Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрод природа, влияние на кинетику

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]


    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    При одном и том же значении потенциала электрода скорость и даже направление электродных процессов могут существенным образом зависеть от адсорбции компонентов раствора. Так, сильное влияние на кинетику и механизм превращений органических веществ на окисленном электроде оказывает природа аниона и катиона фона. Это коррелирует с их различной адсорбируемостью, а также с возможностью специфического каталитического действия заряженных частиц (например, при внедрении их в оксидный слой). Так, при окислении на Р1-электроде фенилуксусной кислоты в метанольно-пиридиновых растворах добавление СЮ4 -анионов приводит к резкому снижению выхода димера в области потенциалов электросинтеза Кольбе, а основным продуктом становится бензилметиловый эфир. Это можно объяснить конкурирующей адсорбцией РЬ СН и С104 . Специфическая адсорбция катионов положительно влияет на выход димеров по Кольбе и Брауну—Уокеру. При электролизе растворов ацетатов в зависимости от природы катиона выход этана возрастает в ряду Li+нитрат-анионы — с другой, по-разному влияют на селективность анодных превращений ацетата в щелочных водных растворах в частности, первые из них увеличивают, а вторые практически не изменяют выход спирта. [c.290]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]


    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    Нами изучалось влияние различных факторов (концентрации, температуры, перемешивания, pH среды, каталитических добавок, природы металла электрода) на кинетику анодного окисления в растворах моно-, ди- и тризамещенных калиевых солей фосфорной кислоты методом поляризационных кривых и путем определения количества образовавшихся перекисных соединений. [c.162]

    Одной из основных задач теоретической химии и, в частности, физической органической химии является установление механизма реакций и оценка реакционной способности в ряду сходно построенных соединений. Среди различных типов химических реакций особое место занимают электрохимические процессы. Они, как известно, протекают в пределах тонкого слоя на границе раздела электрод—раствор и в общем случае включают в себя ряд стадий стадию доставки электрохимически активной формы в зону реакции (диффузия, предшествующие химические реакции), взаимодействие с поверхностью электрода (адсорбция, ориентация реакционного центра по отношению к поверхности электрода и т. п.), стадию переноса заряда, последующие химические и электрохимические превращения первичных продуктов электродной реакции и т. д. Строгий анализ столь сложного процесса встречает большие затруднения и пока вряд ли возможен. Однако при благоприятных условиях удается существенно упростить процесс и получить информацию об отдельных его стадиях. Значительный прогресс достигнут в понимании роли предшествующих реакций протонизации, в представлениях о механизме и кинетике каталитических реакций, адсорбции, о влиянии строения двойного электрического слоя на кинетику электродных процессов. Однако имеется сравнительно мало данных о процессах с последующими химическими стадиями. Между тем влияние этих реакций на кинетику процесса в целом и природу образующихся стабильных продуктов трудно переоценить. Более того, невозможно глубокое понимание механизма электродного процесса без учета химизма и кинетики последующих реакций. [c.138]

    Скорость электродной реакции, характеризуемая плотностью тока, прежде всего зависит от природы и предварительной обработки поверхности электрода. Далее, скорость реакции зависит от состава раствора электролита вблизи электрода, сразу же за двойным слоем. Он может отличаться от состава в глубине раствора ввиду ограниченности скорости массопереноса, рассматриваемого в частях В и Г. Однако диффузная часть двойного слоя рассматривается как часть границы раздела. Она слишком тонка, чтобы ее можно было исследовать с помощью пробника, и теория диффузного слоя является скорее микроскопической моделью, чем макроскопической теорией. Влияние строения двойного слоя на кинетику электродных процессов обсуждается в разд. 58. [c.193]

    Прежде чем перейти к дальнейшему изложению материала, необходимо отметить следующее. Как показано в предыдущих разделах, в простых некомплексообразующих средах поляризация индиевых электродов определяется скоростью собственно электрохимической реакции только вблизи равновесия и при анодной поляризации. Скорость же катодного процесса при значительной поляризации в широкой области потенциалов искажена предшествующими химическими реакциями. Очевидно, что наиболее прямым путем исследования влияния природы анионов на кинетику электрохимических реакций на индии является изучение скорости анодного процесса, обмена и катодного процесса вблизи равновесия в растворах различного состава. В случае катодного процесса при значительном удалении от равновесия на эффект влияния анионов накладывается искажающее влияние предшествующих химических реакций, и, следовательно, может быть получена лишь косвенная информация о характере зависимости скорости собственно электрохимической реакции от состава раствора. Поэтому основное внимание мы уделили тем работам, в которых проводилось исследование влияния анионов на анодный процесс и обмен. Катодный процесс будет рассмотрен отдельно и более кратко. [c.47]


    Разносторонний характер влияния анионов на кинетику электродных процессов обусловлен различными причинами,, ряд которых в настоящее время установлен. Так, при адсорбции поверхностноактивных анионов на электроде может меняться величина 1 з1-потенциала, а следовательно, поверхностная концентрация реагирующих катионов, скорость процесса и величина перенапряжения (см. обзоры [195, 202, 2031). При хемосорбции анионов в результате насыщения поверхностных валентностей. металла может произойти снижение энергии адсорбции разрядившихся частиц, вызывающее торможение катодного процесса [(2041. Наконец, анионы и другие компоненты раствора могут также принимать непосредственное участие в электрохимических стадиях с образованием комплексов различной природы [7, И, 12, 101, 109, 195, 197—201] .  [c.76]

    Несмотря на успехи в рассматриваемой области, все же значительное число вопросов остается пока не решенным. К таким вопросам можно отнести явления электрокатализа, влияние природы растворителя на кинетику и конечные продукты электрохимических реакций, старение (потерю активности) электрода при длительной эксплуатации и некоторые другие. Эти вопросы подлежат дальнейшему всестороннему исследованию. [c.118]

    Из уравнения (Х1 -65) следует, что предельная реакционная плотность тока в отличие от предельной диффузионной плотности тока не должна зависеть от скорости перемешивания. Изучение характера влияния перемешивания раствора на кинетику электродной реакции позволяет, следовательно, разграничить замедленность транспортировки и химического превращения. Установить природу замедленного химического превращения можно на основании данных по влиянию материала электрода на кинетику электродного процесса. Отсутствие влияния указывает на гомогенный характер превращения, зависимост > кинетики от материала электрода — на гетерогенность химического превращения. [c.339]

    Изменение природы или состава растворителя оказывает большое влияние на кинетику электрохимических реакций, что в случае электролиза на ртутном капельном электроде сказывается на величинах Eil. В простейшем случае обратимого восстановления катионов в отсутствие комплексообразования переход от воды к органическим растворителям или увеличение содержания органического растворителя в водно-органической смеси сдвигает значения Ei/j в положительную (по отношению к выносному водному электроду сравнения) область, причем это явление наблюдается при разряде как ионов металлов [188, 189, 193], так и органических катионов, например ионов N-алкилпиридиния [57] (рис. 23, кривые 2 и 3). [c.68]

    О механизме электроокисления гидразина. Как следует из результатов экспериментов, кинетика анодного окисления гидразина имеет сложный характер и определенные особенности изменение коэффициента наклона поляризационных кривых, сложная функциональная зависимость скорости реакции от концентрации гидразина и щелочи, наличие участков торможения и спада тока на кривых ток — потенциал, ток — концентрация гидразина, ток — концентрация щелочи, необычная зависимость предельного тока от концентрации реагента, наличие нестационарных токов, различное влияние предварительной и анодной обработок на скорость окисления гидразина на различных металлах и др. Такая сложность процессов обусловлена рядом причин необходимостью передачи на электрод четырех электронов и, соответственно, многостадийностью процесса, протеканием побочных реакций, наличием на поверхности окисных и адсорбционных пленок и др. Механизм электроокисления гидразина может меняться в зависимости от природы металла, состояния поверхности, потенциала и концентрации реагентов. В связи с этим можно говорить лишь о механизме электроокисления при строго фиксируемых условиях. Рассмотрим некоторые общие вопросы механизма электроокисления гидразина. [c.260]

    Изменение природы или состава растворителя оказывает большое влияние на кинетику электрохимических реакций, что в случае полярографии на ртутно-капельном электроде сказывается на величинах потенциалов полуволн деполяризаторов. [c.294]

    Одним из основных факторов, влияющих на скорость восстановления ионов металлов из водных растворов, является состояние поверхности электрода. Решающее значение состояния поверхности электрода обусловлено тем, что электрохимические процессы, как правило, протекают на границе фаз электрод — раствор. Естественно, что поверхностные явления, в частности адсорбция различного рода частиц на поверхности электрода и степень ее заполнения, должны играть существенную роль при протекании электрохимических реакций. Степень заполнения поверхности электрода чужеродными частицами зависит как от природы осаждающегося металла, так и от природы адсорбирующихся частиц. Поскольку в процессе электроосаждения металлов происходит непрерывное обновление поверхности электрода новыми слоями осаждаемого металла, то естественно, что при этом существенное значение приобретает соотношение скоростей осаждения металла и адсорбции чужеродных частиц. Последние влияют не только на кинетику восстановления ионов металла, но также и на структуру электролитического осадка. Таким образом, адсорбционные явления во всех случаях оказывают существенное влияние на механизм электроосаждения металлов. [c.7]

    Природа металла электрода оказывает влияние не только на кинетику, но и на механизм и направление электродного процесса [51]. Так, при электровосстановлении на металлах с низким перенапряжением водорода часто гидрирование органических соединений происходит под действием водорода, выделяющегося на электроде, а металл нередко играет роль катализатора. На электродах же с высоким перенапряжением обычно происходит перенос электронов на восстанавливающееся вещество, причем в кислых средах переносу электронов часто предшествует протонизация органических молекул, значительно облегчающая протекание электрохимической реакции (см. гл. 1,6). Поэтому на электродах с низким перенапряжением водорода сравнительно легко протекает электрогидрирование двойных связей неполярных соединений, тогда как на металлах с высоким перенапряжением двойные углерод-углеродные связи не восстанавливаются или же восстанавливаются с трудом, зато сравнительно легко восстанавливаются органические соединения с полярными группами, например альдегиды (см. многочисленные примеры, приведенные в работе Петренко [119]). [c.42]

    С использованием методов вольт-амперометрии (при непрерывном изменении потенциала) и гальваностатического метода на вращающихся и стационарных электродах из N1, Р1, Р(1, С(1, М , Со, Ре, никелевой черни, палладированной платины, двускелетного никеля было исследовано электроокисление гидразина в щелочных растворах. Потенциалы, устанавливающиеся на электродах без тока, являются смешанными потенциалами. На потенциал электродов без тока (особенно для гладких электродов) оказывает влияние наличие окислов на поверхности металла. На скелетном никеле без тока происходит разложение гидразина на Нг и N2. При окисле1П1и гидразина во всех условиях наблюдаются нестационарные токи. Кинетика анодного окисления гидразина отличается сложным характером изменением коэффициента наклона поляризационных кривых, зависимостью скорости реакции от концентрации гидразина и 1целочи, наличием участков торможения и спада тока на кривых г — ф, г — сиг — Сщ, а также необычной зависимостью предельного тока от концентрации и др. Обсуждается механизм электроокисления гидразина. Он может меняться в зависимости от природы металла, состояния поверхпости, потенциала и концентрации реагентов. [c.374]

    Электрохимическая кинетика, однако, должна учитывать и такие факторы, которые типичны только для иее и ие играют какой-либо роли в условиях обычных химических реакций. Прежде всего ЭТО нотенциал электрода, оказывающий чрезвычайно сильное в.оз-действие не только на скорость, но и на направление протекания электрохимических реакций и далее на природу ее продуктов. Кро.ме нотенциала электрода на про гекание электрохимических реакций существенное влияние оказывает заряд электрода, который 1 нервом ирнближеинн можно оце)1ить но величине потенциала в прнведепнон шкале /I. И. Антропова. [c.291]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    Многие электрохимические реакции органических соединений протекают с участием протонов. Возможность осуществления реакций протонирования и их кинетика зависят от pH среды, протоно-донорных свойств растворителя, степени гидрофильности поверхности электрода, концентрации н рК вводимых в раствор источников протонов, строения молекулы и величины рК самого восстанавливаемого или окисляемого на электроде соединения. Прото-нироваться могут как исходные реагенты, так и продукты реакции. Поэтому можно управлять процессами, меняя условия их проведения, например протоно-донорные свойства среды. Последствия таких изменений в одних случаях ограничиваются влиянием на скорость процесса, в других приводят к смене его механизма, а в третьих — к существенному изменению направления реакции и природы продуктов электролиза. [c.230]

    Величина pH раствора влияет на скорость электровосстановления различно. Например, скорость электровосстановления кислорода не зависит от pH раствора, если применяют ртутные, серебряные или золотые электроды. Но на платиновых или палладиевых электродах она возрастает с уменьшением pH раствора. В случае электровосстановления органических веществ влияние pH связано с присутствием в молекуле реагирующего вещества кислых или основных группировок. На процессы электрохимического восстановления кислорода и ряда неорганических и органических веществ существенно влияет не только природа электрода, но и знак его заряда, а также степень развития электродной поверхности. Особенно отчетливо это проявляется в случае сложных электровосстановительных реакций. Найдено также, что кинетика восстановления зависит от присутствия в растворе посторонних веществ ионного и молекулярного типа, а также от природы растворителя. [c.354]

    Природа электрода, так же как и степень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Найдено, например, что при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. При плотности тока, равной 0,24 а/сж , на медном катоде 98,5% тока расходуется на образование аммиака и только 1,5% —на образование гидроксиламина. При использовании же амальгамированного свинца выход по току аммиака составляет лишь 30%, а гидроксиламина 70%. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНОНСН3 и пинакон (СНзСОНСНз)г. [c.462]

    Сборник посвящен наиболее важным разделам электрохимии органических соединений кинетике электродных процессов, электросинтезу, влиянию природы металла электрода на процессы адсорбции, электроокисления и электровосстановленип органических веществ, полярографии. [c.2]

    Одновалентные катионы тина Li" , являющиеся жесткими кислотами, как и протон, могут участвовать в нейтрализации анион-радикалов. Катионы фона, способные к образованию йонных пар, также могут влиять на механизм электродных реакций. С помощью добавок доноров протонов обычно легко устано-бить, является ли промежуточно образующаяся частица анион-радикалом или дианионом. Роль среды, которая может иногда существенно влиять на протекание электродных процессов, изучена еще недостаточно. Растворитель или непосредственно участвует в электродном процессе, являясь донором или акцептором йромежуточно образующихся частиц, или оказывает влияние на кинетику переноса электрона в результате того, что расстояние Между электродом и центром реагирующей частицы в переходном состоянии также зависит от природы растворителя. Электрохи-Мики-органики постоянно прилагают усилия, чтобы найти растворитель с низкой кислотностью и электрофильностью для Восстановления и низкой основностью и нуклеофильностью для окисления. Примером может служить использование довольно редко встречающегося в электрохимической практике растворителя сульфолана, в котором скорости как гетерогенного переноса Заряда, так и гомогенных химических реакций сильно замедлены по сравнению с другими растворителями, что позволяет увеличить время жизни промежуточных анаон-радикальных частиц [111. [c.8]

    Влияние природы электрода на кинетику процесса. Кинетику электроокисления гидразина исследовали, в основном, в щелочных растворах, в кислых растворах окисление проводили лишь на платине и ртути. Установлено, что потенциал и скорость электроокисления гидразина в значительной степени определяются природой электрода и состоянием его поверхнести. Как видно из рис. 13 и 14, потенциодинамические кривые электроокисления гидразина имеют сложный характер. Для платины, палладия, родия кривая имеет две волны, причем вторая волна начинается в области потенциалов адсорбции кислорода на родии, платине и палладии. При увеличении потенциала, приводящего к упрочнению связи кислорода с металлами и образованию оксидов, происходит резкое снижение силы тока. При обратном ходе кривой сила тока электроокисления гидразина возрастает лишь после достижения потенциала восстановления оксидов. Таким образом, слабо адсорбированный кислород ускоряет электроокисление гидразина на платине, родии и палладии, а прочно адсорбированный кислород и оксиды тормозят этот процесс. Следует отметить, что при анодно-катодной обработке или после восстановления оксидов гидразином скорость электроокисления гидразина на платине и палладии может возрасти из-за удаления [c.66]

    Поскольку сведения о закономерностях гетерогенных реакций переноса электронов получают при исследовании кинетики электродных процессов, необходимо знать природу стадий, из которых складывается электродный процесс, и степень влияния отдельных стадий на скорость всего процесса в целом. Согласно А. А. Влчеку [37], можно считать (по крайней мере формально), что суммарный электродный процесс, протекающий на отдельном электроде, включает следующие последовательно протекающие стадии  [c.67]

    Основному материалу в монографии предпосланы очень краткие сведения о строении двойного слоя. Далее на основе современной теории дана количественная интерпретация влияния строения двойного слоя на кинетику электродных процессов (на ртутном капельном электроде) с участием незаряженных молекул, а также ионов. Отдельно разобраны случаи влияния двойного слоя на кинетику приэлектрод-ных объемных и поверхностных химических реакций. Значительная часть монографии посвящена полуколичествен-ному и качественному рассмотрению влияния природы анионов и катионов индифферентных электролитов, а также строения самих вступающих в электрохимическую реакцию частиц на кинетику электродных процессов. [c.3]

    Влияние природы катионов фона на кинетику электродных процессов, по-видимому, впервые было обнаружено Герасименко и Шлендыком [197], которые изучали электрохимическое выделение водорода в присутствии различных солей щелочных и щелочноземельных металлов. Однако правильное объяснение наблюдаемому влиянию природы катионов было дано Фрумкиным и его сотрудниками [17, 198, 199] лишь после того, как было обнаружено [200] некоторое повышение дифференциальной емкости двойного слоя при переходе от растворов солейк и от Са " к Ва , которое было приписано проявлению некоторой специфической адсорбции катионов с большими радиусами [17]. И действительно, удалось определить количество специфически адсорбированных ионов цезия на ртутном электроде при различных его потенциалах [201]. [c.65]

    Специфическое влияние природы анионов на кинетику электродных процессов описано во многих работах. Так, например, при добавлении галоид-ионов в раствор ацетата пентаммиаката трехвалентного кобальта на полярограммах появляется кинетическая предволна, высота которой определяется скоростью вступления галоид-иона во внутреннюю сферу комплекса (вместо ацетат-аниона), причем, по мнению Влчека и Куты [248], эта реакция резко ускоряется под влиянием поля электрода. По-разному — в зависимости от природы аниона — влияет концентрация индифферентного электролита на высоту волны восстановления Ga , имеющей кинетический характер [249] при этом наибольшее действие оказывают анионы SGN . Городецкий и Лосев [250] нашли, что галоид-ионы, взаимодействуя с промежуточными продуктами электродного процесса, значительно ускоряют ионизацию висмута из его амальгамы или разряд его ионов из растворов хлорной кислоты. Увеличение константы скорости квазиобратимого процесса восстановления Мп " " наблюдается при изменении природы аниона в ряду СЮ 4 С1 Вг J , хотя на величину Еу, в этом случае природа анионов не влияет [251]. [c.74]

    Поверхностно-активные анионы, в том числе и галогенид-ионы, могут по-разному влиять на отдельные стадии катодного процесса. Это связано с тем, что адсорбция анионов оказывает следующее влияние на кинетику выделения водорода [50] увеличивается отрицательное значение г1згП0тенциала, изменяется энергия адсорбции или энерги5Г связи с металлом атомарного водорода ме-н, происходит блокировка части поверхности электрода. Если последний фактор действует одинаково на все возможные стадии выделения водорода, то первые два могут существенно изменить природу водородного перенапрял<ения, т. е. привести к смене лимитирующей стадии. [c.41]


Смотреть страницы где упоминается термин Электрод природа, влияние на кинетику: [c.19]    [c.153]    [c.391]    [c.458]    [c.492]    [c.365]    [c.61]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.237 ]




ПОИСК







© 2025 chem21.info Реклама на сайте