Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мономеры влияние строения на свойства полимера

    То же самое касается и полимеров пространственного строения. При реакциях мономеров или их смесей с функциональностью более двух образуются полимеры разветвленного, сшитого или пространственного строения с произвольным распределением боковых цепей и мостиков между главными цепями молекул. Регулируя порядок распределения и расстояния между разветвлениями в главных цепях молекул, можно таким образом оказывать влияние на свойства полимеров при незначительном изменении его состава. Однако попытки регулировать разветвления в главных цепях молекул с помощью обычных методов полимеризации или поликонденсации пока не привели к положительным результатам. И все же синтез пространственных полимеров регулярного строения может быть осуществлен на основе разветвленных олигомеров, имеющих заданную длину ответвления и одну функциональную группу на конце каждого разветвления [2]. При реакциях функциональных групп таких олигомеров должен образовываться полимер пространственной структуры с заданной величиной ячейки. [c.160]


    Строение исходного мономера чрезвычайно сильно влияет на те свойства полиолефина, которые определяются короткими временами релаксации. Наоборот, строение мономерной единицы цепи практически не оказывает сильного влияния на свойства полимера, определяемые большими временами релаксации. К числу важных особенностей строения относятся стереорегулярность, так называемый среднеквадратичный радиус инерции макромолекулы, а также способность макромолекул образовывать переплетения . Изменяя строение полимера, можно до некоторой степени влиять на количественную сторону обсуждавшихся выше зависимостей, однако качественная картина при этом остается неизменной. [c.101]

    Состав и строение макромолекул зависят не только от химического состава и строения молекул мономера, но и от способа, с помощью которого осуществлено соединение малых молекул в большие. При этом как в цепных, так и в ступенчатых процессах синтеза полимеров невозможно представить себе случай, когда все образующиеся макромолекулы имели бы одинаковую степень полимеризации, т. е. одинаковую молекулярную массу. В любом образце полимера присутствуют вместе макромолекулы разных размеров, т. е. любой полимер неоднороден по молекулярной массе. Эта полимолекулярность является одним из основных понятий в химии и физике полимеров. Существенные прочностные свойства полимеров проявляются при довольно больших значениях молекулярной массы (5—10 тыс. ед.) и далее возрастают с ее увеличением. Регулирование молекулярной массы полимера в процессе синтеза является, таким образом, важным фактором влияния на его механические свойства. [c.16]

    Пол и конденсацией называется реакция соединения молекул одного и разных мономеров, происходящая в результате взаимодействия их функциональных групп и сопровождающаяся выделением побочных низкомолекулярных веществ (HjO, H l, Oj и др.). Характер и количество функциональных групп исходных соединений оказывают большое влияние на строение и свойства полимеров. Вот некоторые из функциональных групп, обеспечивающие возможность участия веществ в процессе поликонденсации  [c.388]

    Проведенный теоретический анализ [25, 272] подтвердил, что величины /См существенно зависят от строения и способа введения исходных соединений в сферу реакции. Так, вычисленные на основе опытных данных значения полиэфиров при нанесении их на теоретическую кривую зависимости K от г (рис. 4.12) хорошо совпадают с величинами определенными из такой теоретической зависимости по экспериментально найденным значениям г несимметричных диолов. Тем самым, с одной стороны, подтверждаются правильность и общий характер сделанных выводов о влиянии условий проведения акцепторно-каталитической полиэтерификации на микроструктуру образующихся макромолекул. С другой стороны, доказывается возможность предсказания строения синтезируемых полимеров, исходя из экспериментально полученных значений г. Полученные результаты однозначно свидетельствуют о том, что в условиях неравновесной поликонденсации с участием несимметричных мономеров возможно целенаправленно синтезировать полимеры заданной микроструктуры, а следовательно, и с нужным комплексом ценных свойств. [c.62]


    Представлены методы синтеза фосфорсодержащих метакрилатов и обобщены данные об особенностях их радикальной полимеризации и сополимеризации с непредельными соединениями. Показано влияние строения и условий полимеризации данных мономеров на их реакционную способность и свойства получаемых полимеров. Представлены возможные направления использования полимеров фосфорсодержащих метакрилатов. [c.87]

    Синтезу смешанных полиамидов и изучению зависимости их свойств от строения структурной единицы посвящены многие работы Коршака и Фрунзе [706, 860—862, 865, 870—875, 896, 899, 918—920], которые установили, что кроме природы мономеров большое влияние на свойства смешанных полиамидов оказывает также упорядоченность строения вдоль цепи полимера, от [c.147]

    Двадцать пять лет тому назад соединение, образующееся при полимеризации акрилонитрила, рассматривали как любопытный лабораторный продукт, непригодный для переработки, — нерастворимый в обычных органических растворителях, не плавящийся и не поддающийся формованию. Важным моментом явилось открытие того факта, что полиакрилонитрил может растворяться в сильно полярных растворителях. В результате для определения природы химических сил, обусловливающих инертность полиакрилонитрила, стало возможным исследовать как растворы, так и частицы различной формы, полученные из растворов полиакрилонитрила. Однако до СИХ пор полностью не выяснили природу этих сил. Различные лаборатории не смогли согласовать своей точки зрения относительно свойств разбавленных растворов. Кроме того, диапазон изменений в молекулярной структуре полимера ограничен, и это затрудняет установление связи между структурой и химическими свойствами. Несмотря на большое число исследований, посвященных полимеризации акрилонитрила, и общее качественное объяснение феноменологических особенностей процесса, различные лаборатории продолжают детальные количественные исследования. Результаты количественных исследований очень важны, поскольку свойства полимера зависят от условий полимеризации. Цель данной главы состоит в том, чтобы дать обзор современных представлений о строении твердого полиакрилонитрила, механизме полимеризации акрилонитрила, сополимеризации его с другими мономерами и влиянии сомономера на свойства полимеров, полученных на основе акрилонитрила. [c.351]

    При полимеризации винилхлорида отрицательное влияние примесей проявляется главным образом в том, что при взаимодействии с растущим макрорадикалом они могут образовывать малоактивные радикалы, вследствие чего замедляется или прекращается дальнейший рост цепи. Некоторые примеси способствуют снижению степени полимеризации мономера. Включение в состав макромолекулы инородных звеньев (примесей в мономере), т. е. изменение химического строения ПВХ, отражается на свойствах полимера и, в частности, может снижать его термостабильность (гл. X). Наконец, как было недавно показано , примеси определяют также степень устойчивости винилхлорида по отношению к действию кислорода воздуха. [c.26]

    Решающее влияние на свойства полиорганосилоксанов разветвленного и лестничного строения оказывают количество органических групп (К) в исходных мономерах на один атом кремния (соотношение К/81) и степень использования функциональных групп (галогенных, алкоксильных, гидроксильных и др.) в процессе синтеза полимеров. [c.12]

    Микроструктура полимеров. Рост цепи на активных центрах, представляющих собой поляризованные молекулы или ионные пары, существенно отличается от аналогичных процессов, типичных для свободных радикалов или свободных ионов. Это отличие состоит в дополнительном влиянии, к-рое компонент В растущей цепи (ур-ние 10) оказывает на геометрию каждого элементарного акта роста и, следовательно, на пространственное строение формирующейся макромолекулы. Характер и степень такого влияния зависят от длины активной связи растущей цепи (т. е., главным образом, от ионного радиуса компонента В и от свойств реакционной среды), а также от способности активного центра к образованию промежуточных координационных комплексов с мономером (ур-ние 10а). В анионных системах это отчетливо проявляется в зависимости микроструктуры полимерной цепи от природы металла, используемого для инициирования полимеризации (в свободном состоянии или в виде какого-либо производного), и растворителя. [c.76]

    ВИДНО из рис. 11.7, импрегнирование американской липы полиметилметакрилатом приводит к некоторому увеличению модуля упругости и существенному возрастанию проч ности при растяжении, что находится в соответствии с исследованиями других авторов [390]. Наряду с прочностью возрастает также жесткость, на что указывает площадь под кривой нагрузка — деформация при испытаниях на сжатие и изгиб (см. разд. 11.2.3.1). На рис. 11.8 показано влияние на прочностные свойства строения мономера [529]. Наибольшее улучшение свойств обеспечивает сшитая эпоксидная смола и линейный полимер грег-бутилстирола, обладающего низкой летучестью и меньшей усадкой при полимеризации по сравнению с метилметакрилатом. [c.287]


    Введение дисперсных минеральных наполнителей в полимеры приводит к существенным изменениям физико-химических и механических свойств получаемых композиционных материалов, что обусловлено изменением подвижности макромолекул в граничных слоях, ориентирующим влияние поверхности наполнителя, различными видами взаимодействия полимеров с ней, а также влиянием наполнителей на химическое строение и структуру полимеров, образующихся в их присутствии при отверждении и полимеризации мономеров или олигомеров. Перечисленные факторы, безусловно, оказывают также существенное влияние на процессы термической и термоокислительной деструкции наполненных полимеров и, следовательно, на их термостойкость. Таким образом, результаты и закономерности, полученные при исследовании деструкции ненаполненных полимеров, не могут быть полностью перенесены на композиционные полимерные материалы. [c.4]

    Величина удельной функциональности мономеров влияет на ход поликонденсации и сказывается на строении и свойствах образующегося полимера, особенно при поликонденсации полифункциональных мономеров. При линейной поликонденсации это влияние на кинетику процесса не столь велико. [c.21]

    Особенность их химических свойств определяется тем, что полимеры диеновых углеводородов являются непредельными, так как на присоединение мономеров при образовании линейных цепей затрачивается одна двойная связь, а другая остается в макромолекуле в структуре основной цепи или в боковых группах. Рассмотренные ранее полимеры и, в частности, полимерные углеводороды (полиэтилен, полиизобутилен и др.) являются предельными соединениями, так как наличие одной двойной связи, приходящейся на очень большое число атомов, не оказывает какого-либо влияния на их свойства. Непредельным характером обладает натуральный каучук, который является полимером изопрена следующего строения  [c.156]

    Подробно исследованы основные закономерности поликонденсации полигалогенароматических соединений с сульфидом натрия [1-7, 16, 32, 33] и обнаружены такие ее особенности, как возрастание реакционной способности функциональных групп на начальных этапах поликонденсации, возможность изменения строения элементарного звена полимера от соотношения исходных мономеров, изменение функциональности полигалогенароматических соединений за счет процессов внутримолекулярной циклизации, существенное влияние на свойства полимеров побочной реакции макроциклизации. [c.190]

    Характерной особенностью процесса полимеризации акрилонитрила в растворе является сравнительно низкая степень конверсии мономера, не превышающая 50—70%. Не вступивший в реакцию мономер отгоняется под вакуумом из образовавшегося концентрированного раствора полимера (процесс демономеризации) и снова используется для полимеризации. Дальнейшее повышение конверсии мономера не рекомендуется во избежание образования разветвленного полимера и получения продукта, обладающего повышенной полидисперсностью. Надежных экспериментальных данных о влиянии степени конверсии мономера на строение получаемого полимера и свойства волокна пока нет. [c.185]

    Решающее влияние на свойства полиорганосилоксанов разветвленного и лестничного строения оказывают два фактора функциональность исходных мономеров, определяемая соотношением числа органических групп или радикалов в них к атому кремния (К 81), и степень использования функциональных групп (галогена, алкок-сильных, ацилоксильных, гидроксильных и др.) в процессе синтеза полимеров. Когда соотношение Н 81 снижается с 2 до 1, полимеры постепенно делаются менее текучими, плавкими и растворимыми — в зависимости от эффективности сшивания. При К 81 = 1, т. е. когда в качестве исходного сырья применяются лишь трифункцио- [c.207]

    При детальнодм изучении процесса синтеза полиформальдегида и сополимеров формальдегида с кислородсодержащими мономерами важные результаты были получены Н. С. Ениколоповым [46]. Благодаря исследованиям процессов образования и свойств гетероцепных полимеров, получаемых ионной полимеризацией гетероциклов, В. А. Пономаренко установлено большое влияние строения звеньев полимерной цени, непосредственно примыкающих к активным центрам [47]. В анионных и координационно-анионных процессах они образуют вокруг нротивоиона или металла асимметричную координационную сферу, подобную правой и левой спиралям полипептидов, которая определяет стереоспецифичность процесса. Развитые представления о строении указанных активных центров позволяют по-новому подойти к объяснению закономерностей анионной и координационно-анионной полимеризации пе только оксиранов, по и серу- и азотсодержащих гетероциклов. [c.116]

    Андреева и Котон [ 1682] изучали влияние строения мономеров на способность к полимеризации в ряду винильных производных фурана, скорости полимеризации которых в блоке и в растворах СбНбСНз в отсутствии воздуха (инициатор — перекись бензоила) при 60—100° или в присутствии ВРз при 0° увеличиваются в ряду 2-винилфуран < 2-винилбензофуран < 2-винил-дибензофуран. В этом же порядке увеличиваются молекулярные веса (вискозиметрический метод) и теплостойкость образующихся полимеров и наблюдается улучшение диэлектрических свойств. Суммарные энергии активации радикальной полимеризации соответственно равны 17,0 16,5 и 12,5 ктя/моль. [c.286]

    Реакции сшивания каучуковой фазы оказывают существенное влияние на морфологию полимера, его реологические характеристики, перерабатываемость и физико-химические свойства. При конверсии выше 80 % практически вся каучуковая фаза переходит в гель-фракцию. Реакция сшивания протекает в условиях исчерпания свободного мономера, когда конкурирующие реакции роста полистирольных цепей становятся маловероятными [308—310]. Основные реакции образования сшитой структуры в ударопрочном полистироле — реакции рекомбинационного обрыва гомополистирольных (реакции 6.2 и 6.5) или привитых полистирольных (реакции 6.1 и 6.2) цепей. Реакции сшивания так же, как и реакции прививки, существенно зависят от химического строения и структуры используемого каучука. Сшивание предпочтительно идет по двойным связям 1,2-звеньев. При 110 °С отношение константы скорости присоединения стирольного радикала к 1,2-звеньям полибутадиена к константе скорости реакции роста цепи составляет 1,5 10 [310]. Очевидно, несмотря на малые значения этой величины с уменьшением концентрации стирола вероятность образования сшитых полимеров за счет увеличения вклада реакций [c.167]

    Способ и условия иоликонденсации могут оказывать влияние на свойства получаемых полимеров. Естественно, что основные свойства определяются химической природой данного полимера, обусловленной строением исходных мономеров. Однако некоторые особенности химического и физического строения цепи могут зависеть от способа и условий ноликонденсации. Обычно особенности строения влияют на свойства полимеров не очень существенно, лишь в пределах сравнительно небольших отклонений от основного уровня свойств. Но в ряде случаев таких отклонений бывает достаточно для того, чтобы полимер, получаемый одним снособо.м, в одних условиях, был пригоден для практического исиользованпя, а получае.мый в других условиях — непригоден. Существуют два основных фактора, влияющих на изменение свойств полимеров в результате изменения условий синтеза (рис. 9.3)  [c.237]

    Решающее влияние на свойства полиорганосилоксанов разветвленного и лестничного строения оказывают два фактора функциональность исходных мономеров, определяемая соотношением числа нефункциональных групп или органических радикалов к одному атому кремния (К 51), и степень использования функциональных групп (галогены, алкоксильные, ацилоксиль-ные, гидроксильные и др.) в процессе синтеза. Когда соотношение К 51 снижается с 2 1 до 1 1, полимеры постепенно делаются менее текучими, плавкими и растворимыми — в зависимости от эффективности сшивания. При К 81=1 1, т. е. когда в качестве исходного сырья прихменяют лишь трифункциональные мономеры (метилтрихлорсилан, фенилтрихлорсилан или смесь метил- и фенилтрихлорсиланов), образуются жесткие полимеры, а это значит, что их растворы в органических растворителях (лаки) при отверждении образуют трехмерную жесткую структуру. При полном использовании функциональных групп получаются в основном неплавкие и нерастворимые сшитые продукты однако при том же самом соотношении К 51 специальные методы обработки исходных органотрихлорсиланов могут приводить к лестничным структурам и к получению гибких высокоплавких или неплавких, но растворимых продуктов. [c.239]

    В настоящее время основные закоиомериости реакций поликопденсации (глава V) хорошо изучены, хотя экспериментальные работы в этой области в основном посвящены исследованию влияния строения мономеров на образование полимеров и их свойства. Изучению кинетики и механизма реакций поликонденсации уделяется значительно меньше внимания. Процессы деструкции полимеров, полученных в результате реакций поликонденсации, изучены в меньшей степени, чем процессы деполимеризации виниловых полимеров. Часто химик, работающий в области высокополимерных соединений, сталкивается с проблемой нежелательных побочных реакций при синтезе новых полимеров. В связи с этим особое значение приобретает влияние стехиометри-ческих соотношений на ход реакций поликопденсации. Продукты побочных реакций входят в структуру полимера, что отражается на его свойствах, причем побочные реакции, хотя и представленные в незначительной степени, могут оказывать решающее влияние на волокнообразующие свойства полимерного материала. Эти обстоятельства ивюгда затрудняют синтез полимеров заданного строения. [c.15]

    Исследования показали, что при анионной полимеризации диенов в присутствии металлалкилов очень большое влияние на порядок присоединения мономеров к растущему макроаниону и, следовательно, на строение полученных полимеров оказывают свойства растворителя и металла, связанного с алкилом. Изменяя полярность связи К—Ме и полярность растворителя, можно регулировать порядок присоединения последующих звеньев, т. е. регулировать степень стереорегулярности растущей цепи. Конечное звено цепи представляет собой ионную пару, поэтому входящий между этими ионами мономер находится под влиянием ионной пары. Поскольку растворитель может образовывать сольваты или комплексы с одним или двумя членами ионной пары, свойства растворителя существенно влияют на структуру макромолекулы при анионной полимеризации. В то же время инициирующая часть катализатора—алкил, очевидно, оказывает гораздо меньшее влияние на реакцию роста макроаниона. [c.169]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Фенолоальдегидные олигомеры образуются при взаимодействии различных фенолов (фенол, крезолы, ксиленолы, двухатомные и трехатомные фенолы) с альдегидами (формальдегид, уксусный альдегид, фурфурол). При отверждении олигомерных продуктов они превращаются в соответствующие полимеры, обычно трехмерной структуры. Пластические массы на основе фенолоальдегидных олигомеров называют фенопластами. Поликонденсация фенолов с альдегидами - это многостадийный процесс, при котором протекает ряд последовательно-параллельных реакций. В результате этих реакций могут образоваться как термопластичные, так называемые новолачные, так и термореактивные - резольные олигомеры. Основными факторами, определяющими строение и свойства фенолоальдегидных олигомеров, являются функциональность исходного фенольного компонента, природа альдегида, соотношение исходных мономеров и pH реакционной среды. Фенолы, используемые для синтеза олигомеров, могут иметь различную функциональность, под которой понимают число атомов водорода фенола, способных к замещению в реакции с альдегидами. Например, при гидроксиметилировании формальдегид присоединяется к фенолу по орто- и и<зр<з-положениям, атомы углерода в которых имеют повышенную электронную плотность благодаря влиянию гидроксильной Фуппы. В табл. 3.1 приведены некоторые характеристики фенолов, наиболее часто используемых при синтезе фенолоальдегндных олигомеров. [c.62]

    Ионная полимеризация приводит к ооразованию полимеров упорядоченного или стереоспецифического строения их механические свойства (прочность, эластичность) значительно выше полимеров неупорядоченного строения, получающихся при радикальной полимеризации. Катионная полимеризация инициируется сильными протонными (НаЗО ) и апротонными (ВРд, А1С1д, ЗпС] кислотами, которые превращают мономер в карбокатион. По этому механизму протекает полимеризация изобутилена под влиянием веществ, поставляющих протоны (инициаторы протонов), [c.73]

    Следовательно, вонпервых, эти продукты высокомолекулярны (мономеры или низкомолекулярные соединения образуются только в результате побочных процессов) и, во-вторых, химическая природа полимера и строение цепей отражаются в константе скорости деструкции и значении косвенно, через их влияние на механические свойства. [c.123]

    Отвержденные полиэфиры имеют хорошие электроизоляционные свойства. В связи с тем, что электрические свойства в значительной степени определяются содержанием полярных групп в полимерах, а также возможностью их ориентации в электрическом поле, состав и строение ненасыщенных полиэфиров и сшивающих мономеров оказывают заметное влияние на электрические свойства сополимеров на их основе. Так, отмечено [113], что сополимеры,полиэфиров фумаррвой кислоты отличаются несколько более высокими показателями электроизоляционных свойств, чем сополимеры полималеинатов. После старения в естественных условиях в течение трех лет для сополимеров фумаратов характерно меньшее, чем для полималеинатов, снижение показателей удельного поверхностного электрического сопротивления р (соответственно с 1,9-10 7 до 4,9-10 5 и с 5,6-1016 до 4,5.1014 Ом) [ИЗ]. [c.178]

    Вулканизация перекисями. Интересно отметить, что в США перекиси используются при изготовлении менее 1% резин, но по темпам роста применения перекиси в 3 раза превосходят серные вулканизующие системы. Перекиси дороже серных систем в 2 и более раза, но обеспечивают снижение остаточной деформации при сжатии резин, повышение сопротивления тепловому старению и пригодны для вулканизации предельных полимеров [20]. Влияние большинства добавок, в том числе масел, на реакции перекисной вулканизации состоит в том, что перекисные радикалы могут быть дезактивированы и выведены из сферы взаимодействия с полимером. Так, добавки типа хинолина оказывают наименьшее воздействие на перекисную вулканизацию, амины — несколько большее, а фенолы при перекисной вулканизации не рекомендованы. Добавка небольших количеств полифункциональных мономеров, таких, как триалкилцианурат, улучшает свойства перекисных вулканизатов. Перекиси находят применение в каучуках различного строения, а также для высокотемпературной вулканизации силоксановых каучуков и для вулканизации совмещенных систем эластомеров. Структурирование эластомеров органическими перекисями рассматривается как цепной процесс, состоящий из стадии инициирования, т. е. распада перекиси с образованием радикалов, развития и передачи цепи с участием каучука (КаН) и обрыва цепи процесс завершается образованием трехмерной пространственной сгрук-туры, основа которой — углерод-углеродные поперечные связи. В общем виде при перекисной вулканизации каучуков могут протекать реакции  [c.14]

    Предлагаемые методики микроскопического изучения структуры позволяют проследить за механизмом образования и развития каучуковых частиц в матрице полистирола, определить их форму и распределение по объему образца, измерить размеры и построить распределение по размерам. Исполь-зование этих методик, а также их вариантов дает возможность установить гетерогенность структуры ударопрочных полистиролов, мпогостадийность образования структуры, влияние различных параметров процесса полимеризации и типа используемых продуктов (исходных мономеров и каучуков разного строения, инициаторов процесса и т. п.) па полидисперсность изучаемых систем. Нахождение корреляции между размерами частиц каучука и физико-механическими свойствами ударопрочного полистирола помогает целенаправленно проводить синтез и переработку полимеров и получать изделия с заданными свойствами. [c.60]

    Большое число синтезированных в настоящее время полиэфиров позволяет установить, как это было сделано и для полиамидов, связь между строением мономеров и свойствами образующихся полимеров. Как и следовало ожидать, и в этом отношении имеет место определенная аналогия между обоими классами полимеров. Этот круг вопросов нашел отражение в работах Хилла с сотрудниками [28, 34, 38, 45[, Изара [98], Батцера [96], а также Коршака с сотрудниками [39, 93). Характер зависимости температуры плавления алифатических поли иров от числа метиленовых групп между эфирными связями принципиально отличается от аналогичной зависимости для полиамидов в то время как у полиамидов при увеличении числа амидных групп в цепи наблюдается повышение температуры плавления (см. рис. 3, стр. 31), для полиэфиров имеет место обратное явление — чем большее число эфирных групп приходится на единицу длины цепи, тем ниже температура плавления полиэфира. Этот факт представляется на первый взгляд неожиданным, так как при увеличении числа эфирных групп в цепи возрастают силы взаимодействия и поэтому следовало бы ожидать повышения температуры плавления. По мнению Банна [95], аномальное поведение алифатических полиэфиров можно объяснить, если учесть возможность свободного вращения отдельных звеньев цепи относительно некоторых связей (в частности, входящих в эфирную группировку), и поэтому большая гибкость макромолекулы перекрывает влияние увеличения сил межмолекулярного взаимодействия (см. также [40]). Поэтому температура плавления всех алифатических полиэфиров в отличие от соответствующих полиамидов ниже температуры плавления полиэтилена и приближается к последней по мере уменьшения числа эфирных групп на каждые 100 атомов основной цепи. Эта закономерность имеет место и для полиамидов (рис. 11), но зависимость изменения температуры плавления от строения цепи обратная. [c.57]

    При небольших концентрациях [2-3% (мол.)] гексена-1 в исходной реакционной смеси скорость сополимеризации в 2,5 3,0 раза выше скорости гомополимеризации этилена на оксиднохромовом и титанмагниевом катализаторах. Аналогичное влияние на скорость сополимеризации с этиленом оказывает и ряд других высших а-олефинов различного строения. По эффективности влияния на скорость сополимеризации с этиленом на оксиднохромовом катализаторе исследованные мономеры располагаются следующим образом З-метилпентен-1 < 4-метилпентен-1 < гептен-1 < < гексен-1 < пентен-1 < пропилен. По своим свойствам полученные сополимеры отличались от обычного ПЭ высокой плотности. Оказалось, что чем ближе находится заместитель к атому углерода у двойной связи, тем заметнее уменьшение общей скорости реакции сополимеризации и выхода образующихся полимеров. [c.43]


Смотреть страницы где упоминается термин Мономеры влияние строения на свойства полимера: [c.144]    [c.30]    [c.30]    [c.147]    [c.64]    [c.48]    [c.365]    [c.48]    [c.48]    [c.355]    [c.212]    [c.213]    [c.79]    [c.205]    [c.258]   
Равновесная поликонденсация (1968) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры строение



© 2025 chem21.info Реклама на сайте