в последовательности пара > мета > орто. Как и в случае кси-ленолов, симметрично замещенный 3,5-диметилфепол гидрировался с наибольшей легкостью, а производные, содержащие метильные группы в орто-положении, восстанавливались труднее всего. В присутствии 0,3% мол. фенолята натрия гидрирование каждого из изомерных крезолов (0,5 г-мол в присутствии 3 г никеля Ренея при давлении водорода 130 — 150 ат) начиналось при 60° и завершалось за 30 мин. При 170° в присутствии 0,4% мол. соответствующих натриевых солей все испытывавшиеся ксиленолы полностью восстанавливались в циклогексанолы за 0,3 часа. Во всех случаях связывание водорода начиналось при 85°. Как правило, присутствие натриевой соли не оказывало существенного влияпия на преобладающее образование того или иного изомера при восстановлении. В продуктах же гидрирования крезолов во всех случаях преобладали тракс-изомеры. [c.214]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]

    Образование продукта присоединения в реакции ароматического замещения должно сопровождаться изменением гибридизации от плоскотригональной до тетраэдрической. Как известно (см. разд. VA, 1), подобное изменение гибридизации обычно приводит к обратному по направлению изотопному эффекту. Отсутствие, как правило, такого обратного эффекта в реакции нитрования Стрейтвизер и сотрудники [53] объясняют тем, что его проявлению в этой реакции препятствует увеличение гиперконъюгационного взаимодействия с л-орбиталями ароматического кольца, когда атомы водорода выходят из плоскости. Берлинер и Шуллер объясняют наблюдаемый ими эффект ( н>Ав) подобным же образом. Они считают, что эффект, обусловленный изменением гибридизации и приводящий к увеличению скорости замещения, с избытком перекрывается противоположно направленным эффектом гиперконъюгации в переходном состоянии или каким-то другим фактором . Основное отличие между переходными состояниями в реакциях нитрования посредством N0 и бромирования Вгг состоит в том, что в первом случае степень оттягивания электронов от ароматического кольца значительно больще. В разд. IVA, 2 были приведены данные в пользу того, что перемещение атома водорода кольца в положение, где он может взаимодействовать с ароматической я-электронной системой, происходит с меньщей легкостью в тех случаях, когда эта система обеднена электронами. Если это так, то в реакции бромирования недейтерированное переходное состояние должно стабилизироваться за счет эффекта гиперконъюгации в относительно большей степени, чем в реакции нитрования. Результаты Берлинера и Шуллера, согласующиеся, таким образом, с этими представлениями, подтверждают, кроме того, предположения, выдвинутые Стрейтвизером для объяснения отсутствия изотопного эффекта в реакции нитрования. Эти данные, а также различия -изотопных эффектов в реакциях сольволиза алкилгалогенидов и ионов сульфония [см. разд. УБ, 4, а (2)] можно, кроме того, рассматривать как еще одно доказательство того, что наличие положительного заряда в переходном состоянии неблагоприятно сказывается на величине гиперконъюгационного изотопного эффекта. [c.185]

    Кривые титрования исходных образцов цеолитов приведены на рис. 1 в виде зависимости pH равновесного раствора от объема щелочи или кислоты, добавленных к каждой пробе. Ход кривых титрования согласуется с предположением об обмене ионов между цеолитом и раствором. Левые ветви кривых титрования (область добавления 0,1 N раствора НС1) лежат выше кривой холостого опыта (кривая, полученная в тех же условиях, но в отсутствие цеолита) и соответствуют обмену ионов натрия твердой фазы на ионы водорода раствора. Характерно, что чем меньше отношение А12О3 3102 в цеолите, тем больше кривая титрования смещается в сторону меньших значений pH. Замещение ионов натрия на ионы водорода при данной концентрации солевого фона у цеолита А происходит в области pH гг 7, у цеолита X — в области pH гь 5—6, у эрионита — в области pH 3. Правые ветви кривых титрования цеолитов А и X также не совпадают с кривой холостого опыта, а находятся несколько правев ее, что соответствует процессу обмена ионов водорода цеолита на ионы натрия из раствора. Возможность такого обмена очевидна, поскольку исходные цеолиты А и X были в небольшой степени декатионированы. Кривые титрования характеризуют эрионит как сравнительно сильнокислотный катионит, а цеолиш А и X как спабокислотные, причем кислотные свойства цеолита выражены тем сильнее, чем больше в нем относительное содержание окиси кремния по сравнению с содержанием окиси алюминия. [c.38]


Смотреть страницы где упоминается термин Правило замещения водорода также: [c.51]    [c.353]    [c.187]    [c.424]    [c.424]    [c.375]    [c.382]    [c.291]    [c.124]    [c.212]    [c.204]    [c.126]    [c.502]    [c.256]    [c.449]    [c.671]    [c.60]    [c.256]   
Избранные труды (1955) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение водорода

Замещение водорода на водород



© 2024 chem21.info Реклама на сайте