Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия первичная цепная

    А. Н. Бах установил, что первичными продуктами окисления углеводородов являются пероксидные соединения, относящиеся к разряду весьма нестойких веществ с большой избыточной энергией. При определенных температурах и давлении пероксиды могут самопроизвольно по цепному механизму, предложенному Н. Н. Семеновым, разлагаться с выделением большого количества тепла и образованием новых активных частиц. [c.9]


    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]

    Реакции, при протекании которых возникают промежуточные вещества с высокой энергией (радикалы), часто имеют механизм цепных реакций. Обычно в момент элементарного акта взаимодействия между активными молекулами появляются реакционноспособные промежуточные вещества — активные центры,—которые в свою очередь реагируют с компонентами реакционной системы, воспроизводят подобные себе частицы, в результате чего происходит циклическое повторение стадий реакции, Таким образом, возникает цепь реакций, так как после первичного акта цепной реакции появляется активная частица с высокой энергией (например, при воздействии излучения), которая продолжает последовательность стадий реакции. Такого рода процессы характерны прежде всего для реакций в газовой фазе (взрыв гремучего газа, реакция водорода с хлором), а также для некоторых реакций в растворах (фотохимические реакции, реакции полимеризации и т. д.). Возникновение реакционноспособной частицы часто называют реакцией зарождения цепи, например реакция (За) при образовании НВг (гл. 7). Под развитием цепи понимают последовательное продолжение элементарных стадий с постоянным образованием активных центров, продолжающих цепь радикалов. К реакциям обрыва цепи относится рекомбинация, т. е. реакция, обратная (За). Еще раз обратимся к уже описанному выше процессу образования бромоводорода (гл. 7). Для него найдена следую- [c.180]


    Дальнейшее изучение механизма фотохимического инициирования цепных процессов было связано с объяснением необычайно высокого квантового выхода реакции образования НС1 на свету. В 1912 г. А. Эйнштейн (1879—1955) установил фотохимический закон на один поглощенный реагирующей системой квант световой энергии первичное изменение испытывает только одна молекула. В связи с этим законом была принята в качестве общей характеристики фотохимических процессов величина квантового выхода, представляющая собой отношение числа прореагировавших молекул к числу поглощенных световых квантов. По закону Эйнштейна, очевидно, квантовый выход не может быть больше единицы. Между тем было обнаружено, что квантовый выход этой реакции в некоторых случаях чрезвычайно высок и достигает 10 . Чтобы объяснить этот факт, В. Нернст в 1918 Г дал следующую интерпретацию реакции между хлором и водородом на свету, молекула хлора в газовой смеси поглощает квант (hv) световой энергии, в результате чего распадается на свободные атомы  [c.250]

    Химическая или структурная трактовка термина большая молекула еще ничего не говорит о ее физических свойствах. Наиболее существенным является тот факт, что, как указывалось, первичная (цепная) и вторичная (межцепная) энергии связи существенно различны. Поэтому часто большие молекулы можно раз- [c.11]

    Из сравнения значений энергии активации вьщеления циклогексана (297,5 кДж/моль) и брутто-энергии активации цепного процесса (217,8 кДж/моль) можно заключить, что циклогексан образуется, пр крайней мере частично, не по цепному механизму, а в результате первичного акта распада  [c.128]

    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]

    При 600 °С вероятность реакции свободных радикалов с водородом по месту вторичных и первичных атомов углерода находится в соотношении 1 2. Время жизни свободных радикалов очень мало, порядка 10 4-10 с, так как ш это время они успевают встретиться с неразложенными молекулами сырья. Энергия активации этого типа реакций 40—80 кДж/моль, т. е. значительно ниже, чем для прямого распада алкана. Свободные радикалы при развитии цепной реакции вновь и вновь возникают, и, таким образом, очень большая часть исходных молекул алкана вовлекается в реакцию. Следовательно, основная масса продуктов реакции получается в результате развития именно цепной реакции через свободные радикалы, а не в результате прямого разрыва углеродной цепи. Эта реакция служит только началом длинного ряда превращений, как бы первичным толчком. [c.176]

    Реакции поликонденсации, как и обычные конденсации, требуют некоторой энергии активации, поэтому они протекают лишь при нагревании. Процесс идет ступенчато, т. е. рост цепей происходит за счет последовательного присоединения молекул друг к другу. Поэтому поликонденсации протекают медленно, чем они отличаются от полимеризации, проходящей быстро по цепному механизму при низких температурах. Часто при поликонденсациях первичной реакцией является миграция атома водорода из одной молекулы в другую, как при альдольных уплотнениях, реакции Перкина и аналогичных процессах. [c.488]

    Ф. Райс предложил цепной механизм распада парафиновых углеводородов. Поскольку энергия связи С-С меньше, чем энергия связи С-Н, то первичный распад молекулы парафинового углеводорода происходит по этой связи и дает радикал, обладающий неспаренным электроном  [c.160]

    Механизм первичных реакций термического разложения олефинов, как и для парафинов, является радикально-цепным. При этом первичный распад олефина происходит по Р-связи, имеющей наименьшую энергию диссоциации. Например, а-амилен будет распадаться на этильный и аллильный радикалы  [c.162]


    В другой работе [20] отмечалось, что основные результаты проведенных исследований могут быть объяснены также с позиций обычного цепного механизма с участием свободных радикалов типа, впервые предложенного для термического крекинга [27]. Теоретический анализ данных, полученных в ядерном реакторе при низких температурах, с позиций простого радикального цепного механизма приводит к температурной зависимости выхода радикалов, полностью согласующейся с высокотемпературными данными, полученными при облучении кобальтом-60. Как видно из рис. 14, в области высоких температур экспериментальные данные достаточно точно согласуются с найденной расчетом длиной цепи. Влияние интенсивности часто наблюдается в цепных радикальных процессах. Влияние фазы также не противоречит общеизвестному клеточному эффекту, обусловленному конденсированным состоянием [9], которое приводит к рекомбинации свободных радикалов в клетке растворителя. Поскольку радикалы, первично образующиеся в разультате облучения, не диффундируют из клетки растворителя для дальнейших взаимодействий, в конденсированном состоянии эффективность инициирования на единицу израсходованной энергии значительно снижается. [c.144]

    Цепная реакция в ядерном реакторе обусловлена наличием источника первичных нейтронов в активной зоне реактора, образовавшихся в результате радиоактивного распада. Если нейтрон определенной энергии поглощен ядром урана, то с определенной вероятностью это ядро разделится на две или не- [c.548]

    Следует различать первичные процессы и последующие вторичные реакции. В первичном процессе один фотон поглощается одной молекулой, молекула активируется и тем самым переходит в более высокое состояние. Активированная молекула может терять энергию различными путями, включая люминесценцию или внутреннее превращение, или она может претерпеть химическое изменение, прежде чем потеряет всю эту энергию. Иногда первичный процесс сопровождается простой стехиометрической реакцией, которая дает некоторое целое число или долю молей продукта реакции. С другой стороны, диссоциированные фрагменты, образовавшиеся в результате поглощения света, могут рекомбинировать, что приводит к заниженным квантовым выходам. Кроме того, каждая активированная молекула может вызвать цепную реакцию, в которой первичная реакция повторяется многократно, и, таким образом, достигаются большие квантовые выходы. [c.548]

    Первичная реакция активации реагента — образование комплекса ЕА, редко является такой лимитирующей стадией. Иначе обстоит дело в случае радикально-цепных реакций, когда стадией активации является первичное образование атомов или радикалов из молекул реагента. Такую реакцию характеризует энергия активации, равная энергии разрываемой связи. В последующих реакциях продолжения цепи какая-то из реакций будет лимитирующей реакцией цикла, но общее выражение для скорости реакции всегда будет включать скорость активации или инициирования. [c.160]

    Разрыв молекулы хлора требует значительно меньшей энергии, чем молекул водорода и хлористого водорода. Первичные радикалы будут зарождаться преимущественно за счет диссоциации молекул хлора. Поэтому скорость первой реакции будет больше второй и третьей и [С1] > [Н]. Атомы хлора будут определять не только число зарождающихся цепей, но и число гибнущих цепей. Число вновь зарождающихся цепей равно числу гибнущих цепей в неразветвленных цепных процессах. Следовательно, в реакции [c.140]

    Формально и по существу к представлению о положительном взаимодействии цепей близко введенное Н. П. Семеновым [232] представление о вырожденном разветвлении. Оно возникло из необходимости истолкования с позиций цепной теории кинетики многочисленных медленных реакций, обладающих характерными особенностями разветвленных цепных реакций. Эти реакции, в частности, подчиняются закону но отличаются необычно медленным развитием цепей. По Н. Н. Семенову [232], основная цепь в этих случаях развивается с обычной скоростью (т. е. очень быстро) и не сопровождается разветвлениями в обычно принятом нами смысле . Однако в результате реакции в этой первичной цепи образуется не конечный, но некий промежуточный сравнительно устойчивый продукт реакции, который, накопляясь в основном газе, сам, далее, медленно реагирует независимым путем, давая конечные продукты. Однако изредка за счет энергии этой вторичной реакции создаются центры, способные вновь начать цепь первичной реакции . Эти вторичные цепи Н. Н. Семенов называет цепями вырожденного разветвления. [c.507]

    В соответствии со вторым законом фотохимии — законом фотохимической эквивалентности (Штарк и Эйнштейн)— каждая молекула, участвующая в химической реакции, происходящей под действием света, поглощает один квант лучистой энергии, который вызывает реакцию. В дальнейшем Штарк и Боденштейн [164, 3861 показали, что этот закон применим только к первичным фотохимическим процессам, поскольку вторичные цепные реакции могут приводить к тому, что полный квантовый выход (отношение числа прореагировавших молекул к числу поглощенных квантов) будет значительно больше единицы (например, в реакции хлора с водородом в газовой фазе полный квантовый выход составляет 10 —10 ). Поэтому согласно второму закону фотохимии каждый поглощенный фотон, или квант света, в первичном акте способен активировать только одну молекулу. Это значит, что поглощение света — одноквантовый процесс, и квантовый выход первичного процесса равен единице. [c.22]

    При разборе места цепных реакций в катализе заслуживают внимания и процессы приготовления катализаторов и их изменения во время работы. Для твердого тела и его поверхности число типов активных форм, могущих участвовать в цепных реакциях, гораздо больше, чем для газа и раствора. В решетке реального твердого тела имеются различные нарушения идеального порядка. Это пустые места — пробелы Френкеля и Шоттки, которые в сложном теле могут быть нескольких типов, ионные пробелы по определенным элементам кристаллической решетки, свои атомы, внедренные в междоузлия, дислокации, чужеродные атомы в твердом растворе. По пробелам и междоузлиям происходят перемещения частиц, образующих решетку, при диффузии, фазовых превращениях и реакциях с газами и твердыми телами. Пробелы и атомы в междоузлиях являются активными центрами многих химических реакций. Они перемещаются на один атомный шаг при заполнении их соседними атомами. Повторение создает эстафетные цепи в решетке, которые встречаются уже в простейших процессах самодиффузии и очень типичны для более сложных процессов в твердых телах. При этом возможно образование и обрыв центров на внешних и межкристаллитных поверхностях, их размножение и уничтожение. Это же относится к первичным стадиям таких химических процессов, как обезвоживание кристаллогидратов и гидроокисей. Распространение таких цепей связано с затратой сравнительно больших энергий активации. Во время реакции концентрация пробелов [c.374]

    Этот радикал вступает во взаимодействие с молекулой и дает начало третьему радикалу и т. д. Возникает цепная реакция, в которой со значительной затратой энергии связано только образование первичного радикала (зарождение цепи), а каж дое последующее звено превращений (продолжение цепи) происходит уже с небольшим расходом энергии. [c.176]

    H. Н. Семенову принадлежат также представления о существовании цепей с вырожденными разветвлениями , объясняющие развитие некоторых Медленно текущих цепных процессов. Предполагается, что основная цепь в этих случаях развивается с обычной скоростью (т. е. очень быстро) и не сопровождается разветвлениями в обычно принятом смысле. В результате реакции в этой первичной цепи образуется не конечный, но некий сравнительно устойчивый промежуточный продукт, который, накопляясь в реакционной среде, сам далее медленно реагирует независимым путем, давая конечные продукты. Однако изредка за счет энергии этой вторичной реакции создаются центры, способные вновь начать цепь первичной реакции. Формально эти вторичные цепи можно считать разветвлениями первичной цепи, хотя появление этой цепи вырожденного разветвления может произойти спустя весьма значительный промежуток. времени после гибели первичной цепи [83]. [c.23]

    По Семенову, имеется два типа разветвленно-цепаых реакций собственно разветвленные и цепные реакции с вырожденными разветвлениями. В реакциях первого типа разветвления обычно осуществляются в результате взаимодействия активных центров с молекулами исходных веществ (линейные разветвления) или при взаимодействии радикалов между собой (квадратичные разветвления). В реакциях же, относящихся к типу вырожденно-разветвленных, согласно Семенову, основная цепь развивается с обычной скоростью и не сопровождается разветвлениями и обычно принятом нами смысле... в результате реакции в этой первичной цеии образуется не конечный, но некий промежуточный сравнительно устойчивый продукт реакции, который, накопляясь в основном газе, сам далее медленно реагирует независимым путем, давая конечные продукты. Однако изредка за счет энергии этой вторичной реакции создаются центры, способные вновь начать цепь первичной реакции [118]. Эти вторичные цепи Семенов называет цепями вырожденного разветвления. Вырожденное разветиление иногда называют также запаздывающим разветвлением. [c.210]

    Существует, однако, другая возможность перераспределения избыточной энергии, которая реализуется в химических реак-И1ЯХ цепного характера. Запас химической энергии, сосредоточенный в молекуле продукта первичной реакции, передается [c.126]

    При осуществлении неполного окисления метана используются как гомогенные катализаторы и инициаторы, так и гетерогенные. Согласно положений теории цепных разветвленно-вырожденных процессов, к которым относится окисление метана, первичным актом, требуюпщм значительной затраты энергии, является зарождение цепей, протекающее, как показано Семеновым [76, 77], по следующей, реакции  [c.165]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    С точки зрения радикально-цепной теории наблюдаемые соотношения продуктов крекинга бутанов объясняются тем, что в случае крекинга бутана вторичные бутильные радикалы образуются преимущественно по сравнению с первичными бутнльными радикалами (вследствие различия в энергиях прочности первичных и вторичных С—Н-связей). В случае крекинга изобутана возникают преимущественно г. 99  [c.99]

    При температурах окисления углеводородов (300—400° С) вряд ли можно ожидать образования свободных радикалов путем термического распада исходного углеводорода по С—С- или С—Н-связи (энергия первой около 80, а второй — около 90 ккал молъ) или, что еще менее вероятно, распадом молекулы кислорода па атомы (энергия 0=0-связей равна 118 ккал/молъ). Поэтому авторам уже первых радикально-цепных схем окисления углеводородов пришлось считать источником образования первичных свободных радикалов реакцию исходных веществ между собой. [c.128]

    Взаимодействие водорода и кислорода при низких давлениях и имсоких температурах ( 900 °С) протекает как сильно раз-неть-к нная цепная реакция. Первичный химический акт в си сгеме — реакция образования атомов. Энергия связи в молеку л 1 водорода и кислорода соответственно равна 4.32,0 и 49.3.6 кДж/моль, поэтому можно ожидать, что диссоциация молекулы водорода, а не кислорода, дает свободные атомы, которые вызывают развитие цепного процесса  [c.60]

    Для разрыва молекулы О2 на атомы требуется энергия 489 кДж/моль. Поэтому кислород часто взаимодействует с различными веществами, сохраняя одну связь между атомами О, т. е. образуя соединения, содержащие группу —О—О— эта группа называется пероксидной. Пероксиды (или перекиси) образуются, например, при окислении щелочных металлов, углеводородов, жиров и т. д. Одним из первичных продуктов окисления водорода при его горении является простейший пероксид — пероксид водорода Н2О2. Пероксиды играют очень важную роль в развитии цепных процессов при медленном окислении различных веществ, в частности углеводородов. В водных растворах присоединение электрона происходит с участием воды и дает анион НО2 и гидроксил ОН-. В неводных средах, не содержащих протонов, получаются ионы О2 . [c.187]

    Цепи, возникающие при помощи свободных атомов и радикалов, называются химическими или радикальными. Примером может служить фотохимическая реакция образования хлороводорода. Первичными активными центрами данной цепной реакции являются атомы хлора, возникающие в результате расщепления молекул хлора под воздействием квантов света, обладающих высокой энергией. Атомы хлора вступают в реакцию с молекулами водорода возникающие атомы водорода, в свою оче редь, реагируют с молекулами хлора, образуя атомы хлорЗ и т. д. [c.124]

    Поглощенная энергия, однако, не всегда вызывает химическое изменение. Закон эквивалентности относится только к первичной реакции, когда число фотохимических превращений равно числу 1Соглощепных квантов. Вторичные реакции могут способствовать как ускорению, так и замедлению первичного процесса. Существуют разнообразные физические процессы деградации поглощенного молекулой светового кванта в тепло без химического изменения молекулы. В то же время другие световые кванты вызывают цень реакции. Характерным примером фотохимической цепной реакции является реакция между хлором и водородом с образованием хлористого водорода  [c.361]

    Причиной образования первичных трещин в полимерном материале, согласно С. И, Журкову и сотр., являются тепловые флюктуации, т. с. локальные резкие возрастания внутренней энергии, вызывающие разрывы химической связи в основной цени полимера. АтОМы цепных молекул колеблются около своих равновесных положений с частотой 10 —10 сек В том месте, где тепловые флюктуации станодадся больше энергии химическ]5х связей, последние разрываются При сравнительно невысоких температурах тепловые флюктуации Приводят к разрыву некоторых химических свяаей, но Процесс распада Компенсируется восстановлением связи. Приложенное напряжение создает возможность накопления флюктуаций, [c.229]

    Ф. Райс предложил цепной механизм распада парафиновых углеводородов при крекинге. Поскольку энергия связи С—С меньше, чем энергия связи С—И, то первичный распад молекулы парафинового углеводорода происходит по этой связи и дает радикал, обладающий неспаренным электроном СНз, СаНб, СзН и т. д. Продолжительность существования радикалов, более сложных, чем С3Н7, при температурах крекинга ничтожно мала. Они мгновенно распадаются на более простые, которые могут вступать в реакции с молекулами углеводородов, отнимая у них водород и превращаясь, в свою очередь, в насыщенный углеводород, например  [c.50]

    Теорию цепных реакций для ароматических углеводородов разработал Тиличеев Так как энергия связи Сар — Сар = = 97 ккал, а связи Сар — Н = 101,7 ккал, то первичной реакцией при крекинге ароматических углеводородов без боковых цепей будет разрыв кольца с образованием радикалов СН = п —СН = = СН —. Последние реагируют с ароматическими ух леводородами по схеме R -f НАр RH + Ар — (где Ар — фенил, нафтил и т. д.). Дальше Ар -f НАр АрАр + Н —. Заметим, что при крекинге алканов идет реакция R + НАлк RH -f Алк и не идет (велика энергия активации) реакция R + НАлк НАлк -f 4- Н —. Таким образом, цепной механизм распада ароматических углеводородов без боковых цепей (бензол, нафталин, фепантрен и др.) приводит к образованию продуктов конденсации кроме газов, образуются лишь вышекипящие продукты уплотнения. При крекинге углеводородов типа дифенил, динафтил и др., кроме продуктов конденсации, образуются значительные количества простейшего, пижекипящего ароматического углеводорода. [c.20]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]

    Наиболее энергоемкой стадией цепного процесса является реакция инициирования — первичного образования активных частиц. При фото- или радиационно-химическом инициировании цепная реакция может проходить при относительно низких температурах, так как энергии активации реакций продолжения цепи обычно невелики. В случае термического инициирования, т.е. реакции гомолитического разрыва связи, для наблюдения цепной реакции необходимо повышение температуры на многие десятки—сотни фадусов. [c.187]

    Энергии разрыва слабейшей средней С—С-связи в молекуле нормальных парафинов составляют 318,2 кДж/моль (76 ккал/моль) в СеНи 314 кДж/моль (75 ккал/моль) в С7Н16 и 309,8 кДж/моль (74 ккал/моль) в С8Н18 [34, с. 44]. Связь С—С в молекуле олефи-на, сопряженная с двойной, имеет энергию разрыва около 257,5 кДж/моль (61,5 ккал/моль) [34, с. 157]. Поэтому инициирование цепей в основном происходит не при распаде исходного парафина, а в результате распада олефинов. На основе теории цепного разложения парафинов можно предсказать первичные продукты разложения парафинов. [c.116]

    Высшие алканы также подвергаются галогенированию в условиях цепной свободнорадикальной реакции. Свободный атом галогена атакует прежде всего атом водорода у третичного атома углерода, затем у вторичного ив последнюю очередь у первичного, т. е. проявляется избирательность в атаке галогена. Это объясняется тем, что легче всего гомолитически разрывается связь третичного атома углерода с водородом — энергия связи 376 кДж/моль затем вторичного — 390 кДж/моль и, наконец, первичного — 415 кДж/моль. Поэтому и устойчивость образующихся при этом радикалов будет уменьшаться в ряду  [c.67]

    Отправляясь от идей Вант-Гоффа и Аррениуса, из которых следовали возможность и большая распространенность бимолекулярных реакций, происходящих между химически насыщенными молекулами, некоторые авторы полагали, что активные молекулы в цепных реакциях также представляют собой богатые энергией химически насыщенные молекулы, как это, например, имеется в случае мономолекулярных реакций (см. предыдущий пример). Согласно этим представлениям, высказывавшимся Боден-щтейном [416], Христиансеном и Крамерсом [488] и некоторыми другими, активные молекулы, возникающие за счет реакции, образуются в результате передачи энергии от молекул продуктов реакции молекулам исходных веществ, как это схематически представлено на рис. 136, относящемся к реакции А2 + В2 = 2АВ. Здесь процесс О обозначает первичную активацию молекулы исходного вещества Аг при столкновении ее с молекулой М (термическая активация). Активная молекула Аг либо вступает в хи- [c.475]

    Что касается природы первичного процесса, то схеме СН4-> — СНа + На (—84 + 5 ккал1молъ), предложенной Касселем [5 и принимаемой рядом авторов, по-видимому, нужно предпочесть схему СН4 -> СНз + Н (—103 + 2 ккал1молъ). К такому заключению приводит как ненаблюдаемость радикалов СНа в отличие от радикалов СН3 [6], так и тот факт, что при проведении реакции в условиях, когда цепной ее характер можно считать исключенным, измеренная энергия активации оказывается совпадающей с энергией разрыва связи НдС — Н. [c.165]


Смотреть страницы где упоминается термин Энергия первичная цепная : [c.108]    [c.9]    [c.29]    [c.380]    [c.211]    [c.229]    [c.441]    [c.632]    [c.570]   
Разрушение твердых полимеров (1971) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте