Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика полимеризации в жидкой фазе

    Для иллюстрации методик, применяемых пр>и решении обратной кинетической задачи, следуя работе [177], рассмотрим механизм гетерогеннокаталитического окисления метилакролеина в жидкой фазе в присутствии ингибитора полимеризации. Ставилась задача нахождения решения системы обыкновенных дифференциальных уравнений химической кинетики, соответствующих механизму, наилучшим образом описывающему экспериментальные данные. [c.166]


    Несколько лучше изучена кинетика гомогенной полимеризации Б жидкой фазе диолефинов. [c.142]

    Тамман и соавторы (155) изучали кинетику полимеризации изопрена и диметилбутадиена в жидкой фазе при низких температурах. [c.142]

    Кинетика полимеризации перечисленных углеводородов изучалась главным образом в жидкой фазе. [c.143]

    Наглядная картина зарождения и роста полимерных частиц и их агрегирования при полимеризации винилхлорида в неподвижной массе была получена путем электронно-микроскопического исследования полимеризата на различных стадиях процесса Полимери-зационная среда уже в самом начале полимеризации мутнеет. Отобранный на этой стадии полимер представляет собой глобулярные частицы размером около 0,1 мк. В ходе дальнейшей полимеризации происходит рост частиц (рис. П1.1). Распределение частиц по размерам на различных стадиях процесса, а также кинетика их роста дают основание полагать, что при этом новые частицы не возникают, а продолжают расти те частицы, которые образовались в начале процесса. Рост происходит не за счет агрегирования, а вследствие полимеризации мономера на их поверхности или адсорбции на поверхности частиц молекул полимера, выпадающих из жидкой фазы. [c.54]

    Таким образом, низкотемпературная полимеризация в кристалле вдали от фазового перехода практически не идет. В твердофазных системах наиболее благоприятные условия для образования макромолекулы возникают, когда структурная упорядоченность, свойственная твердому телу, сочетается с подвижностью молекул, характерной для жидкой фазы. Это условие реализуется в, момент фазового перехода. Для объяснения быстрой полимеризации вблизи фазовых переходов используют представления о лабильных заготовках . Это группы упорядоченных молекул мономеров, возникающих на короткое время на движущейся границе кристаллической фазы [336]. Структура кристаллической решетки может влиять на кинетику полимеризации и служить в качестве стерео-специфической молекулярной матрицы, определяющей строение образующихся макромолекул. Для выяснения подобного влияния кристаллической решетки наиболее удобны мономеры, которые могут давать макромолекулы разного строения. При этом, однако, может возникнуть некоторая трудность при трактовке экспериментальных результатов. Структура образующегося полимера может определяться влиянием кристаллической решетки или образованием разных по природе активных центров. [c.91]


    Первые исследования кинетики полимеризации 04 в массе под действием КОН, с контролем хода реакции по изменению давления пара 04 над жидкой фазой, показали, что реакция имеет первый порядок по мономеру и порядок 0,5 по катализатору [1456]. Аналогичные данные получены при изучении кинетики полимеризации различными основаниями как О4 [1504, 1532], так и циклосилоксанов с пропильными [168, 1711], 3, 3,3-трифторпропильными [c.172]

    КИНЕТИКА ПОЛИМЕРИЗАЦИИ В ЖИДКОЙ ФАЗЕ [c.70]

    Строение макромолекул ненасыщенных олигоэфиров оказывает существенное влияние на специфику формирования надмолекулярной структуры в олигомерных системах. Макромолекулы олигоэфиров со статистическим распределением функциональных групп, содержащие аномальные звенья, образуют в олигомерной системе ассоциаты, которые могут отличаться не только по размеру и морфологии структурных элементов, но и по химическому составу и уровню надмолекулярной организации. Это оказывает значительное влияние на структуру отдельных слоев покрытий, кинетику полимеризации, адгезионные, физико-механические и другие свойства покрытий. Для покрытий из разнозвенных ненасыщенных олигоэфиров характерна неоднородная дефектная структура с сравнительно низкими адгезионными свойствами и высокими внутренними напряжениями. Для устранения дефектности и неоднородности надмолекулярной структуры при формировании покрытий из разнозвенных олигоэфиров разработаны различные способы их модификации, основанные на введении добавок, способствующих формированию ассоциатов из развернутых макромолекул и фиксированию в отвержденных покрытиях более однородной и упорядоченной структуры, образованной в жидкой фазе [47]. Это приводит к значи-тельно-му понижению внутренних напряжений, улучшению декоративных и других эксплуатационных свойств покрытий. [c.21]

    Из сравнения данных рис. 2.7 и 2.9 сле.чует. что применение хорошего растворителя при кристаллизации олигомеров гю-разному влияет на кинетику их полимеризации. В случае олигомеров с более низким уровнем надмолекулярной организации кристаллической фазы применение хорошего растворителя при их кристаллизации способствует резкому снижению скорости полимеризации и степени конверсии. В тех же условиях полимеризация более упорядоченных олигомеров проходит с большей скоростью и до более глубоких степеней преврашения. Изучение структурных переходов при плавлении кристаллов, полученных из растворов с использованием растворителей разной природы, свидетельствует о том. что в случае ОУМ-6 при применении хорошего растворителя кристаллизация протекает с затруднениями и значительно снижается уровень надмолекулярной организации кристаллов. Кристаллы, сформированные в этих условиях, переходят в жидкую фазу, минуя мезоморфное состояние. В то же время разрыхление структуры кристаллов ОУМ-7 и ОУМ-1 при кристаллизации в хороших растворителях способствует переходу их в мезоморфное состояние, что ускоряет процесс полимеризации. На рис. 2.10 показана текстура смектических жидких кристаллов ОУМ-7, закристаллизованного из хорошего растворителя. [c.58]

    Одним из актуальнейших вопросов современной кинетики реакций в жидкой фазе является вопрос о характере влияния растворителя на кинетику и механизм протекающих в нем реакций. Поэтому представляется целесообразным изучение кинетики одних и тех же реакций не только в различных индивидуальных растворителях, но и в смесях двух растворителей. Такие исследования могут быть полезны и для решения практических задач, в особенности в области полимеризационных процессов очень часто полимеризацию проводят в смеси растворителей, одним из которых является сам мономер. [c.272]

    Влияние поглощенной дозы. Увеличение поглощенной дозы (времени облучения) приводит к росту выхода полимера. При самом общем сопоставлении кинетики полимеризации в жидкой и твердой фазе, следует отметить более сложный характер кинетических кривых в последнем случае (рис. 5). Влияние дозы при твердофазной полимеризации подробнее рассматривается в гл. УП. Что же касается полимеризации в жидкой фазе, то можно отметить случаи, когда процесс, развиваясь сразу, во времени замедляется (рис. 6) или происходит с самоускорением (рис. 7). [c.23]

    Показано значительное влияние поверхности раздела жидкая фаза — твердый носитель на характеристики разделения (величина удерживания, эффективность разделения). Изучена кинетика привитой радиационной полимеризации на минеральных подложках (кирпич ИНЗ-600). [c.131]

    Несмотря на то, что привитая полимеризация (ПП) является одним из. наиболее перспективных методов модифицирования полимерных материалов, кинетические особенности и механизм прививки виниловых мономеров изучены явно недостаточно (см. гл. III). Это обусловлено прежде всего тем, что ПП в большинстве случаев осуществляли из жидкой фазы, а в этих условиях обычно параллельно протекал процесс гомополимеризации. Применение радиационно-химического парофазного метода ПП под пучком излучения почти исключало передачу цепи на мономер и, следовательно, образование гомополимера [51—53]. Однако ионизирующее излучение действует не только на подложку, оно поглощается привитыми макромолекулами и сорбированным мономером. Все это затрудняет исследование кинетики и механизма реакции ПП. [c.39]


    Условия кристаллизации мономера могут заметно влиять на скорость полимеризации акрилонитрила в твердой фазе. Если облучение проводят при —100°, то выход полимера из мономера, замороженного до —196° и затем нагретого до —100°, значительно ниже, чем из мономера, сразу охлажденного до —100° [78]. При —196° измерениями ЭПР установлено наличие радикалов, но такие ингибиторы радикальной полимеризации как кислород, дифенилпикрилгидразил, бензохинон, на скорость поли меризации не влияли. Очевидно, в твердой фазе создаются другие условия и вероятно, что в области низких температур действует ионный механизм а полимеризация в жидкой фазе, несомненно, имеет радикальный харак тер. Это доказательство, однако, не очень убедительно в свете известных сложностей твердофазной полимеризации. Многие из описанных выше аномалий кинетики встречались и в радиационной полимеризации в твердой фазе при обычных температурах [54], и предложенные объяснения не включали ионного роста цепи. Например, эти различия можно рассматривать в рамках радикального механизма как связанные с увеличением энергии активации реакции обрыва в кристаллическом состоянии вместе со снижением энтропии активации роста благодаря предварительной ориентации в кристаллическом состоянии [78]. [c.544]

    Специфическое влияние жидкого агрегатного состояния по сравнению с газообразным на кинетику крекипга олефинов и диолефинов почти не изучалось. Рессель и Готтель (123) провели сравнительное изучение кинетики полимеризации этилена в газовой фазе и в растворе нафталина в условиях одинаковой концентрации и в пределах температур 270—414° С. Нафталин совершенно не вступал в реакцию. В растворенном состоянии этилен реагировал почти так же, как и в отсутствии растворителя. Скорость полимеризации была практически одинаковой в обопх случаях. Исправленная величина энергии активации реакции нолимеризации этилепа равнялась 40 ООО кал в растворе нафталина и 42 100 кал — в газовой фазе. Порядок реакции был вторым в газовой фазе и промежуточным между вторым и третьим в случае раствора в нафталине. [c.142]

    При помощи так называемой струевой методики, когда реакционная смесь с большой скоростью пропускается через ячейку, находящуюся в резонаторе, удается поддерживать в нем достаточно высокую концентрацию образующихся короткоживущих радикальных продуктов в течение времени, необходимого для регистрации спектра. Это позволяет не только наблюдать промежуточные продукты, но и получать константы скорости отдельных элементарных стадий процесса. Таким методом исследованы, например, цепные реакции, протекающие в смесях Н2 + О2, Рг + ССЬ, р2 + СНзВг (в газовой фазе). Метод ЭПР широко используется для изучения цепного окисления углеводородов в жидкой фазе, реакций радикала ОН с различными спиртами, механизма и кинетики радикальной полимеризации и т. д. [c.74]

    Влияние ПАВ проявляется как в момент диспергирования латекса, так и во время сушки капель. В зависимости от природы ПАВ сред них имеются пенообразователи (соли жирных кислот) и пеногасителн (жиры, полисилоксановые соединения). Как показали исследования [42], первые способствуют увеличению числа пузырьков воздуха в капельках распыливаемых композиций, вторые - уменьшают число пузырьков в каплях. Натриевые и калиевые соли жирных кислот, алкилсульфаты, алкилсульфонаты, применяемые в качестве эмульгаторов в процессах эмульсионной полимеризации ВХ, являются типичными пеногенераторами и это следует учитывать при разработке технологии сушки латексов ПВХ. Присутствие ПАВ влияет и на кинетику сушки капель, а последняя - на структуру сухих частиц. По данным, полученным при исследовании кинетики сушки капель СМС в присутствии ионогенных ПАВ [38], процесс обезвоживания протекает без стадии капения, что обусловливает получение монолитных частиц. По данным [35] поверхностное натяжение жидкой фазы в латексе ПВХ сильно влияет на плотность высушенных частиц при сравнительно низкой температуре сушки. При уменьшении поверхностного натяжения существенно увеличивается насыпная плотность высушенного ПВХ. Это можно объяснить уменьшением давления на свод оболочки согласно формуле (4.1) и соответственно меньшей степенью образования продавленных горшковидных частиц. [c.124]

    Влияние давления на скорость крекинга—самый спорный, вопрос. С теоретической точки зрения, константа скорости мономолекулярной реакции крекинга должна быть независимой от давления. Однако вторичные би- и полимолекулярные реакции крекинга (полимеризация и конденсация), как будет показано ниже, ускоряются под влиянием давления. Немного сделано по кинетике разложения чистых химических соединений в жидкой фазе при высоких давлениях. Виллиаме, Перрин и Гибсон[5бб] исследовали разложение бромистого фенилбензил-метилаллиламмония в растворе хлороформа при давлениях от 1 до ЗОСЮ кг1см . Влияние давления было ничтожным. Давление слегка замедляло реакцию. Полагают, что давление является одним из важных факторов при крекинге, сильно увеличивая выходы крекинг-бензина. Лесли и Потткофф [29] первыми изучали влияние давления на кинетику образования бензина при крекинге. Давление, созданное добавлением азота, не влияло на крекинг. В других опытах давление поддерживалось при помощи разложения нефти от 14 до 35 кг/см при 42Т С, [c.119]

    Исходя из наблюдений, о которых речь шла выше, был предложен механизм гетерогенной полимеризации, основанный, в первую очередь на предположении о том, что многие (если не все) полимерные радикалы в процессе роста отделяются от жидкой фазы. Из обших закономерностей поведения полимерных молекул в окружении молекул осадителя можно было бы ожидать, что такие отделившиеся радикалы свернуты в плотный клубок. Реакционная способность отдельного радикала такого типа будет пониженной, так как существует большая вероятность того, что конец радикала окажется окклюдированным в клубке, однако возможно и множество конфигураций, при которых активный конец будет способен реагировать с другими реагентами, в том числе и с другими радикалами. Средняя величина реакционной способности будет также уменьшаться вследствие коалесценции радикала с частицами неактивного полимера. Относительное влияние каждого из этих факторов на кинетику зависит от конкретной системы. Если полимер способен набухать, то роль свертывания в клубок может быть незначительной в случае же ненабухающего полимера, особенно высокомолекулярного, значение образования клубков возрастает, но, по-видимому, коалесцепция всегда играет главную роль. Степень окклюзии, от которой зависит доступность радикалов, нельзя определить точно, но очевидно, что она должна характеризовать величину полимерного барьера, препятствующего проникновению реагента к радикальному концу. [c.137]

    Специфика формирования полимерных покрытий связана с возникновением неоднородной дефектной структуры по толщине пленки вследствие неодинаковых скорости и условий отверждения различных слоев [51]. Одним из способов резкого понижения внутренних напряжений в полимерных покрытиях является использование пленкообразующих с регулярным строением молекул. Причина этого явления в таких системах связана с особенностями структурообразования, обусловленными формированием в жидкой фазе однородной упорядоченной структуры из )азвернутых макромолекул п фиксированием ее в покрытиях 180]. Эта особенность структурообразования наглядно проявляется при формировании покрытий из олигоэфиракрилатов различного строения. На основании реологических, физико-механических, теплофизических и структурных данных было установлено, что при получении покрытий из олигомеров на первой стадии их формирования образуются локальные связи между небольшим числом молекул с одновременным формированием надмолекулярных структур, а на второй стадии между этими структурами возникают связи и образуется пространственная сетка. На последней стадии вследствие торможения релаксационных процессов наблюдается резкое нарастание внутренних напряжений. Из данных об изменении реологических свойств олигоэфирмалеинатов на различных этапах их отверждения следует, что исходные олигомеры представляют собой системы ньютоновского типа. Через определенный период времени наблюдается не только нарастание вязкости, но и изменение характера реологических кривых, связанное с переходом системы в структурированное состояние за счет возникновения связей между структурными элементами. На рис. 5.1 приведены данные о кинетике расходования двойных связей, нарастании внутренних напряжений, прочности при растяжении, модуля упругости и вязкости при формировании покрытий из этих, же систем. Из рисунка видно, что, несмотря на участие в процессе полимеризации на начальной стадии формирования значительного числа функциональных групп, покрытия характеризуются низкими внутренними напряжениями и физико-механическими характеристиками. Резкое нарастание последних наблюдается [c.182]

    Известное сходство с описанным процессом имеет полимеризация в жидкой фазе, когда она сопровонодается образованием нерастворимых полимеров. Это относится, в частности, к полимеризации акрилонитрила, винилхлорида и винилиденхлорида в отсутствие растворителей, так как перечисленные мономеры не растворяют своих собственных полимеров. Наиболее подробно изучен в этом отношении акрилонитрил. Как показал Бем-форд [13], полимер, выпадающий при полимеризации акрило-нитряла, содержит захваченные макрррадикалы, которые можно идентифицировать методом ЭПР. В отличие от полимеризации этилена в газовой фазе полимер в этом случае оказывается непроницаемым для мономера, если температура полимеризации не превышает 25—30° полиакрилонитрил в этих условиях не только не растворяется в акрилонитриле, но и не набухает. Вследствие этого переход макрорадикалов в твердую фазу (несмотря на то, что они остаются живыми ) равносилен кинетическому обрыву, подчиняющемуся кинетике первого порядка относительно концентрации растущих цепей. Конечно, такая иммобилизация относится не ко всем растущим цепям значительная часть активных центров находится на поверхности твердых частиц полимера, которые непрерывно сталкиваются друг с другом, что приводит к обычному бимолекулярному обрыву. Тем не менее скорость обрыва вследствие подобных встреч имеет меньшее значение, чем при реакции в гомогенных условиях. В результате общая скорость полимеризации акрилонитрила возрастает с конверсией, а порядок реакции по инициатору лежит между 0.5 и 1. Судьба захваченных макрорадикалов зависит от того, насколько набухает [c.273]

    Вначале Гийо [10] был предложен метод контроля степени превращения мономера, основанный на анализе проб, отобранных из газовой фазы в автоклаве над поли-меризующейся смесью. Общее рассмотрение метода изучения кинетики жидкофазных химических реакций по контролю состава газовой фазы было проведено Левитиным [10а]. В дальнейшем [9] при изучении более быстрых реакций с целью устранения возможных ошибок, связанных с отклонением состава газовой фазы от равновесной, пробу реакционной смеси отбирали из жидкой фазы. Последний метод был применен при изучении стерео-специфической полимеризации газообразного при обычных условиях бутадиена. Реакцию проводили в автоклаве под небольшим давлением в бензольном растворе [9]. Для определения степени превращения из реактора периодически отбирали жидкие пробы (0,2—0,5 мл), которые испаряли в предварительно вакуумированном сосуде (500 мл). Аликвотную часть пробы из этого сосуда анализировали хроматографически. В качестве впутрен- [c.86]

    Имеющихся у нас экспериментальных данных недостаточно, чтобы сделать определенное суждение о характере активных центров, вызываю-ющих полимеризацию ГМЦТС. Отметим только, что имеющийся в литературе вывод об ионном характере процесса [4], сделанный только на основании того, что для полимеризации этого мономера в жидкой фазе характерен ионный процесс, по-видимому, недостаточно надежен. Выяснение же природы активных центров весьма важно, поскольку независимое наблюдение кинетики образования этих центров при облучении позволило бы установить, присуща ли наблюдавшаяся энергия активации, равная 9 ккал молъ, процессу инициирования или в нее включается и энергия активации роста. [c.24]

    Б связи с открытием радикальных реакций в растворах в органической химии было успешно применено представление о ценных реакциях как ионного, так и, особенно, радикального характера. Учение о цепных реакциях было создано в советской стране на основании изучения кинетики газовых реакций. Перенесенное на область реакций в жидкой фазе, оно нашло применение при изучении важнейших для практики процессов цепной полимеризации, крекинга, фотохимического галоидирования, окисления. Построение теории ценной полимеризации открыло пути управления как скоростью процесса, так и степенью полимеризации, являющимися вансными параметрами химии высокомолекулярных соединений. [c.60]

    Накопленный к настоящему времени экспериментальный материал по кинетике твердофазной полимеризации показывает, что все три элементарные стадии этого процесса (инициирование, рост и обрыв цепи) принципиально отличаются от реакций в газовой и жидкой фазах. Было установлено, что для инициирования в твердой фазе харак -терны I) пониженный выход радикалов в связи с большей ролью эффекта "клетки" 2) низкий потенциал ионизации молекул 3) более продолжительный период жизни активных частиц [з]. В случае реакции роста цепи предэкопоненциальный множитель В в уравнении для константы скорости роста [c.58]

    При анализе действия давления на процесс прлимериза-ции в жидкой фазе можно выделить реакции, кинетика которых при высоких давлениях имеет свои особенности. Сюда можно отнести радикальную полимеризацию с деградацион-ной передачей цепи, ионную полимеризацию и полимеризацию с выделением полимера из раствора по ходу реакции (гетерофазная полимеризация). [c.330]

    Если в качестве катализатора твердофазной полимеризации триоксана взять не газ, а вещество, способное кристаллизоваться совместно с мономером, кинетика процесса существенно изменится, что также следует из теории анизотропной полимеризации. В качестве такого катализатора был выбран Ь, который сначала растворяли в расплавленном триоксане, а З1тем раствор охлаждали жидким азотом [Берлин Ал. Ал., Кузуб Л. И., Ениколопян Н. С., Высокомолек. соед., 7 (в печати)]. Из-за очень слабой активности иода в жидкой фазе и быстрого охлаждения раствора полимер в ходе этих операций практически пе образовывался. Полимеризацию проводили при 50—60°, [c.367]

    До сих пор мы говорили о механизме процесса полимеризации, протекающего в кинетической области в изотермических условиях. В этом случае перечисленные выше элементарные реакции (ишщии-рование, рост, передача и обрыв цепи) будут определять все кинетические закономерности процесса полимеризации. Однако в реальной реакционной системе физические условия будут резко изменяться в течение процесса по мере накопления высокомолекулярных продуктов. Представим себе радикальную полимеризацию жидкого винилового мономера, например стирола. Вязкость жидкого стирола при 50 °С составит 0,5 спз. Образующийся полимер будет растворяться в мономере, и к концу процесса при конверсии 80—90% реакционная смесь будет представлять собой концентрированный раствор полимера, вязкость которого может достигать 10 —10 спа. Столь сильное возрастание вязкости, безусловно, окажет влияние на характер массопередачи и теплопередачи, а эти факторы э свою очередь должны повлиять на кинетику процесса. Даже в том случае, когда полимер нерастворим в мономере (как, например, при полимери-захщи акрилонитрила), накопление твердой фазы может привести К созданию диффузионных затруднений для макрорадикалов и молекул мономера, а следовательно, повлияет на кинетику процесса. [c.54]

    Пленкообразующие, применяемые для получения покрытий, существенно отличаются не только по химическому составу и физи-ко-химическпм свойствам, но и по размеру и строению структурных элементов, образуемых молекулами в жидкой фазе. Наиболее значительными различиями в структуре отличаются три основных класса пленкообразующих дисперсии полимеров, их растворы и мономерные и олигомерные системы, образующие покрытия в результате проведения полимеризации непосредственно на подложке. В соответствии с этим и структурные превращения, происходящие при формировании покрытий из этих пленкообразующих, имеют свою специфику, оказывающую значительное влияние на кинетику пленкообразования и свойства покрытий. [c.193]

    Весьма важными для понимания роли структурообразования в кинетике полимеризации являются исследования полимеризации в предпе-реходном состоянии. При добавлении растворителя к кристаллическим мономерам жидкие кристаллы можно получить при более низкой температуре. чем термотропные кристаллы. Это позволяет варьировать взаимную ориентацию молекул мономера в широких пределах и реализовать цредпереходное состояние. В предпереходный период, когда система изотропна, создаются благоприятные кинетические условия и скорость роста цепи возрастает, что обусловлено гетерофазными флуктуациями. Последние реализуются в переходном состоянии в результате растворения жидкокристаллических структур при добавлении растворителя. Гетерофазные флуктуации выполняют роль зародышей жидких кристаллов. В жидком кристалле гетерофазные флуктуации возникают в виде микрокапель изотропной жидкости. На примере указанных выше мономеров было установлено, что по обе стороны фазового перехода возможно зарождение структурных элементов, ответственных за изменение кинетических условий образования полимера. При жидкофазной полимеризации такие условия не создаются. В образовании гетеро-фазных флуктуаций участвуют те же молекулярные единицы, что и при образовании жидкого кристалла. Кинетические эффекты, обусловленные спецификой структурообразования, проявляются лишь в том случае, когда сам мономер является компонентом, активно участвующим в образовании жидкокристаллических зародышей, либо взаимодействует с молекулами, принимающими участие в их образовании. Если мономер не образует жидких кристаллов или димерных комплексов с добавками, способными к образованию таких зародышей, то зародыши новой фазы еще не обусловливают возникновение кинетических эффектов. [c.53]

    На рис. 2.7 приведены данные о кинетике полимеризации олигоуретанметакрилатов при температуре, на 30 превышающей те.мпературу плавления кристаллов. Видно, что олигоуретанметакрилат ОУМ-6 по-лимеризуется с большой скоростью до глубоких степеней превращения по сравнению с ароматическим олигоуретанметакрилато.м. Для ОУМ-6 процесс полимеризации завершается быстро, что обусловлено формированием нематических жидких кристаллов в процессе плавления кристаллической фазы. С меньшей скоростью, но до глубоких степеней конверсии, завершается полимеризация ОУМ-1, при плавлении которого образуются смектические жидкие кристаллы. Ароматический олигоуретанметакрилат полимеризуется более медленно и до невысоких степеней конверсии. Вследствие значительной жесткости молекул и локального протекания полимеризации по границам раздела фаз при плавлении кристаллов ОУМ-7 не образуются мезофазы. Полимеризация олигомера ОУМ-12 с наиболее гибким олигомерным блоком до глубоких степеней конверсии протекает медленно, со значительным индукционным периодом. Эти закономерности в кинетике полимеризации в зависимости от специфики структурных превращений получены для олиго- меров. закристаллизованных в сре- [c.56]

    В настоящее время надежно установлено ингибирующее действие кислорода и особенно воды. Радиационно-химический выход полиизобутилена может быть повышен до 2 ООО ООО при проведении полимеризации в стерильных условиях со специально обработанной окисью цинка [64]. При —110° С, поглощенной дозе 24 Мрад описано получение полимера с мол. весом 3 759 000 [50], а при 0,14 Мрад (мощность дозы 70 padj eK) и —78° С в растворе ди-фтордихлорметана — до 3 900 000 [65]. Изучена температурная зависимость начальной скорости полимеризации изобутилена в твердой и жидкой фазах [51], а также кинетика радиационной полимеризации изобутилена в интервале от —40 до —196° С [57]. [c.121]

    Хлорвинилацетат. Полимеризацию хлорвинилацета-та (т. пл. —33,5°С) под действием у-излучения изучали в твердой и жидкой фазах, а также в переохлажденном состоянии [262, 263]. В жидкой фазе от —25° С до 0°С кинетика полимеризации имеет ускоряющийся характер процесс ингибируется дифенилпикрилгидразилом = 0,5 =1,7 ккал1моль. В твердой фазе от —36 до —50° С п = 0,71, = 6,1 ккал моль. В переохлажденном жидком состоянии кинетика полимеризации также имеет ускоряющийся характер, а скорость полимеризации выше, чем в твердой фазе. Дифенилпикрилгидразил ингибирует полимеризацию п = 0,76 =1,7 ккал моль. [c.140]

    Гексин-1 и циклогексилацетилен. Эти мономеры полимеризованы в аналогичных условиях [17] О соответственно 7 и 5, а среднечисловой мол. вес 900 и 1400. Кислород воздуха не влияет на полимеризацию. При изучении кинетики полимеризации гекси-на-1, циклогексилацетилена и октина-1 [20] установлено, что в жидкой фазе скорость полимеризации пропорциональна скорости инициирования. Однако эти данные объясняют не спецификой инициирования (авторы считают, что процесс течет по радикальному механизму), а особенностями полимеризации ацетиленовых углеводородов, предполагая деградационную передачу цепи с потерей активности полимерного радикала (автоингибирование мономером). [c.170]

    Кинетика полимеризации в жидкой фазе линейна в твердой фазе отмечено запределивание на уровне 1% Д-тя —78, —94 и —126° С, 0,6% для —158° С и 0,3% для —196° С. Энергия активации 35 ккал1моль в жидкой фазе и —0,2 л /са -г/люль в твердой в интервале от —160 до —196° С. Радиационно-химический выход полимера 240 при комнатной температуре и облучении электронами [11]. По другим данным, в этих условиях мономер не полимеризуется [119]. Прн действии улучей (140° С) G 10 [13]. Степень полимеризации очень мала, что указывает на значительную роль реакции передачи цепи. В жидкой фазе процесс ингибируется бензохиноном и, следовательно, механизм радикальный. [c.181]

    Сильнейший аргумент в пользу ионного роста в твердой фазе заключается в том, что некоторые мономеры, полимеризующиеся под действием облучения или кислотных катализаторов, никогда не удавалось подвергнуть полимеризации под действием радикальных инициаторов. К таким мономерам относятся гексаметилциклотрисилоксан [10], б с-(хлорметил)окса-циклобутан [59], Р-пропиолактон [91] и дикетен [90]. Существенно, что эти мономеры не полимеризуются под действием облучения в жидкой фазе. Изучение кинетики ясно показывает, что механизм полимеризации в твердой фазе совершенно иной, чем механизм радикальной полимеризации в жидкой фазе более того, скорость полимеризации зависит от размеров и степени совершенства кристаллов. Известно, что электроны захватываются дефектами кристаллической решетки. Можно ожидать, что это обусловливает стабильность катионов и таким образом способствует их росту. Подобные обстоятельства могут стимулировать рост и по радикальному механизму, но можно ожидать больших пространственных препятствий для диффузии радикалов. [c.553]


Смотреть страницы где упоминается термин Кинетика полимеризации в жидкой фазе: [c.249]    [c.249]    [c.41]    [c.211]    [c.460]    [c.123]    [c.337]    [c.128]    [c.127]    [c.143]   
Смотреть главы в:

Химия и технология полиформальдегида -> Кинетика полимеризации в жидкой фазе




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2024 chem21.info Реклама на сайте