Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Систем молекулярно-дисперсионная

    Дается систематический обзор современных результатов по дисперсионному — обычному и запаздывающему — взаимодействию в капиллярных системах. В качестве исходного для микроскопической теории используется представление о молекулярной природе капиллярных систем и о межмолекулярных силах. Последовательное молекулярно-статистическое описание капиллярных систем строится на большом каноническом ансамбле Г иббса. Для этого используется метод производящего функционала, позволяющий компактно и замкнуто вывести необходимые общие соотношения статистической механики. Решение основополагающей проблемы о влиянии среды на взаимодействие молекулярных объектов достигается как строгий результат исследования коллективных явлений в системах многих молекул. Этот результат формулируется в виде принципа взаимодействия на языке фундаментальных физических понятий, отражающих роль среды как посредника взаимодействия. С единой точки зрения принципа взаимодействия рассматривается широкий круг самых различных по своим масштабам ключевых задач теории капиллярных систем. Сюда относятся молекулярные корреляции в капиллярных системах молекулярная структура плоских, слабо и сильно искривленных поверхностных слоев взаимодействие макроскопических частиц. Используемые в принципе взаимодействия понятия реализуются в этих задачах как сжимаемости и адсорбции. Они и являются параметрами описания коллективных явлений, обусловленных влиянием среды. Особо рассматривается построение парного эффективного межмолекулярного потенциала по данным о рассеянии рентгеновских лучей. На протяжении всей статьи проводится сопоставление с альтернативным макроскопическим подходом, в котором вещество рассматривается не как состоящее из молекул, а как континуум, описываемый макроскопической характеристикой — диэлектрической проницаемостью. Это сопоставление касается не только расклинивающего давления пленки, на примере которого была первоначально сформулирована макроскопическая теория, но и большинства других результатов по дисперсионному взаимодействию [c.163]


    Чем тоньше гетерогенная структура дисперсоида, тем выше степень дисперсности , его частицы меньше, а их поверхность больше. Последнее обстоятельство представляет весьма важное физико-химическое свойство коллоидной системы. Кроме того, следует делать различие между молекулярно-дисперсионной средой и коллоидными частицами, которые находятся в ней. Коллоидные частицы представляют собой истинную дисперсную фазу , а сама среда — дисперсионную среду или, менее точно, — растворитель коллоида. Обычно вода является дисперсионной средой для коллоидных частиц кремнезема и силикатов. Меняя агрегатное состояние дисперсионной среды и дисперсной фазы, можно различить следующие системы, которые наблюдаются в силикатах. [c.233]

    Модель, обсуждаемая в настоящей статье, построена на основе делокализованных связывающих орбит. При их использовании необходимо проявить осторожность, так как простая схема делокализованных молекулярных орбит приводит к стабилизации Нз в системе Нг и Н [13, 14]. В этой системе межмолекулярные дисперсионные силы слабые и силы отталкивания препятствуют соединению Нг и Н. Чтобы в случае делокализации орбит модель обеспечила образование связи, необходимо действие сил притяжения на больших расстояниях. Такими силами, например, в системе Лг + являются электростатическая поляризация и дисперсионные силы. [c.468]

    ЛИОФИЛЬНОСТЬ И ЛИОФОБНОСТЬ КОЛЛОИДОВ — характеристика интенсивности молекулярного взаимодействия вещества дисперсной фазы (в коллоидно-дисперсных системах) с дисперсионной средой (в частности, с водой — гидрофильные и гидрофобные коллоиды). Чем более лиофильна поверхность дисперсной фазы, тем больше сольватация (см. также Гидрофильность и гидрофобность, Смачивание). [c.486]

    Очевидно, существует такое, состояние системы, когда количество ассоциатов и сложных структурных единиц минимально, размеры их незначительно отличаются от размеров молекул и частиц основной массы дисперсионной среды, т. е. система находится в состоянии, характерном для истинных молекулярных растворов. Или, применяя терминологию физико-химической механики, система находится в активном состоянии. [c.27]

    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]


    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]

    Коллоидные системы занимают по степени дисперсности промежуточное место между грубодисперсными системами и молекулярно-дисперсными, поэтому и получать их можно из грубого материала путем достаточного его раздробления дисперсионные методы) или, наоборот, из более мелких частиц — молекул, ионов или атомов, вызывая их соединение (конденсацию) до частиц требуемых размеров конденсационные методы). [c.528]

    При низких температурах нефтяные системы могут образовывать обратимые лиофобные золи и гели, если дисперсионной средой являются углеводороды, по отношению к которым твердая фаза нефтяных систем является лиофобной. При средних температурах равновесие может быть сдвинуто в сторону образования истинных высокомолекулярных растворов. Продолжительность периода, когда система находится в молекулярном состоянии, зависит от способности нефтяных систем к образованию новой дисперсной фазы. С повышением температуры системы в результате поликонденсационных процессов образуются карбены и карбоиды — твердые вещества, малорастворимые или нерастворимые ни в чем. Такие нефтяные системы являются типичными необратимыми коллоидными системами. [c.36]

    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    Известно, что в результате ММВ могут формироваться два типа ССЕ, имеющих значение для процесса горения. В нефтяной системе на определенном этапе (при нагреве) образуется ССЕ с ядром из пизкомолекулярных соединений (пузырек), а на его искривленной поверхности в результате сил ММВ адсорбируются более высокомолекулярные соединения. Кроме того, образуется ССЕ с ядром из наиболее высокомолекулярных соединений (ассоциат), а иа его поверхности адсорбируются соединения с промежуточной молекулярной массой между соединениями ядра и дисперсионной среды. Например, в котельных топливах могут сформироваться ССЕ обоих типов, на поверхности которых параллельно будет идти процесс горения. Суммарный эффект процесса горения котельного топлива определяется кинетикой сгорания на поверхности ССЕ типа пузырька и ассоциата, а также кинетикой горения значительной [c.213]


    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Важно, что если в процессах применения битумных эмульсий их свойства, а, точнее, свойства образующейся пленки вяжущего, практически полностью определяются составом и свойствами дисперсной фазы (битума), то свойства самой эмульсии в большей мере определяются свойствами дисперсионной среды, естественно, с некоторыми характерными особенностями. Как и любые дисперсные системы, битумные эмульсии подчиняются законам физикохимической механики [36], объединяющей ряд проблем реологии, молекулярной физики и механики материалов. Механические [c.63]

    В механике непрерывных сред точка в жидкости — это очень маленький объем в макроскопическом масштабе, но достаточно большой объем в микроскопическом масштабе, позволяющий оценивать локальные изменения температуры, скорости, концентрации и т. д. Применяя такой же подход к определению концентрации для наших систем, мы столкнемся с трудностями, поскольку, как было показано ранее, практически всегда смешение в полимерных системах осуществляется путем конвекции при отсутствии молекулярной диффузии. Согласно этому механизму процесс смешения — не что иное как объемное перераспределение одного компонента в другом. Из этого следует, что в любой точке системы согласно данному выше определению должен находиться один компонент либо дисперсионная среда, либо дисперсная фаза. Другими словами, если отсутствует молекулярная или турбулентная диффузия , то смесь в пределах точки будет полностью разделена на компоненты. Если же под концентрацией в точке понимать представительную концентрацию внутри небольшого локального объема, значительно превышающего объем предельной частицы или размеры сегрегированной области, но гораздо меньшего, чем объем исследуемой пробы (см. ниже), то можно провести анализ эффективности смешения. Разумеется, определенную таким образом концентрацию нельзя использовать для оценки, например, скорости реакции, протекающей по молекулярному механизму. В этом случае величины локальных объемов, связанных с такой точкой , гораздо меньше, чем в нашей точке . [c.185]

    Следует указать некоторые условия применимости молекулярно-кинетической теории к коллоидным системам. Во-первых, коллоидная система рассматривается как частный случай истинного раствора с достаточно крупными молекулами растворенного вещества, где дисперсионная среда играет роль растворителя, а дисперсная фаза — растворенного вещества. При этом сделано допущение об отсутствии межмолекулярных взаимодействий на поверхности коллоидных частиц. [c.18]

    Простейшим случаем межмолекулярных взаимодействий является универсальное неспецифическое дисперсионное притяжение, вызываемое флуктуациями электронной плотности во взаимодействующих системах. Поэтому дисперсионное взаимодействие увеличивается с ростом поляризуемости партнеров. Если в молекуле компонента или (и) в адсорбенте имеются ионы, жесткие диполи, квадруполи и т. д., неспецифическое взаимодействие может также включать комбинацию дисперсионного и электростатического индукционного или поляризационного притяжения. Дисперсионное притяжение имеет место в любом варианте хроматографии. Однако, его относительный вклад в общее взаимодействие может быть больше или меньше в зависимости от электростатического индукционного взаимодействия и вкладов других видов взаимодействия. В газовой и молекулярной жидкостной хроматографии в зависимости от сложности разделяемой смеси, а также подбора адсорбента и элюента можно использовать различные комбинации видов неспецифйческого и специфического взаимодействия, которые подробнее рассматриваются ниже. (Во всех случаях наряду [c.10]

    Рядом авторов теоретически разработаны и экспериментально подтверждены представления о силах ван-дер-ваальсова притяжения коллоидных частиц. Притяжение молекул, обусловленное ван-дер-паальсовыми силами, складывается из трех компонентов ориентационного, индукционного и дисперсионного (лондоновского) эффектов. Наиболее универсальными являются дисперсионные силы, которые приобретают особое значение при взаимодействии коллоид-1ГЫХ частиц. Поскольку дисперсионные силы мало экранируются, т. е. мало зависят от присутствия соседних молекул, в отличие от других сил молекулярного притяжения, взаимодействие между коллоидными частицами получается суммированием дисперсионного притяжения между всеми молекулами, образующими обе частицы. Поэтому силы молекулярного (дисперсионного) притяжения коллоидных частиц простираются на значительные расстояния и могут вызвать слипание сблизившихся частиц. С позиций физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы, ее агрегативной неустойчивости. [c.96]

    При дальнейшем удалении дисперсионной среды гель переходит в твердую макрофазу — кристалл (кристаллогидрат) мыла, имеющий, как показал рентгенографический анализ, характерное слоистое строение. Таким образом, система ПАВ — вода может при изменении содержания компонентов переходить в различные состояния, от гомогенной системы (молекулярный раствор ПАВ), через стадию лиофильной коллоидной системы, к макрогетерогенной системе (кристаллы мыла в во- [c.230]

    В приложении к полимерным системам кинетика фазового разделения в области спинодального механизма распада изучена недостаточно. Между тем именно в этой области на разных стадиях распада формируются сложные дисперсные частицы, образованные двумя компонентами системы, в дисперсионной среде, образованной теми же компонентами, но в ином соотношении, чем в выделяющихся областях. В теоретическом аспекте наиболее общие вопросы спинодального распада применительно к смесям гибкоцепных полимеров рассмотрены Де Женом [15]. Однако это далеко не единственный вариант полимерной системы, где микрофазовое разделение может происходить по спинодальному механизму. В частности, известны полимерные материалы типа блок-сополимеров, полиблочных полимеров, взаимопроникающих полимерных сеток, свойства которых определяются особенностями их фазового состояния [16]. При этом необходимо отметить, что полимеры, молекулярные цепи которых состоят из блоков различной химической природы, в отношении фазового разделения целесообразно рассматривать как многокомпонентные полимерные системы [17]. Детальное рассмотрение этого вопроса позволило полагать [17], что для таких сложных полимерных систем должны быть справедливы те же условия фазового разделения в виде существования бинодалей и спинодалей, что и для систем на основе химически несвязанных цепей различной природы. Вместе с тем, для такого рода систем характерны особенности, существенно влияющие на процесс фазового разделения и формирование но- [c.182]

    На основе молекулярной теории удается в ряде случаев предсказывать, как влияют на смачивание некоторые физико-химиче-ские факторы, например размер функциональной группы при смачивании низкоэнергетических твердых тел (полимеров). Работа адгезии пропорциональна потенциальной энергии молекулярного взаимодействия тяч между двумя параллельными поверхностями, которые находятся друг от друга на расстоянии. На основе теории Е. М. Лифшица (1955 г.) энергия взаимодействия плоских поверхностей, которые находятся друг от друга на весьма малых расстояниях, должна уменьшаться обратно пропорционально квадрату расстояния между ними. В рассматриваемом случае Ws, = = —, 2nXtirn Ej R , где Пт и ж — число молекул твердой и жидкой фаз на единице площади контакта X — S/e S и е — энтропия и энергия поверхности раздела [143]. Это уравнение позволяет сравнивать краевые углы на разных твердых телах (1 и 2) при контакте с одной и той же жидкостью. В системах с дисперсионным взаимодействием о, = Го соответственно = [c.105]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Нефтяные остатки относятся к структурированным нефтепродуктам и обладают определенной механической прочностью и устойчивостью против расслоения. Увеличение молекулярной массы, связанное с усложнением струтстуры молекул, ведет к увеличению степени объемного наполнения системы и соответственному возрастанию структурномеханической прочности и снижению показателя устойчивости. На эти показатели влияют и физико-химические свойства дисперсионной среды, компонентный состав и, в частности, межмолекулярные взаимодействия. При малых значениях сил взаимодействия (алканы, алкано-циклоалканы с низкой молекулярной массой) показатели прочности и устойчивости изменяются по экстремальным зависимостям. При увеличении сил взаимодействия в дисперсионной среде (арены с высокой молекулярной массой) также происходят экстремальные изменения указанных показателей [14]. [c.30]

    Энергетические взаимодействия в системе среда-Ь ПАВ + металл. Энергия связи ПАВ с масляной средой определяется ван-дер-ваальсовыми силами. Она зависит от растворимости ПАВ и от химического сродства углеводородной части ПАВ и среды. Так, например, большой энергией связи обладают молекулы ПАВ, углеводородная часть которых имеет достаточно большую молекулярную массу и разветвленную структуру с алкильными радикалами. Из теории дисперсионных сил известно, что чем выше энергия связи, тем больший контакт по длине молекулы осуществляется по СНг-группам. [c.206]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    НДС могут быть обратимыми и необратимыми. Если дисперсная фаза способна обратимо взаимодействовать с диснерсиоцной средой, то такие дисперсные системы являются обратимыми. К подобным системам относится основная масса НДС, в которых дисперсная фаза может самопроизвольно растворяться в дисперсион-пой среде вплоть до образования молекулярных растворов. [c.16]

    При сильно ароматизированной среде (много полициклических ароматических углеводородов и смол) система имеет выс01кие пороговые концентрации из-за повышенной растворяющей силы и устойчивости (повышенная вязкость) дисперсионной среды. По мере вовлечения в процессы термоконденсации иолициклических ароматических углеводородов будет снижаться растворяющая сила среды и произойдет быстрая коагуляция, что приведет к значительному росту количества карбоидов в системе после резкого осаждения асфальтенов. Асфальтены в системе могут находиться в дисперсионной среде в двух состояниях молекулярном (количество асфальтенов в этом состоянии зависит от растворяющей силы дисперсионной среды) и надмолекулярном. [c.167]

    Отдельное рассмотрение в данной главе вопросов, касающихся состава, строения дисиерснонной среды НДС, вызва1ш тем, что она, являясь в ряде случаев наиболее массовой составной частью НДС, во многом предопределяет физико-химические свойства системы в целом. Кроме того, характерные для дисперсионной среды НДС свойства молекулярных растворов проявляет н широком интервале температур, давлений и концентраций большое количество различных нефтяных систем, включая га-з[> , газоконденсаты, светлые нефтепродукты (бензин, реактивные и дизельные топлива). [c.13]

    Алканы в нефтяных системах находятся в молекулярном и ассоциированном состояниях. Межмолекулярные взаимодействия алканов обусловлены водородными связями типа С—Н...С с энергией 2—4 кДж/моль в зависимости от вида тома С (первичный, вторичный, третичный, см. табл. 3) и дисперсионными силами. Интенсивность межмолекулярных взаимодействий алканов существенно ниже по сравнению с углеводородами других классов, присутствующих в нефтяных системах. В отличие от высокомолекулярных, низкомолекулярные алканы при обычных температурах ассоцнатов не образуют. Расчет средней [c.26]

    Для каждой НДС существует определенное распределение частиц в дисперсионной среде. При введении модификаторов происходит самопроизвольное диспергирование более крупных частиц с получением дисперсной системы с заметной концентрацией частиц дисперсной фазы, существенно превосходящих по величине молекулярные размеры. Наилучшие результаты диспергирования получаются при совместном применении механических и химических методов (комбинированное диспергирование). Дис-пергационные методы просты в применении, но они не могут быть использованы для получения дисперсных частиц размерами менее 1 —100 нм. В последнем случае применяются конденсационные методы. [c.65]

    Наблюдение производится методом ядериого магнитного ре-.юнанса. Объект помещается в сильное магнитное поле. Спины ядер начинают прецессировать вокру вектора напряженности магнитного поля с определенной частотой. Затем подается слабое магнитное ноле, вектор напряженностн которого нерпендн-кулярен начальному вектору. Это поле меняется с некоторой частотой. Прн совпадении частот прецессии н слабого поля система начинает сильно поглощать энергию — наступает резонанс. Затем слабое поле выключается и система релаксирует к равновесному состоянию. По скоростям релаксации определяются значения Т , и То и затем рассчитываются времена корреляции броуновского движения. С помощью ядерной магнитной релаксации их можно измерять в широком диапазоне температур и частот. Измеренные времена корреляции позволяют определить размер частиц. Метод ядерной магнитной релаксации применим не всегда, поскольку нужно учитывать релаксацию молекул как дисперсной фазы, так и дисперсионной среды. Интерпретация результатов оказывается затруднительной. Метод применим для высокодисперсных систем с частицами от молекулярных размеров до десятков нанометров. Исследования нефтяных систем этим методом только начинаются [140]. Проведенные этим методом исследования дисперсности масляных фракций нефти и их фенольных растворов позволили установить, что размеры образующих их ССЕ составляют величины порядка 10 нм [141]. [c.99]

    С повышением молекулярной массы и усложнением структуры молекулы (масла с.молы- асфальтены) степень налолне-ипя ассоцпатами системы возрастает. В одной и той же дисперсионной среде с повышением температуры начала и конца кипения нефтяных соединений возрастает структурно-механическая прочность и антибатпо падает показатель устойчивости и однородности. [c.134]

    Рассмотрим вкратце модель пласта, состоящего из породы (дисперсной системы) и флюида. Дисперсионной средой в породе являются неорганические вещества (силикаты, полевой шпг.т, кальцит, доломит, монтмориллонит и др.), а дисиерсной фазой — капилляры (поры). Капилляры, как разновидности ССЕ, имеют различный диаметр и соответственно обладают разной удел )-ной поверхностной энергией, т. е. энергетически неоднородн , . Компенсация внутренней поверхностной энергии приводит к формированию адсорбционно-сольватного слоя и соответственно ССЕ (пора-fфлюид). На втором этане норы насыщаются флюидами, находящимися в молекулярном состоянии, в объеме которых в виде свободно-дисперсных ССЕ могут находиться различные неоднородности. При вскрытии пласта в результаае изменения внешних воздействий (создается механическое воздействие из-за неренада давления между иородами-коллектора-ми и устьем скважины) флюиды, находящиеся в молекулярном состоянии, начинают вытесняться (происходит нефтеотдача). Однако из-за энергетической неоднородности пор и по другим причинам нефтеотдача неодинакова. Для интенсификации процесса нефтеотдачи применяют различные приемы, наиболее [c.191]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    Фазовое состояние, в котором находятся асфальтены, будет определяться природой нефти, количеством смолисто-асфальтеновых веществ, температурой системы [220]. В высокоароматизированной углеводородной среде, при небольшой концентрации асфальтенов сравнительно невысокой молекулярной массы образуется истинный раствор. Увеличение молекулярной массы и концентрации, снижение температуры и ароматично сти дисперсионной среды приводят к появлению ассоциатов и образуется термодинамически неустойчивая лиофобная система. Образуют ли выделившиеся асфальтены дисперсную фазу и коллоидный раствор или, агрегируясь, образуют самостоятельную псевдофазу [219] будет зависеть от концентрации и растворяющей способности смол, вязкости среды [218]. Смолистые фракции, играя роль поверхностно-активных веществ, образуют в ассоциате сольватный слой, так как они ориентированы к асфальтеновому ассоциату полярными фрагментами, а углеводородными к дисперсионной среде. Они представляют собой барьер, препятствующий укрупнению частиц. Устойчивость таких систем будет определяться толщиной сольватной оболочки. Неустойчивые системы стремятся к разделению фазы. Результатом этого может быть расслоение продукта в процессе хранения и компаундирования, при нагреве в змеевиках и др. [c.94]

    Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях [10, 14, 227, 243, 270]. Исследование молекулярной структуры н-алканов в жидком состоянии методом малоуглового рассеяния рентгеновских лучей показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например, н-алканы, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 А [40, 151]. Число молекул в ассоциате тем больпге, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2 °С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при - 50°С (т. е. на 6°С выше температуры кристаллизации) -31. Это объясняется ослаблением тстиовото движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи. [c.11]

    Буровые растворы — не истинные растворьг, в которых растворенное вещество находится в молекулярно-дисперсном состоянии, т. е. в виде молекул, атомов или ионов [81]. В отличие от истинных (однофазных, гомогенных) буровые растворы являются пoJШДи пep -ными (гетерогенными) системами, представленными главным образом дисперсионной средой и дисперсной фазой. Изменяя состав и относительное содержание этих фаз, обрабатывая их ПАВ или другими веществами, можно в довольно широких пределах регулировать их [c.43]

    Однако, есяи в качестве дисперсионной с дн использована лиофобная по отношению к высокомапекулярному веществу жйдкость, в которой оно молекулярно не растворимо или растворимо плохо, то в этом случае макромолекулы свер ываются в компактные длот-ные клубки, которые образуют отдельную фазу. Такие дисперсные системы по свойствам не отличаются от типичных лиофобных эоле и [c.69]

    Дисперсные системы с жидкой дисперсионной средой, лиозоли, классифицируют по интенсивности молекулярного взаимодействия на границе раздела фаз. При этом с учетом обратимости или необратимости взаимодействия дисперсной фазы и дисперсионной среды различают соответственно лиофильные илилиофобные дисперсные системы. Дисперсная система считается обратимой, если сухой остаток, полученный после выпаривания дисперсионной среды, самопроизвольно в ней растворяется при повторном контакте, образуя коллоидную систему. [c.17]


Смотреть страницы где упоминается термин Систем молекулярно-дисперсионная: [c.823]    [c.25]    [c.96]    [c.40]    [c.312]    [c.139]    [c.217]    [c.115]   
Введение в молекулярную теорию растворов (1956) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсионные

Система дисперсионная



© 2024 chem21.info Реклама на сайте