Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходное состояние реакций с общим катализом

    Положение протона в переходном состоянии реакций общего катализа [c.132]

    Иными словами, сущность общего кислотно-основного катализа сводится к стабилизации переходного состояния реакции за счет более благоприятного распределения электронов между разрываемыми и образующимися связями. Если это так, то катализируемую реакцию должно было бы сопровождать прежде всего понижение энтальпии активации [53]. Действительно, для целого ряда гидролитических реакций было найдено, что увеличение кинетического порядка на единицу (т. е. введение либо общеосновного, либо общекислотного катализатора) приводит к понижению наблюдаемой энтальпии активации на 3—6 ккал/моль (12,6—25,2 кДж/моль) [49] (см. также гл. 1И). Это должно, казалось бы, привести к ускорениям катализируемых реакций в 10 —10 раз. [c.63]


    Таким образом, влияние изменения строения кислоты на стандартный потенциал переходного состояния реакции, подверженной общему кислотному катализу, равно взвешенному среднему из влияний на стандартный потенциал катализирующей кислоты и ее сопряженного основания. Весовым множителем служит параметр Бренстеда а. Когда он велик, изменение [1=5 = примерно равно изменению ца- если он мал, то изменение [1=5 становится близким к изменению [Хна. [c.413]

    Из аналогичных соображений следует, что влияние изменения строения основания на стандарт ый потенциал переходного состояния реакции, подвержен к й общему основному катализу, равно взвешенному среднему из влияний на стандартный потенциал основания и его сопряженной кислоты. Весовым множителем служит п"ра-метр Бренстеда р, так что [c.413]

    Переходное состояние реакций с общим катализом [c.262]

    Даже когда находят линейную зависимость между скоростью реакции и Н-функциями, тангенс наклона прямой часто значительно отличается от 1,0 [40]. Отклонения такого рода, например при протонировании ароматических соединений, используются для того, чтобы в сочетании с соотношением Бренстеда оценить степень переноса протона в переходном состоянии реакции с участием общего кислотного катализа. Соответствующие значения ад изменяются ожидаемым образом в интервале 0,5—0,9 [41]. [c.270]

    Из изложенного выше ясно, что интерпретация изотопных эффектов достаточно сложна и нельзя сделать общего вывода, что отсутствие или наличие процесса переноса протона в переходном состоянии строго коррелирует с отсутствием или наличием нормального изотопного эффекта. Однако если можно показать, что общий изотопный эффект не связан с влиянием изотопного эффекта равновесной стадии, предшествующей скорость определяющей стадии, то существование нормального изотопного эффекта является свидетельством лимитирующего процесса переноса водорода в переходном состоянии. Наличие меньших изотопных эффектов означает, что существуют различия в нулевых энергиях и в положении водорода в исходных соединениях и переходном состоянии. В некоторых случаях были установлены разумные корреляции между величиной изотопных эффектов и наблюдаемыми или ожидаемыми изменениями в частотах колебаний связей и в нулевых энергиях реагирующих веществ, продуктов и переходного состояния. Отсутствие изотопного эффекта не исключает переноса водорода как существенной части механизма реакции и даже не доказывает, что водород не переносится в переходном состоянии. Реакции, которые подвергаются специфическому кислотному катализу, обнаруживают обратный дейтериевый изотопный эффект растворителя, однако обратные изотопные эффекты могут наблюдаться и в реакциях, катализируемых по общекислотному типу. По величине первичных изотопных эффектов невозможно надежно установить степень переноса протона в переходном состоянии, однако существуют свидетельства в пользу того, что такого рода оценки можно сделать при изучении вторичных изотопных эффектов в реакциях, катализируемых по общекислотному типу, которые включают сольватированный протон в качестве реагирующей частицы. [c.216]


    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    Элементы теории катализа. Для объяснения механизма действия катализаторов обратимся к теории переходного состояния. Специфические свойства активированного комплекса определяют скорость процесса, состав продуктов, степень влияния на процесс различных факторов. Активированный комплекс находится в равновесии как с реагентами, так и с продуктами реакции. В общем случае в его состав могут входить и посторонние вещества, например растворитель при взаимодействиях в растворах. (Этим и объясняется влияние растворителя на скорость реакций). Катализаторы также могут участвовать в формировании промежуточных соединений, при распаде которых происходит образование продуктов реакции и регенерация катализатора, хотя его физическое состояние может измениться. Активированный комплекс, образовавшийся при участии катализатора, естественно, отличается по строению и свойствам от комплекса, образованного только молекулами реагентов. Вследствие различия в структуре и свойствах этих комплексов изменяется энергия и энтропия активации. Это, в свою очередь, может стать причиной того, что в присутствии катализатора образуются одни продукты, а без него другие. В-третьих, из одних и тех же реагентов могут получиться разные продукты, так как различные катализаторы с одними и теми же реагентами образуют неодинаковые активированные комплексы. [c.156]

    В активных центрах ферментов содержится обычно две или более каталитических групп. Они могут воздействовать на субстратную группу двумя совершенно различными путями. Один из них заключается в том, что нуклеофильный, или общий основной катализ протекает одновременно с общим кислотным, в одном и том же переходном состоянии. Механизм этого типа, приложимый к гидролизу сложных эфиров, представлен в (15). Этот механизм часто постулировался в качестве вероятной модели катализа более чем одной функциональной группой, однако при исследовании модельных систем не было получено серьезных свидетельств в его поддержку [32]. Для реакций, подверженных нуклеофильному или общему основному катализу, общий кислотный катализ не характерен (и наоборот). Другой способ предусматривает действие двух каталитических групп по отдельности на различных стадиях сложной реакции. Если одна из групп специфично действует на скоростьопределяющей стадии такой реакции, в результате чего скоростьопределяющей становится уже следующая стадия, то именно на последней необходимо действие второй каталитической группы (примером такого процесса является описанный в предыдущем разделе гидролиз сложных эфиров диметилмалеиновой кислоты). [c.471]

    В этой главе мы рассмотрим катализ химических реакций в присутствии веществ, характер взаимодействия которых с реагентами не удается определить однозначно, как это делалось выше. По этой причине данную разновидность катализа мы назовем катализом окружением . По существу, в настоящей главе речь идет о катализе солями и растворителями. И те и другие составляют окружение реагентов и могут приводить к существенному увеличению скорости реакции. В отличие от общих кислотно-основных (гл. 4) и нуклеофильно-элект-рофильных (гл. 7) катализаторов соли и растворители в явном виде в выражение для скорости реакции не входят. Тем не менее они влияют на стандартную свободную энергию исходного и (или) переходного состояния и потому могут оказывать значительное воздействие на константу скорости реакции. (Влияние на равновесие мы рассматривать не будем.) В отличие от многих катализаторов, упоминавшихся ранее, соли и растворители обычно не вносят изменений в механизм реакции, однако обусловленные ими эффекты при анализе ускорений химических реакций учитывать совершенно необходимо как с практической, так и с теоретической точки зрения. [c.39]


    Эта неоднозначность в определении положения протона в переходном состоянии присуща всем реакциям, протекающим по механизму общего кислотно-основного катализа. Для решения этой проблемы можно использовать различные подходы. [c.126]

    Аналогичные проблемы возникали при выяснении строения переходного состояния многих других реакций, проявляющих чувствительность к общему кислотному или основному катализу [641, и также были решены путем изучения пространственных влияний на скорость реакции [651. [c.234]

    Теория активного комплекса, часто называемая еще теорией переходного состояния и теорией абсолютных скоростей реакций, как было сказано (стр. 296), является общей теорией кинетики и механизма химических реакций. Вместе с тем она теснейшим образом связана с катализом не столько потому, что ее положения распространяются на каталитические процессы, сколько потому, что она призвана всесторонне осветить вопросы [c.313]

    В гл. V был показан начальный путь развития теории кислотно-основного катализа, завершенный созданием так называемой общей теории кислотно-основного взаимодействия Бренстеда и Лоури. Закономерности, установленные этими учеными и выраженные в форме соотношений между силой кислот и оснований, с одной стороны, и их каталитической активностью— с другой (стр. 92), в течение длительного времени служили руководящим указанием при изучении кинетики многих кислотно-основных каталитичеоких реакций в растворах [109]. Соотношения Бренстеда нашли подтверждение при осуществлении большого числа различных реакций, в том числе реакций водородного обмена (см. [110]). Одно из уравнений Бренстеда (стр. 89) для скорости бимолекулярной реакции, полученное за 10 лет до появления теории активного комплекса, но сОг держащее в себе указание на образование критического переходного состояния (величина х), впоследствии стало рассматриваться как особый случай применения теории Эйринга— Поляни [109, стр. 10]. [c.339]

    При нуклеофильном катализе реагент непосредственно атакует карбонильный углерод, находящийся в состоянии зр -тяб-ридизации, в то время как в механизме общего катализа реагент либо отщепляет протон, либо поставляет его для образования переходного состояния (или состояний), приводя к замещению X водой или другим основанием. Уравнения скорости реакций нуклеофильного гидролиза и гидролиза, протекающего по механизму общего основного катализа, имеют, конечно, одинаковый вид. Для реакций, протекающих по механизмам общего кислотного или общего основного катализа с участием другого нуклеофила, а не воды, общий кинетический порядок равен трем. Поэтому подобные реакции могут быть легко обнаружены на основе анализа зависимости скорости реакции от концентрации реагентов, [c.36]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    Резонансная стабилизация и структурные перегруппировки могут в различной степени стабилизировать или дестабилизировать основные состояния, переходные состояния и продукты реакции и они могут (по крайней мере теоретически) оказывать влияние на нуклеофильную реакционную способность таким же образом, как они влияют на эффективность действия общих кислотно-основных катализаторов (болев подробное обсуждение дано в гл. 3 для общего кислотно-основного катализа карбоновыми кислотами). Резонансная стабилизация основной формы нуклеофила, например дианиона угольной кислоты, должна уменьшать нуклеофильную реакционную способность данного соединения, поскольку в переходном состоянии реакции резонансная стабилизация частично утрачивается. С другой стороны, резонансная стабилизация основания обусловливает также и уменьшение его основности, причем этот эффект должен быть более значительным, чем влияние на нуклеофильность, поскольку в равновесном процессе протонирования резонансное взаимодействие с реагирующими атомами утрачивается почти полностью, в то время как в переходном состоянии — лишь частично. Следовательно, при корреляциях нуклеофильностп с основностью резонансная стабилизация может приводить как к положительным, так и к отрицательным отклонениям от линейной зависимости, отложенной в координатах уравнения Брёнстеда, причем характер отклонений будет зависеть от угла наклона прямой и относительного вклада резонансной стабилизации в основание, кислоту и переходное состояние. [c.85]

    В эту категорию также можно включить большую группу реакций, в которых происходит перенос протона между кислородом, азотом или серой, а также общий кислотный или основной катализ, сопровождающийся образованием или разрушением связей более тяжелых атомов. Большинство реакций карбонильной или ацильной группы является реакциями такого рода. Несмотря на то что детальная природа катализа переноса протона в этих реакциях до конца не понята, весьма вероятно, что в переходном состоянии этих реакций протон не находится на вершине потенциального барьера, хотя в переходном состоянии почти определенно его положение отличается от положения в исходных веществах или продуктах реакции. Эти реакции обычно протекают в окиси дейтерия в 2—3 раза медленнее, чем в воде [58] кц о/ко о = 3,0 для общеосновного катализа имидазолом гидролиза этилхлорацетата [59]), но иногда они обнаруживают большие изотопные эффекты кц,о1к0. о = 4,0 и 4,4 для общекислотного и общеосновного катализа реакции морфолина с б-тиовалеролактоном [60]), или практически отсутствие изотопного эффекта кц о/ко о = 1Д для катализируемого по общеосновному механизму аминолиза фенилацетата глицином [7]), или да"/ке обратный изотопный эффект (кщо/ко о = 0,59 для общекислотного катализа присоединения метоксиэтантиола к ацетальдегиду [18]). Как указывалось в гл. 3, разд. Е,2, весьма вероятно, что в переходных состояниях реакций этого типа протон находится в более или менее стабильной потенциальной яме и может содержать существенную нулевую энергию. [c.212]

    Общий кислотно-основной катализ важен для реакций гидроксиламина со сложными эфирами и амидами, тогда как для присоединения гидроксиламина к альдегидам и кетонам он играет незначительную роль. Реакции ацильной группы более сложны, так как резонансная стабилизация исходного состояния должна быть в значительной степени нарушена для достюкения переходного состояния. Очевидно, общий кислотный или основной катализ может обеспечить большую свободную энергию стабилизации этих высокоэнергетических переходных состояний, чем для переходных состояний в более простых реакциях карбонильной группы. [c.403]

    Ясно одно, что по аналогии с эффектами, обнаруженными во внутримолекулярных неферментативных реакциях, включение в переходное состояние дополнительной функциональной группы, действующей по механизму общеосновного (или общекислотного) катализа, в принципе может ускорить реакцию в сотни или даже тысячи раз. Существуют по крайней мере две причины, в силу которых эффекты общего кислотно-основного катализа могут оказаться в ферментатив- ных системах еще более действенными, чем в неферментативных внутримолекулярных реакциях. [c.66]

    Внутренняя реакционная способность нуклеофила, действующего в свободном ферменте. В итоге проведенного анализа можно считать доказанным постулат Бендера и Кежди [7] о том, что эффекты субстратных заместителей в химотрипсиновом катализе имеют аддитивный характер. Такое свойство ферментативного процесса означает, что свободная энергия того или другого сорбционного фермент-субстратного взаимодействия (стабилизирующего переходное состояние) входит в общую свободную энергию активации химической реакции в виде взаимно независимых слагаемых, а именно  [c.160]

    В другом механизме первая и вторая стадия протекают согласованно. Для гидролиза 2-(л-нитрофенокси)тетрагидропирана показано, что действует общий кислотный катализ [393] следовательно, в лимитирующей стадии происходит протонирование субстрата (т. 1, разд. 8.3). Реакции, в которых медленная стадия представляет собой протонирование субстрата, называются А-5е2 [394]. Однако если медленная стадия ограничивается протонированием субстрата, то следует ожидать, что в переходном состоянии протон будет находиться ближе к более слабому основанию (т. 1, разд. 8.3). Поскольку субстрат представляет собой намного более слабое основание, чем вода, то перенос протона в этом состоянии должен быть уже в значительной мере осуществлен. Однако коэффициент Брёнстеда оказался равным 0,5, что свидетельствует о том, что перенос протона произошел только примерно наполовину. Это можно объяснить. [c.105]

    СН ггруппе составляет 4,2 после учета статистической поправки на число атомов водорода. Преимущественное образование более замещенного енола при катализируемой кислотой енолизации обычно объясняют стабилизующим эффектом алкильных групп, находящихся при двойных углерод-углеродных связях. Можпо полагать, что в той степени, в какой переходное состояние напоминает продукт реакции, алкильные группы стабилизуют и более разветвленное переходное состояние [31]. Противоположный стерический эффект, оказывающийся, по-видимому, значительным, наблюдается в случае 4.4-диметилпентанона-2, где метиленовая группа, экранированная з-рег-бутильпой группой, становптся менее реакционноспособной, чем метильная. Однако общее различие реакционной способности здесь значительно меньшее, чем при катализе образования еиолятов основаниями. [c.284]

    Нуклеофильный и общий основной катализ составляют два из трех механизмов, выявленных при работе в модельных системах. Третий механизм — это общий кислотный катализ. Этот механизм обычно не наблюдается в реакциях сложных эфиров, но имеет больщое значение при гидролизе ортоэфиров и некоторых ацеталей [22]. Так, гидролиз этилортоацетата (4) катализируется кислым компонентом нитрофенольных буферов [23] и, как принято считать, протекает по механизму общего кислотного катализа [22] схема (10) . Согласно этому механизму, обратному общему основному катализу превращение (4) в (5) и затем обратно (5) в (4) через одно и то же переходное состояние , катализатор посредством протонирования превращает плохую уходящую группу в хорощую. В отличие от специфического кислотного катализа, который зависит только от pH и не зависит от концентрации обобщенной кислоты (в данном случае фенола), здесь стадии переноса прогона и разрыва связи С—О согласованы. [c.464]

    В разд. 24.1.3 мы видели, как каталитические механизмы, по которым, как полагают, действуют некоторые ферменты, могут в ряде случаев наблюдаться в простых системах. Так, общий основной катализ имидазолом, например, гидролиза Л ,0-диаце-тилсеринамида (36) [53] представляет собой модель реакции химотрипсина со сложноэфирным субстратом. В ионной реакции этого типа переходное состояние каталитической реакции стабилизуется за счет делокализации заряда на нескольких центрах. В этом случае фиксация положительного заряда на нуклеофильной гидроксильной группе нейтрализуется делокализацией на азо-тах имидазола. В результате происходит понижение энергии активации реакции за счет затрат повышенной энтропии активации (см. разд. 24.1.22). Данные табл. 24.1.4 иллюстрируют это положение мономолекулярная реакция отщепления 2,4-динитрофен-оксида от соответствующего фосфатного моноэфира-дианиона имеет высокую энтальпию активации, однако реакция протекает достаточно легко из-за ее весьма благоприятной энтропии активации. Нуклеофильный катализ этой реакции пиридином характеризуется несколько меньшей энтальпией активации, так как азот пиридина может принимать на себя положительный заряд в переходном состоянии, в результате чего удается избежать образования высокоэнергетического интермедиата — метафосфата [РОЛ- Тем не менее участие молекулы пиридина отражается в виде намного менее выгодной энтропии активации. Близкие активационные параметры наблюдаются и в случае нуклеофильного катализа ацетатом гидролиза триэфира (73) также бимолекулярной реакции. Нейтральный гидролиз (73) проходит, как полагают, по механизму тримолекулярного общего основного катализа (см. табл. 24.1.4). Эта реакция протекает относительно медленно исключительно за счет энтропийного вклада, еще менее выгодного в этом случае. Энтальпия активации, впрочем, для тримолекулярного процесса несколько ниже, поскольку делокализация заряда на трех молекулах еще больше уменьшает его фиксацию в каком-либо одном центре. [c.522]

    Общий кислотно-основной катализ в реакциях карбонильного присоединения и в других подобных процессах обеспечивается за счет резкого и сильного изменения рКа реагирующих групп. Кислотность амина возрастает не меггее чем на 22 единицы рКа, а основность карбонила — на 13 единиц рКа, в результате чего происходит общий катализ карбонильного присоединения и сходных реакций, сопровождающихся образованием неустойчивых промежуточных соединений и переходных состояний. Ускорение при этом достигается либо путем фиксации промежуточных соединений, либо за счет стабилизации переходных состояний, либо путем протекания реакции в обход чтих состояний. [c.117]

    Большое значение для эффектианости действия фермента может иметь сопряженный кислотно-осноаный катализ, а также нуклео-фильный катализ с образованием реакционноспособного промежуточного соединения- Немалую роль играет и фактор микросреды. Совокупность факторов, вносящих вклад а повышение каталитической активности ферментов, обеспечивает снижение энергетического барьера реакции. Согласно получившей весьма широкое признание концепции, снижение энергетического барьера достигается благодаря стабилизации переходного состояния или, точнее, благодаря приближению структуры субстрата а фермент-субстратном комплексе к структуре переходного состояния. Приближение к структуре переходного состояния требует в общем случае затраты энергии согласно рассматриваемой концепции, необходимая энергия обеспечивается за счет части энергии связывания субстрата с ферментом. [c.188]

    Из примеров, приведенных в табл. 5-8, можно сделать вывод, что изменение величины Р вызвано прежде всего уменьшением электронной плотности на реакционном центре в основном состоянии, что увеличивает поляризацию нуклеофила и, следовательно, перенос заряда в переходном состоянии . Большие значения Р для реакций гидроксамовых кислот [77] указывают на иной механизм (по аналогии с различными значениями р для сложных эфиров в реакциях гидролиза под действием нуклеофильного и общего основного катализа). В соответствии с этим выводом константы скорости для реакций гидроксамат-уонов лежат на той же самой прямой gk — р/Сд, как и константы скорости нейтральных амидоксимов [81], которые реагируют только в случае внутримолекулярного основного катализа, подобного предложенному Дженксом [82] для 0-ацилирова-ния гидроксиламина активными сложными эфирами  [c.203]

    В некоторых случаях могут быть выделены тетраэдрические промежуточные соединения, как, например, комплексы Мейзенгеймера при реакции с алкоксианионами [91] или комплексы Яновского [92] с енолят-ионами или другими карбанионами. Механистические исследования подтверждают близость переходного состояния к этим промежуточным продуктам. Например, наблюдаемый порядок скорости (Р > С1> Вг > I) для замещенных соединений указывает на образование прочной связи в переходном состоянии это подтверждается также недавними наблюдениями общего основного катализа [93]. Так, в реакциях 2,4-динитропроизводных фтор-, хлор- и иодбензолов с аминами, выбранными в качестве нуклеофильной серии, значения Р равны 0,42, 0,45 и 0,52 соответственно [94]. [c.208]

    Природа растворителя влияет не только на состояние веществ в растворе, но и на стабильность активированных комплексов, ЧТО также изменяет скорость реакции. Влияние сольватации переходных состояний прослеживается в реакциях между нейтральными полярными молекулами, сольватация которых меньше влияет на реакционную способность, чем в реакциях с участием ионов. Согласно качественной теории влияния растворителей Хьеоз а и Ингольда [72, с. 379], скорость реакции между незаряженными молекулами, протекающей через пере--ходное состояние с частичным разделением зарядов, возрастает с увеличением полярности среды. В соответствии с этим правилом реакции ароматического замещения, которые протераюг через переходное состояние, подобное по структуре биполярным 0-комплексам, ускоряются с увеличением полярности растворителя. Однако влияние растворителей зависит не только от их полярности. Наиболее обстоятельно это показано на примере )еакции ароматических галогенпроизводных с аминами [239], Лри близкой полярности растворители тем больше ускоряют реакцию с пиперидином (30)->(33), чем больше их основность диоКсан больше, чем бензол, пиридин больше, ем нитробензол,. и т.д. Это объясняют специфической сольватацией путем образования водородной связи в а-комплексе (31), облегчающей отрыв протона от атома азота (общий основный катализ). В значительной степени влияние основного растворителя зависит от природы замещаемого атома. Так, скорости реакции с пиперидином при 50 °С в таких растворителях, как бензол, этилацетат, метилэтилкетон, ацетонитрил, диметилформамид и диметилсульфоксид, составляют для п-нитрофторбензола соответственно 1, 11, 59, 300, 1950, 7200, а для /г-нитрохлорбен-зола они равны соответственно 1, 2, 15, 34, 142, 412 при отношении скоростей обмена атомов фтора и хлора в бензоле, равном 24 1 [240]. Большее влияние основных полярных растворителей (В) на скорость замещения атома фтора объясняют образованием более прочных водородных связей с сопряженными кислотами (ВН ) на стадии отрыва галогенид-аниона [формула (32)] (общий кислотный анализ).-Для растворителей (1), обладающих как основным, так и кислотным характером (например пиперидин), допускается возможность одновременного образо- [c.81]

    В соответствии с принципом .и1кроскопической обратимости стадия, характеризующаяся константой к2, должна протекать через те же переходные состояния. Следовательно, для образования промежуточного тетраэдрического соединения по механизму общего основного катализа необходимо, чтобы обратная реакция распада тетраэдрического соелинеиия протекала по механизму общего кислотного катализа (1-136,1) аналогично для образования промежуточного тетраэдрического соединения по механизму общего кислотного катализа необходимо, чтобы обратная реакция протекала по типу общего ооювпого катализа (1-136,11). Превращение тетраэдрического соединения в продукты реакции может также происходить через соответствующие переходные состояния по механизмам общего основного (1-137,1) и общего кислотного (1-137,11) катализа. [c.97]

    Для уравнений (1-1386, г) и (1-139) не вводится допущения о переходном состоянии с наибольшей свободной энергией. В случае симметричных механизмов этот фактор не имеет значення для выведенных кинетических уравнений, хотя в отношении определения типа катализа возникают семантические трудности. Так, если 2 кз и, следовательно, стадия кх характеризуется наибольшим барьером свободной энергии, можно считать, что катализ существен только на стадии ки н поэтому эта стадия является единственной каталитической стадией процесса. Тем не менее для симметричного механизма катализ происходит на каждой стадии, хотя его влияние на скорость реакции определяется только стадией, которая характеризуется наибольшей свободной энергией активации. Однако в случае несимметричной реакции (типа 1-139) для общей кинетической картины необходимо знать, какое переходное состояние обладает наибольшей свободной энергией. Если реакция описывается механизмом (1-139) и у г[ВН+] <С йз, то кинетически процесс не отличим от катализируемого 5л-2-замещения. Однако, если 2[ВН+] кз, то механизм катализа будет скорее специфическим основным, чем общим основН1з1м (1-140)  [c.98]


Смотреть страницы где упоминается термин Переходное состояние реакций с общим катализом: [c.17]    [c.280]    [c.319]    [c.77]    [c.215]    [c.314]    [c.315]    [c.282]    [c.282]    [c.476]    [c.229]    [c.39]    [c.42]    [c.101]   
Смотреть главы в:

Механизмы химических реакций -> Переходное состояние реакций с общим катализом




ПОИСК





Смотрите так же термины и статьи:

Катализ реакции

Реакции общие

Состояние переходное



© 2025 chem21.info Реклама на сайте