Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оры размеры, влияние на селективность катализатора

    Серебро является уникальным катализатором окисления этилена в оксид. Другие катализаторы, например платина и палладий, катализируют окисление этилена только в диоксид углерода. На активность и селективность серебряного катализатора большое влияние оказывают метод его приготовления, а также добавка небольших количеств промоторов. Серебро обычно наносят на носители, в качестве которых используют корунд или оксид алюминия в различных модификациях, силикагель, пемзу. На активность и селективность катализатора оказывают влияние также степень дисперсности серебра, размер и форма кристаллитов. В качестве промоторов чаще всего используют различные хлорпроизводные соединения (кроме того очень малые количества хлорпро-изводных вводят в сырьевую смесь), соединения серы, селена, фосфора в виде соответствующих анионов, а также бария, кальция, алюминия, золота, калия, рубидия, цезия. Промоторы могут влиять как на активность, так и на селективность катализатора. Так, введение в небольших количествах электроотрицательных промоторов на основе хлора или селена повышает скорость реакции не изменяя селективности. Увеличение количества промотора сверх определенного значения приводит к снижению скорости окисления этилена и увеличению селективности. Это объясняется более сильным влиянием увеличения количества промотора на скорость реакции глубокого окисления (И). При введении в катализатор больших количеств промотора реакция может полностью затормозиться. Таким образом, регулируя природу и [c.195]


    Исследовано [42] влияние размеров металлических кластеров на скорость гидрирования циклогексена и бензола в присутствии Р1-и Р1—Аи-катализаторов. (Сплавы Р1—Аи содержали от 4 до 98% Р1. Скорость и энергию активации гидрирования определяли в интервале температур 20—160 °С.) Установлено, что гидрирование циклогексена происходит в 10 —10 раз быстрее, чем гидрирование бензола. Скорость гидрирования зависит от содержания Р1 в катализаторе и резко падает с его уменьшением, причем при малом содержании Р1 гидрирование бензола не происходит совсем. При повышении температуры (до 250 °С) идут дегидрирование и изомеризация. Сплавы Р1—Аи обладают более высокой селективностью, чем Р1. На основании полученных данных авторы [42] делают предположение, что активация молекул бензола происходит на более крупных кластерах, чем активация циклогексена, что возможно только на катализаторах с большим содержанием Р1. [c.35]

    Подобный эффект [31—33], очевидно, наблюдается тем скорее, чем сильнее проявляется лимитирующее влияние диффузии на скорость процесса, т. е. с ростом размера зерна и с уменьшением его пор. Более того, если при разрушении катализатора происходит изменение структуры пор, это вполне может приводить к постепенному изменению селективности. [c.44]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]


    Чтобы вся внутренняя поверхность катализатора была равнодоступна реагирующим молекулам, надо уменьшать размеры таблеток, но при этом быстро возрастает сопротивление слоя катализатора движению газовой смеси и возрастают энергетические затраты на продувку большой массы газа через слой катализатора. Для определения оптимальных размеров таблеток катализатора и основных параметров процессов в химическом реакторе надо знать зависимость скорости реакции от размеров таблеток, их пористости, активности катализатора, скорости движения газовой смеси и ряда других факторов. Особенно велико влияние размеров таблеток катализатора на скорость гетерогенно-каталитических процессов в жидкой фазе, так как коэффициенты диффузии в этой фазе примерно на четыре порядка меньше коэффициентов диффузии в газовой фазе. Если на катализаторе протекают параллельные или последовательные реакции, то размеры таблеток могут повлиять на селективность процесса. [c.648]

    На свойства катализатора значительное влияние может оказать его пористая структура. Оптимальная структура пор зависит, например, от экзотермичности реакции и размеров молекул реагентов. Пористая структура может изменить как активность, так н селективность. Из-за неправильного выбора пористой структуры катализатора в некоторых реакциях селективного окисления можно потерять до 10% селективности вследствие протекания нежелательных гомогенных газофазных реакций в больших норах. [c.28]

    Однако изменение селективности при спекании происходит и при неизменном качественном состоянии поверхности катализатора вследствие влияния пористой структуры. Так, ультрапоры не участвуют в крекинге крупных молекул сырья, но могут вызывать распад молекул бензина [56]. Влияние пористой структуры на избирательность реакций зависит от диффузионной способности углеводородов, а, следовательно, от времени контакта и концентрации реагирующих веществ внутри катализатора, а также от размера его пор [62, 63]. [c.42]

    При изучении влияния размера зерна катализатора было показано, что при размере зерна 0,2—1,5 мм реакция идет в кинетической области. Влияние температуры на окислительный аммонолиз пропилена изучалось в пределах 350—500" С при времени контактирования 2 сек и соотношениях СзН NH Oj HjO, равных 1 1 1,8 1. При 350° С образование акрилонитрила не наблюдается. Дальнейшее повышение температуры приводит к увеличению конверсии пропилена и селективности. Максимальный выход акрилонитрила достигается при 450—470° С, при более высоких температурах он уменьшается за счет образования побочных продуктов. Общая конверсия пропилена не зависит от концентрации аммиака в исходном сырье (в пределах 0,3—1,0 моль NH на 1,0 моль СдНе). Однако превращение пропилена в акрилонитрил при снижении содержания аммиака в исходном газе от 1,0 до 0,3 оль NHg на 1 моль СдНе падает от 60—70% до 40% за счет увеличения выхода акролеина до 17% и незначительного повышения выхода Oj-При содержании аммиака в исходном сырье ниже 0,6 моль NHg на [c.199]

    В других работах содержатся сведения качественного характера о значительном влиянии диффузионных ограничений на селективность. Джонсон, Крегер и Эриксон изучали каталитический крекинг газойля на алюмосиликатном катализаторе в виде гранул различных размеров [159]. Они установили, что селективность процесса образования бензина возрастает с уменьшением размера гранул. [c.213]

    Величина поверхности — одна из главных, но не единственная характеристика сорбционных и каталитических свойств твердого тела, тем более что она функционально связана с его пористостью, определяющей доступность поверхности для адсорбирующихся молекул. Для обеспечения максимального протекания процесса желательно иметь адсорбент или катализатор такой пористой структуры, которая при заданных условиях опыта не создавала бы затруднений диффузии реагентов внутрь пор и отводу продуктов реакции в объемную газообразную фазу. Поэтому, чтобы предсказать размер пор, необходимый для достижения определенной активности твердого тела, нужно создать модель его пористой структуры, а затем рассмотреть вопрос о влиянии различных факторов на кинетику сорбционного процесса и химических реакций и лишь после этого наметить пути улучшения его активности и селективности. [c.41]

    Известно, что влиянием процесса массопередачи можно пренебречь, если установлено, что константы скорости не зависят от объемной скорости. Можно также не учитывать и диффузионные ограничения в системе макропор таблеток катализаторов, если удается показать, что константы скорости не зависят от размера гранул. (В катализе обычно используются прессованные таблетки катализатора, состоящие из множества мельчайших кристаллитов.) Однако ни один из таких экспериментов не в состоянии выявить существование кинетических ограничений, связанных с диффузией молекул в макропорах, если их не проводить на таблетках с различным размером кристаллов. В качестве примера исследования влияния размера кристаллитов в катализе сошлемся на работу по жидкофазной изомеризации о-ксилола на цеолитных катализаторах [212]. Оказалось, что селективность реакции, которую оценивали по соотношению мета- и ара-изомеров, зависит от размеров кристаллита. Для кристаллитов размером 0,2—0,4 мкм непосредственного перехода орто —пара-том р не наблюдалось, что соответствует принятым механизмам превращения изомеров, предполагающим 1,2-сдвиги. При проведении реакции на кристаллитах с более типичными для цеолитов размерами 2—4 мкм найдено, что 6% о-изомера непосредственно превращается в п-изомер. Образующиеся молекулы ти-изомера дольше удерживаются в полостях таких более крупных кристаллитов цеолита перед десорбцией в жидкую фазу, и, таким образом, вероятность столкновения с другим активным центром и последующей перегруппировки в я-изомер возрастает. Вероятность последовательного превращения молекул в процессе миграции продуктов [c.61]


    Стараясь проводить исследование в таких условиях, чтобы результаты их легче было использовать на практике, т. е. работая с техническими пористыми катализаторами не в вакууме, а при давлениях, близких к атмосферному, и т. п., мы вскоре натолкнулись во многих работах на факты, свидетельствующие о большой роли макрокинетических факторов (диффузия, теплопередача) при протекании исследуемых процессов даже в лабораторных условиях. Особенно ярко выявилось это влияние в процессах окисления ацетилена и селективного окисления сероводорода. Естественно, что в промышленных условиях, когда применяют более крупные куски катализатора, большие размеры аппаратуры, часто повышенные давления, эти факторы должны проявляться еще сильнее. Весьма возможно, что одной из причин малой популярности теоретических исследований среди практиков является несоответствие результатов, полученных в лабораториях, данным, получаемым в промышленных установках, вследствие искажающего влияния макрокинетических явлений. Очевидно, что, приступая к изучению теории любого конкретного каталитического процесса, [c.357]

    Встречающиеся обычно разновидности матриц не оказывают заметного влияния на состав продуктов крекинга. Исключением являются магнийсиликатные матрицы, которые повышают селективность образования бензина и увеличивают выход легких масел 1[196]. В основном роль матрицы заключается в фиксировании кристаллов цеолита, уменьшении потерь катализатора при истирании, обеспечении условий псевдоожижения за счет придания частицам необходимого размера и формы, а также в поглощении каталитических ядов, присутствующих в сырье. [c.53]

    В бифункциональном катализе важно установить зависимость активности и селективности металлцеолитных контактов от размеров частиц металла, а также выявить взаимное влияние металла и кислотного компонента в составе бифункциональных катализаторов. [c.64]

    Ряд переменных определяет решение общей задачи оптимизации эксплуатационных характеристик реактора при дезактивации. Эти переменные включают состав катализатора и его распределение, тип реактора и его размер, температуру контактирования и конверсию, ограничения, по селективности. Выбор типа реактора уже обсуждался в разделе 8.1, так что дальнейшее обсуждение связано с влиянием других переменных. [c.192]

    ВЛИЯНИЕ РАЗМЕРА НОР НА СЕЛЕКТИВНОСТЬ ДЕЙСТВИЯ КАТАЛИЗАТОРОВ [c.288]

    На бифункциональных цеолитных катализаторах может происходить идеальный гидрокрекинг н-парафинов, что позволяет достигать высокой гибкости по выходу различных целевых веществ. В цеолитах с узкими порами может происходить селективное превращение углеводородных молекул определенных размеров. Бифункциональные свойства цеолитов были изучены в случае катализаторов с хорошо сбалансированными кислотной и гидрирующе-дегидрирующей функциями. Однако роль структуры и специфических свойств цеолитов исследована далеко не достаточно практически нет и работ, в которых бы изучали влияние размеров, геометрии и электронных свойств частиц металла на характер превращения углеводородов. [c.137]

    Реакции дегидрогенизации циклогексана, дегидрогенизации и дегидратации изопропилового спирта исследовали в проточном реакторе. Жидкие реагенты подавались с помощью медицинского шприца, приводимого в действие синхронным мотором. Температура реактора автоматически поддерживалась с точностью С. Для того чтобы продлить срок службы катализатора, во время изменения температуры прекращали подачу вещества и измерения при новой температуре возобновляли после установления постоянной активности. Чтобы свести к минимуму влияние тепловых эффектов, катализаторы с размерами частиц 0,2—0,3 мм разбавляли стеклянным порошком. Скорость выделения газообразных продуктов измеряли с помощью пенного измерителя потока газов. Для оценки селективности пропилен вымораживали жидким воздухом. [c.432]

    Цеолиты NaA и КА являются неактивными катализаторами в реакции дегидратации этанола, а СаА ведет эту реакцию селективно [1]. В дегидратации этанола активны также цеолиты NaX и СаХ [2], но нри температурах 500° С бьши отмечены и дегидрирующие свойства этих катализаторов. Авторы работы [3] делают вывод, что на каталитическую активность цеолитов типа А и морденита оказывает существенное влияние размер и заряд катиона. Селективность хромовых цеолитов типа А зависит от способа введения хрома при нанесении на цеолит хромата преобладает дегидратация спирта, при изоморфном замещении алюминия на хром — дегидрогенизация [4]. Сравнение цеолитов типов А и X в кальциевых формах показало [5, 6], что цеолит типа [c.161]

    На рис, 3 показаны кривые конверсии, эквивалентные кривым, изображенным а рис. 2, но для зерен катализатора более крупного размера (0,3—0,5 сж, средний диаметр 0,4 см). Влияние диффузии в порах проявляется не только в том, что скорость превращения у (бутен-1) вначале является меньшей, ио даже более заметно по кривой у2 конверсии цис-бутен-2. На рис, 2 эта кривая характеризует промежуточный продукт имеющийся на ней максимум значительно выше равновесного значения, в случае же торможения эта особенность кривой исчезает. Таким образом, в соответствии с общим случаем диффузия в порах изменяет селективность в области, достаточно удаленной от равновесия. [c.248]

    Наконец, важнейшую роль играет и сам катализатор, способ его приготовления и т, д. Добавление различных модификаторов нли применение смесей оксидов и солей способно сильно изменять активность и селективность контакта. Так, некоторые каталитические яды (галогены, селен), дезактивируя серебряный катализатор окисления этилена, существенно повышают его селективность. Оксиды молибдена и висмута, в индивидуальном виде вызывающие полное сгорание олефинов, в форме молибдата висмута (В120з МоОз = 1 2) являются селективными катализаторами гетерогенного окисления пропилена. Большое влияние оказывают носитель, размер зерен катализатора, его пористость и т. д. Ввиду возможности последовательного окисления целевого вещества и высокой скорости самой химической реакции на поверхности катализатора переход процесса во внутридиффузиоиную область весьма нежелателен, поэтому используют катализаторы с небольши.ми зернами и сравнительно крупными порами. [c.416]

    Определилось еще одно перспективное направление применения цеолитных материалов — использование их в качестве матрицы для комплексов переходных металлов и компонентов гетерогенизированных металлокомилексных катализаторов [1]. Такие системы можно получать введением готового комплекса в кристаллы соответствующего состава либо синтезом нужного соединения внутри полостей цеолитов. Показано, что комплексообразование нередко существенно изменяет каталитические свойства цеолитных систем [1J. Так, при димеризации пропилена на фосфиновых комплексах в цеолитах X ([Ni " PRj]X) в зависимости от R в качестве основного продукта реакции получаются метилпентены (когда R малого размера), либо 2,3-диметилбутены (когда R большого размера), что обусловлено стерическим влиянием лиганда РКз определяющего тип ориентации те-связанной молекулы пропилена на стадии димеризации олефина [81. Таким образом, открываются новые интересные возможности регулирования и селективности катализаторов. [c.139]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    В процессе эксплуатации катализатора риформинга может происходить укрупнение кристаллитов платины, а значит и уменьшение удельной поверхности металла. Чем меньше размер кристаллита и, следовательно, чем больше дисперсность платины, тем активнее катализатор Pt/AljOg в реакции дегидроциклизации гептана (табл. 28) [1981. Одновременно повышается также селективность реакции (выход ароматических углеводородов иа превращенный гептан). В работе [199], исследуя влияние дисперсности платины при дегидроциклизации гексана на катализаторе Pt/AljO ,, пришли к выводу, что оптимальной является дисперсность, отвечающая отношению Н Pt AS 0,7, и что дальнейшее ее увеличение приводит к уменьшению активности и стабильности катализатора. [c.87]

    Существенное влияние на селективность процессов окисления оказывают также макроскопичеокие факторы (диффузия, теплообмен). Увеличивая Линейную скорость потока газа или скорость циркуляции, можно в определенных условиях устранить влияние внешней диффузии. Чтобы предотвратить влияние инутренней диффузии, подбирают для катализаторов носители с определенной структурой и размером пор. При выборе контактного аппарата необходимо обеспечивать стабильный термический режим и устранять возможность перегрева слоя катализатора. Для повышения селективности многих процессов гетерогеннокаталитического окисления углеводородов в состав реакционной смеси вводят водяной пар. Механизм действия воды пока не выяснен. Возможно, что вода участвует в комплексообразовании углеводородов на по-верхпостн катализатора или создает иа ией ОН-группы (при диссоциации молекулы НаО) и т. д. [c.308]

    Полимеризующие и деполимерйзующие свойства этих катализаторов зависят в некоторой степени от содержания аморфной кремнекислоты, возрастая по мере ее увеличения в составе катализаторов. На селективность деполимеризации оказывает влияние характер пористости катализатора. Так, опока, стоящая в этом отношении иа первом месте, имеет поры более крупных размеров по сравнению с алюмосиликатным катализатором и гумбрином. В более мелких порах последних, обладающих больщим адсорбционным потенциалом, наряду с деполимеризацией протекает ряд д эугих процессов. [c.26]

    Условия предварительной обработки оказывают существенное влияние на активность и селективность металлцеолитных катализаторов в реакциях гидродеалкилирования. Катализатор 0,24% Pt-NaY, полученный ионным обменом, проявляет наибольшую активность в гидродеметилировании толуола, если перед восстановлением водородом его прогреть на воздухе при 300° С [177]. Катализатор 0,2% Pt- aY проявляет максимальную активность после прогревания на воздухе при 200° С, а Pt-NH Y при 600° С [177]. В первом случае повышение активности обусловлено изменением размера частиц платины и состава контактов, во втором (NH4Y) —дегидроксилированием. [c.193]

    Опыты с пентадиеном-1,3 (ПД), изопреном (ИП) и ЦПЕ, а также их бинарными смесями с ЦПД на мембранном катализаторе из сплава палладий — рутений показали [63], что при подаче водорода через катализатор скорость гидрирования ЦПД, ПД и ИП соответственно в 4,0 2,3 и 1,5 раза больше, чем при подаче водорода в смеси с исходным углеводородом. Эти результаты объяснены с учетом относительных адсорбционных коэффициентов гидрируемых соединений, которые были определены по методу [64]. Найдены предельные содержания ПД и ИП в ЦПД, при которых скорость и селективность гидрирования ЦПД в ЦПЕ остаются близкими к найденным для чистого ЦПД. Для выяснения влияния размера цикла циклоиолиолефи-нов и числа двойных связей в нем на скорость и селективность гидрирования изучены [65] превращения циклооктадиена и цик-лододекатриена на мембранном катализаторе из сплава палладия с 9,8% (масс.) рутения. [c.110]

    Авторы также значительно улучшили методику лабо -раторного испытания порошкообразных катализаторов. Специальной серией опытов бьшо установлено, что таблетиро-вание порошка под давлением или со связующим приводит к заниженным значениям активности и селективности вследствие влияния размере частиц. Кроме того, сам процесс таблетирования неблагоприятно влияет на каталити -ческие свойства изучаемых образцов. Испытание порошкообразного катализатора в стационарном слое без предва -рительного таблетирования необходимо осуществлять в условиях, исключающих появление в слое каналов для нефтяных паров. Для этого на основе экспериментальных данных рекомендуется размещать карман термопары в реак.-торе не более чем на 2,5 см вглубь слоя катализатора. Необходимо также при расчете экспериментальных данных вносить поправку на давление в системе по формулам, аналогичным применяемым в методе АСК. Указанные предос- [c.58]

    Под действием нанесенного платинового катализатора происходит дегидрирование гексадекана до гексадецена, который затем подвергается крекингу на алюмосиликатном катализаторе до октепа. В присутствии водорода платина на носителе превращает октен в октан. Эта последовательность реакций может служить одним из примеров применения полифункциональ-иого катализатора. Б качестве другого важного примера применения ноли-функционального катализатора можно указать использование его для изменения направления реакции, которая обычно имеет место, если используется только монофункциональный катализатор. Так, нанример, если иод действием платинового катализатора циклогексан превращается в бензол, то в присутствии алюмосиликатного катализатора реакция направлена в сторону образования метилциклопептапа [14, 15]. Такое изменение хода реакции зависит от алюмосиликатного катализатора, перехватывающего промежуточный продукт дегидрирования — циклогексен и изомеризующего его в метилциклоиентен, который в свою очередь гидрируется до метилцикло-пентана на уже присутствующем платиновом катализаторе. Количество образующегося метилциклонентана зависит от селективности такого поли-меризационного катализа. Как будет показано ниже, размер таблеток, температура и давление оказывают сильное влияние на селективность поли-функционального катализатора. [c.295]

    Экспериментальным путем исследована активность окисных, фосфорнокислых и алюмосиликатных катализаторов для неполного окисления природного газа до СНгО и СНзСЗН. Из исследованных катализаторов наиболее активным и прочным оказался алюмосиликатный катализатор, который в условиях опыта (взвешенный слой, атмосферное давление) оказался селективным по отношению к формальдегиду. На этом катализаторе исследовано влияние химического свойства, пористости, размера и формы гранул на выход СН2О и СН3ОН. Показано, что в зависимости о г гидродинамических условий и размера частиц катализатора во взвешенном слое могут быть устранены диффузионные сопротивления. [c.116]

    Катализаторы, содержащие никель на 02 и алюмосиликате, изучались и в других реакциях — гидрогенизации циклопропана 200] и гидрировании бензола [201]. В первом случае было обнаружено так же, как и при исследовании гидрогенолиза этана, сильное влияние носителя на активность и селективность никеля (процесс идет по двум направлениям — гидрогенизация циклопропана до пропана и гидрогенолиз до этана и метана). Так, удельная активность N1 на ЗЮг оказалась в 16 раз выше по сравнению с N1 на АЬОз—5102 в реакции гидрогенизации и в 44 раза выше в реакции гидрогенолиза. Во втором случае те же препараты, которые были изучены в реакции гидрогенолиза этана, сравнивались по активности в реакции гидрирования бензола. Удельная активность катализаторов, содержащих 1 и 10% N1 на ЗЮг (см. табл. 9), в этом процессе оставалась примерно одинаковой, в то время как размер частиц изменялся в 2 раза. Таким образом, был установлен факт [201] независимости активности катализаторов N1—ЗЮ2 в реакции гидрирования бензола от степени дисперсности никеля. Совершенно иная картина наблюдалась в случае N1—АЬОз 3102. Наряду с незначительным изменением размера кристаллов N1 (26 и 29 А, см. табл. 9), активность катализаторов в гидрировании бензола с уменьшением концентрации N1 до 1% резко падает, что, по-видимому, объясняется влиянием носителя. В этой части цити-зуемая работа подтверждает результаты Хилла и Селвуда 202], согласно которым удельная активность катализаторов —АЬОз в той же реакции резко уменьшается с понижением концентрации N1 в области 8%, а препараты с содержанием N <3% вообще не активны, т. е. показано, что мелкие частицы менее активны. Напротив, активность катализаторов N1—3102 в области 1% N1, как уже было сказано, не отличается от активности 10%-ного образца. [c.63]

    В работе Хардевельда и Хартога [208] исследовались катализаторы Ni на аэросиле, различавшиеся средним размером частиц и их распределением по величине. На основании интенсивности полос поглощения в ИК-спектре адсорбированных молекул N2, СО и СО2 авторы [208] оценили долю активных центров (о природе этих центров см. ниже) на поверхности никеля и сопоставили ее с каталитической активностью и селективностью в реакциях обмена и дейтерирования бензола. Авторы показали, что отношение скоростей обмена и дейтерирования и начальное изотопное распределение в молекулах бензола испытывают значительные колебания в зависимости от типа катализатора. Высокая активность в реакциях обмена обусловлена приаутствием крупных кристаллитов и предположительно связана с наличием в них дефектов. Эта высокая активность почти полностью компенсирует уменьшение числа поверхностных атомов по мере увеличения размера кристаллов, в результате чего поверхность кажется однородной по отношению к реакции дейтерирования. Таким образом, данные цитируемой работы показывают, что величина кристаллов оказывает решающее влияние на активность и селективность никелевых катализаторов. Независимость каталитической активности в реакции гидрирования циклогексена от дисперсности Ni в Ni—MgO-катализаторах была отмечена в работе [209]. Удельная каталитическая активность [c.64]

    В большинстве сравнительных исследований каталитической активности и селективности, как следует из приведенных примеров, удельная поверхность металла рассматривалась как некий параметр без уточнения вопроса о распределении частиц по размерам. В последнее время в связи с усилившимся интересом к свойствам малых частиц появились работы, подробно обсуждающие природу активных центров катализаторов, содержащих высокодисперсный металл на носителе. В фундаментальной работе Хардевельда и Монтфорта [2171, посвященной изучению влияния размеров кристаллов на адсорбцию молекулярного азота на N1, Рс1 и Р1, было показано, что для того, чтобы валентное колебание в молекуле азота могло быть активным в ИК-спектре, N2 должен адсорбироваться на особых центрах поверхности. Эти центры присутствуют в значительном количестве только в мелких частицах с 20< <70 А и имеют координацию 5 (центры В5), т. е. атом, адсорбированный на таком центре, входит в контакт с 5 атомами N1. Было получено три типа N1— 5102-катализато-ров, отличающихся распределением кристаллов по размерам (рис. 22), которое вычислено путем анализа электронномикроскопических снимков (рис. 23, 24). [c.66]

    Как показано в целом ряде обзоров [1-19], взаимосвязь между каталитической активностью и природой активных центров в каркасе цеолитов исследована достаточно широко. Однако, хотя за последние пять лет и появилось много новых данных о модифицировании цеолитов и об их каталитической активности, эти сведения не были обобщены в свете существующих или новых концепций. Это и осуществлено в настоящей главе. Сделана попытка связать высоко- и низкотемпературную карбонийионную активность цеолитов с существованием в.них определенных центров. В основном рассматриваются реакции изомеризации, дегидратации, алкилирования и крекинга, исследуется зависимость их скорости и направления от размера пор цеолита, от соотношения атомов 81 А1 в каждой структурной группе, от природы катионов, способных к обмену, и от степени этого обмена. Обращено внимание на влияние молекул, усиливаюпщх активность или селективность цеолитных катализаторов, а также на эффект их самоотравления. [c.57]

    Для многих применений большое значение имеет не производство упорядоченных неорганических-органических структур, а, скорее, создание периодических неорганических структур на наноуровне с удалением органической структуры. Такие периодические пористые структуры открывают новые возможности создания композитных материалов. Так, каталитически активные или другие центры могут быть помещены на внутреннюю часть пор, что создает возможность создания катализаторов с регулируемой активностью и селективностью за счет размера и формы, разделения влияния носителя и химических сенсоров. Ряд оптических и электронных материалов могут быть введены в поры, включая полупроводяшие полимеры, порфири-ны и другие люминесцентные и поглощающие молекулы. [c.460]


Смотреть страницы где упоминается термин оры размеры, влияние на селективность катализатора: [c.51]    [c.30]    [c.730]    [c.119]    [c.26]    [c.326]    [c.61]    [c.4]    [c.60]    [c.28]    [c.50]   
Гетерогенный катализ (1969) -- [ c.288 , c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы селективность



© 2025 chem21.info Реклама на сайте