Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерные материалы со связями

    Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, 5). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется. [c.127]


    В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведение полимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред. [c.59]

    В отличие от низкомолекулярных соединений под действием механической нагрузки полимеры деформируются не сразу, а с течением времени. Это явление, называемое упругим последействием, связано с тем, что упругие свойства полимерного материала проявляются не сразу, а постепенно, во времени. При этом происходит перестройка структуры полимерного образца. Процесс деформации ускоряется при повышении температуры происходит распрямление скрученных линейных макромолекул и перемещение их относительно друг друга. В то же время действие теплового движения вызывает их обратное скручивание. При наступившем равновесии между действием постоянного механического напряжения и действием теплового движения в напряженном полимерном материале начинается процесс стационарного вязкого течения. Он состоит в том, что час- [c.380]

    Как уже упоминалось, очевидная связь изопрена с каучуком вызвала многочисленные попытки получить каучук полимеризацией изопрена. Впервые удалось получить каучукоподобную массу из изопрена русским ученым И. И. Остромысленскому и С. В. Лебедеву в 1906 г. Качество полученного ими полимерного материала оказалось, однако, совершенно неудовлетворительным. Было также очевидно, что даже после получения хорошего полимера пришлось бы преодолевать новую трудность получать в больших количествах дешевый изопрен в то время еще не умели. Это направило мысль исследователей на путь изучения полимеризации более доступных диенов. [c.323]

    При небольшом числе поперечных связей (редкая сетка) полу-чаются мягкие эластичные продукты по мере увеличения числа мостиковых спязей жесткость полимерного материала увеличивается. Образование очень частой сетки приводит к получению совершенно твердых материалов. [c.68]


    Исследование влияния проницаемости свободных полимерных пленок из поливинилхлорида, полиэтилена и фторопласта на скорость окисления металла при отсутствии адгезионной связи покрытия с подложкой показало, что скорость окисления металла во влажной неагрессивной среде не зави сит от природы защитной полимерной пленки, так как контролирующим фактором процесса окисления металла является не диффузия влаги через пленку, а торможение анодного процесса ионизации металла. Во влажной среде, содержащей химически агрессивные вещества, проникающие через пленку и активирующие анодный процесс, защитные свойства пленок определяются их влагопроницаемостью, т. е. в этом случае защитные свойства покрытий зависят от химической природы и структуры полимерного материала. Из исследованных материалов наиболее плотную упаковку имеет фторопласт, а наименее плотную — поливинилхлорид, повышенная влагопроницаемость которого обусловлена его линейной структурой и присутствием в нем пластификатора. В результате проведенных исследований была предложена количественная оценка защитных свойств полимерных пленок величиной 0., показывающей, во сколько раз скорость окисления металла под защитным покрытием меньше скорости окисления незащищенного металла в тех же условиях. [c.28]

    Покрытия из пластмасс, наносимые способом экструзии, состоят из первого слоя — клейкой мастики на основе каучука, назначение которой обеспечивать связь покрытия с трубой, и второго слоя — из термопластичного полимерного материала, полиэтилена или его сополимера с полипропиленом. Основная операция — нанесение полимерного покрытия однородной толщины происходит при прохождении трубы через центр экструдера. Трубы предварительно покрываются слоем битумно-каучуковой мастики толщиной от 0,18 до 0,25 мм. [c.90]

    При нагревании полимера до Ту-Т звенья полимера восстанавливают подвижность и свои враш,ательные движения, но благодаря химической связи многих звеньев в макромолекуле проявляется суш,ественное отличие от низкомолекулярных веш,еств. В определенном интервале температур сумма межмолекулярных связей по длине цепи остается настолько значительной, что цепи ие могут перемещаться друг относительно друга и их взаимное расположение остается неизменным. В то же время цепи, благодаря подвижности звеньев или отдельных участков цепей, приобретают гибкость. В этом состоянии полимерный материал обладает высокоэластическими свойствами, он легко деформируется и способен к значительным удлинениям. Следует за.метить, что различие в поведении макромолеку-лярных цепей и в поведении их звеньев, впервые установленное в работах Каргина и сотрудников, вообще является одной из характерных особенностей полимерных материалов, обусловливающей многие их интересные свойства. [c.225]

    Можно связать температурные условия сушки с температурой физического или химического превращения полимера. В качестве критерия оценки термического воздействия на полимерный материал в процессе его сушки предложен фактор термообработки [94, 126] -технологический параметр, характеризующий соотношение между температурой среды и критической температурой превращения высушиваемого материала (температурой стеклования, течения, химического превращения), между продолжительностью контакта и характеристическим временем превращения полимера  [c.91]

    Исходя из вышеизложенного, к характеристикам, объединяемым общим понятием структура полимера , мы будем относить количественный и качественный состав атомов, входящих в макромолекулу, тип и содержание функциональных групп, порядок чередования групп атомов, размеры макромолекул, наличие или отсутствие меж-молекулярных связей, надмолекулярные структуры (в том числе,кристаллические). В случае высокомолекулярных соединений тонкие детали молекулярного строения, например способ соединения мономерных звеньев в цепь или пространственное расположение заместителей, определяющим образом влияют на свойства полимерного материала. Чрезвычайно важна информация о строении макромолекулы как целого - о молекулярной массе, виде ММР, о форме макромолекул, их гибкости, способности переходить в ориентированное состояние. [c.16]

    В большинстве полимерных резистов используются аморфные полимеры, физико-химические свойства которых определяются конформацией полимерной цепи или ее сегментов. Молекулярное движение полимерной цепи или ее сегментов зависит от температуры. При повышенных температурах возрастает число степеней свободы цепей, что может вызвать течение, и полимер ведет себя как вязкая жидкость. При понижении температуры движение сегментов полимерной цепи уменьшается, а при температуре стеклования Тс полностью прекращается. Ниже Гс полимерный материал приобретает характеристики стекла. Подобное явление наблюдается и у неорганических полимеров, например у силикатного стекла. Тс определяется подвижностью и гибкостью полимерной цепи и до некоторого предельного значения ММ полимера является характеристикой материала. Так как подвижность сегментов полимерной цепи связана со сменой конформации и зависит от времени, то конформация полимерной цепи никогда не является равновесной для достижения равновесия необходимо бесконечно большое время. [c.21]


    Определяющее значение при ПХТ или ИХТ имеет структура полимерного материала [127, 128] и присутствие в плазме кислорода [129]. Кислородная плазма может быть использована ие только для удаления резиста с подложек, но и для проявления специальных резистов [130]. Скорость травления органических резистов повышается при использовании УФ-излучения, которое всегда сопровождает тлеющий разряд. Наименьшая скорость травления достигается для полимеров, макромолекулы которых содержат ароматические ядра [131]. Скорость травления полимерных материалов выше в плазме, которая одновременно содержит фторированные углеводороды и кислород [126], что можно объяснить образованием связи кислорода с реакционными центрами, возникающими при отщеплении атомов водорода фтором, и последующей окислительной деструкцией. Особенно сильно это проявляется в системе F4/O2. [c.61]

    Цепное строение макромолекул и различная природа связей вдоль и между цепями определяет комплекс особых физико-химических свойств полимерного материала, таких, как, например, одновременное сочетание в нем прочности, легкости и эластичности, способности образовывать пленки и волокна. Цепное строение макромолекул ответственно также за то, что полимеры способны значительно набухать в жидкостях, образовывая при этом ряд систем, промежуточных между твердым телом и жидкостью. Растворы полимеров отличаются повышенной вязкостью. [c.9]

    При хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов — тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в эксплуатационных свойствах полимерного материала теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, а иногда на ней появляется налет порошкообразного вещества. Изменения во времени свойств полимеров и изделий из них называют старением. [c.66]

    При обработке поверхности ХПЭ аммиаком в течение 2—3 ч происходит дегидрохлорирование полимера и одновременное образование сопряженных двойных связей в его поверхностном слое [131]. Этим приемом пользуются для придания полупроводниковых свойств поверхности полимерного материала. [c.57]

    Прежде всего следует сказать о дефектах, связанных с обрывами волокон или появлением трещин на поверхности армирующих наполнителей. Эти дефекты появляются, как правило, при изготовлении или текстильной обработке наполнителя, но могут возникать и в процессе прессования полимерного материала в точках контакта волокон [34]. Число разрушенных таким образом волокон зависит от давления прессования и содержания связующего. [c.215]

    В близкой связи с процессами старения находятся явления утомления и усталости полимеров. Утомление, наступающее в результате многократной деформации — динамическое утомление или длительного нахождения полимера в напряженном состоянии — статическое утомление, вызывает постепенное изменение свойств материала, называемое усталостью. Эти изменения могут вначале иметь как обратимый, так и необратимый характер, но, накапливаясь, всегда приводят к необратимым явлениям, которые заканчиваются разрушением полимерного образца. Утомляемость чаще всего измеряется числом циклов (ЛГ) деформации, приводящим к разрущению полимерного материала (выносливость) приложенная при этом нагрузка представляет собой усталостную прочность, которая снижается с увеличением N. [c.645]

    В связи с этим рассмотрим кратко процесс разрушения твердого полимера, когда он практически определяется только ростом трещин серебра . Отличие этого процесса от хрупкого разрущения заключается в том, что 1) напряжение у вершины трещины серебра практически не зависит от ее размеров 2) на пути трещины серебра рвутся не все химические связи, а только часть их, остальной полимерный материал вытягивается в тяжи, что приводит к увеличению флуктуационного объема ш 3) коэффициент Р меньше вследствие того, что тяжи выравнивают напряжение вблизи трещин серебра . [c.57]

    Структура полимерного материала оказывает сильное влияние на прочность. Для пространственно-структурированных полимеров (например, резин) главным структурным фактором является степень поперечного сшивания (число поперечных связей в пространственной сетке), а также структуры, образуемые активными наполнителями. Для твердых полимеров одним из главных структурных факторов, резко повышающим прочность, является ориентация цепей, сохраняющаяся неопределенно долгое время из-за заторможенности релаксационных процессов в твердых полимерах. Влияние молекулярной ориентации на прочность специфично только для полимерных материалов. На этом свойстве основываются процессы получения синтетических волокон, пленочных материалов, ориентированного органического стекла. [c.127]

    При многократных деформациях (многократных нагружениях) происходит утомление полимерного материала, т. е. ухудшение его свойств, заканчивающееся его разрушением. Утомление связано не только с действием физических факторов в вершине наиболее опасного дефекта, но также и с протеканием химических процессов во всем объеме образца. В каждом цикле механическая работа деформации частично затрачивается на преодоление внутреннего трения, причем не вся затраченная энергия превращается в тепло [40, с. 284]. Частично происходит непосредственная активация химических реакций. Однако, если за каждый цикл [c.16]

    В зависимости от условий эксплуатации изделий из полимерного материала к ним предъявляют определенные требования в отношении прочности. В связи с этим возникает необходимость характеризовать прочность значением разрушаюш,его напряжения, максимальным значением удлинения, долговечностью и т. п. Режим деформации в ходе испытаний должен соответствовать режиму работы материала в изделии и быть удобным для определения искомой характеристики прочности. При выяснении общих закономерностей прочности удобно пользоваться режимами, при которых можно проследить влияние одного из факторов (например, температуры) на данный показатель прочности (например, на сГр) при сохранении других факторов неизменными. [c.29]

    Прочность полимерного материала не может быть рассчитана простым суммированием прочности всех связей, приходящихся на поперечное сечение образца и противодействующих разделению его на части. Причиной этого, в частности, является наличие микродефектов различной степени опасности, которые случайно распределены по объему образца. На краях этих микродефектов возникают перенапряжения тем большие, чем опаснее микродефект. Образование в полимерах надмолекулярных микроструктур может явиться причиной увеличения их неоднородности. Это особенно существенно для кристаллизующихся полимеров, которые иногда разрушаются по поверхностям, ограничивающим кристаллические образования. В тех случаях, когда кристаллические образования взаимно пронизывают друг друга, прочность полимеров при прочих равных условиях становится значительно больше. [c.55]

    Однако пользуясь этим методом, трудно выяснить особенности закономерностей прочности полимерных материалов и установить связь между строением полимера и его прочностью. Между тем в настоящее время основная задача, стоящая перед химиком-технологом при создании нового полимерного материала и разработке технологии его переработки в изделие, обладающее заданными свойствами, состоит в установлении связи между строением и прочностью полимера. Учитывая это, мы будет основываться в дальнейшем изложении на экспериментальных фактах и обобщениях, позволяющих вскрыть в той или иной мере механизм разрущения и установить связь между особенностями строения полимера и его поведением в процессе разрушения. [c.78]

    Интересна попытка описания процесса утомления полимера при циклических деформациях и оценка прочности полимерного материала в этих условиях без использования критерия Бейли и уравнения (1.28), предпринятая в связи с тем, что утомление полимеров при циклических деформациях рассматривается не как чисто физический процесс, а как процесс, который сопрово-ждается также развитием химических реакций [60, с. 11 212, с. 412]. Критерий Бейли, по-видимому, не всегда применим к случаю разрушения полимерных материалов [442]. [c.149]

    При рассмотрении разрушения полимеров в общем виде необходимо учитывать противодействие разрушению как межмолекулярных, так и химических связей. Если разрушение полимерного материала осуществляется в условиях, когда структура материала в ходе разрушения остается постоянной, то процесс подчиняется общим закономерностям прочности. Если же при разрушении полимерного материала реализуется его способность к высокоэластической деформации, сопровождающейся увеличением анизотропии материала, то условие, при котором разрыв подчиняется общим закономерностям, не соблюдается. [c.219]

    При низких температурах, когда разрушение носит хрупкий характер, трещины разрушения полностью преобладают в полимерном теле и скорость их роста определяет долговечность образца в целом. При более высоких температурах (но ниже температуры стеклования) преобладают трещины серебра , и поэтому долговечность полимерного материала связана с их ростом (так как трепщны разрушения растут очень быстро и вносят очень малый вклад в долговечность). Поэтому почти во всех работах, в которых изучается макроскопическое разрушение материала за счет роста трещин, рассматриваются две (а иногда и более) стадии процесса разрушения. На первой стадии происходит медленный рост трещин, а на второй стадии, когда напряжение в вершине одной из них становится равным критическому, происходит быстрый распад тела на части. Это, в частности, приводит к характерному очертанию поверхности разрушения полимеров [c.158]

    Предполагается [91], что явление спонтанного удлинения полимерного материала связано с переходом макромолекул в аморфных участках в упорядоченное состояние, сопровождающееся доориентацией полимера вдоль направления предварительной вытяжки (оси волокна). Допускается, что этот переход фазовый, однако прямых измерений термодинамических характеристик в области такого перехода практически не проводилось. Естественно ожидать, что процесс самоудлинения (доориентации) может приводить к улучшению физико-ме-ханических свойств волокон. Возможно, что в ряде случаев именно эффект доориентации предопределяет повыщение прочности и модуля упругости волокон в результате термообработки. Об этом свидетельствует тот факт, что, как правило, для волокон, полученных из анизотропных растворов, влияние термообработки не столь существенно, как в случае формования из изотропных растворов. Создается впечатление, что максимальная ориентация материала реализуется уже при течении анизотропных растворов, тогда как для достижения высокой степени молекулярной ориентации волокон, формуемых из изотропных растворов жестко- или нолу-жесткоцепных полимеров, требуется проведение дополнительной обработки. [c.179]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Гетерогенные мембранные электроды. Не всегда возможно получение мембраны в гомогенном состоянии. Значительно доступнее приготовление твердого гетерогенного мембранного электрода внесением тонкодиспергированного вещества с заданными свойствами в инертную мембрану из полимерного материала (матрицу). Матрица должна обладать механической прочт-ностью, быть химически инертной. В качестве связующего материала используются парафин, коллодий, поливинилхлорид (ПВХ), полистирол, полиэтилен, силиконовый каучук. Последний обладает хорошими гидрофобными свойствами, эластичен, плохо набухает в водных растворах. [c.54]

    Все синтетические материалы можно условно подразделить на жидкие полимеры, полимерные волокна, синтетические смолы, твердые полимеры и упругие резиноподобные пластики. Условность этого подразделения состоит в том, что в зависимости от обработки один и тот же полимерный материал можно получить в разном виде (например, найлон и капрон могут быть получены и в виде волокон и в виде компактных материалов) вместе с тем из одного и того же сырья, но при разных технологических режимах можно получать разные классы синтетических продуктов (так, при вулканизации каучука, в зависимости от числа мостиковых связе между цепями через атомы серы, по.аучают либо резину, либо эбонит). [c.127]

    На проницаемость покрытий влияет также способ их отверждения. При образовании поперечных связей между мо-лекула1йи снижается гибкость цепных молекул, что способствует уменьщению проницаемости полимера. Известно, что пространственно-структурированные полимеры с частыми поперечными связями характеризуются низкой водо- и газопроницаемостью. От структурной пористости, а также от присутствия в полимере гидрофильных групп (карбоксильных, гидроксильных, эфирных), сорбирующих влагу, зависит степень набухаемости полимерного материала. При высокой сорбционной способности полимерная пленка прочно удерживает влагу, тем самым ограничивает ее доступ к металлической поверхности. Истинные поры, образующиеся в лакокрасочном покрытии после улетучивания растворителей, служат каналами, по которым к металлической поверхности могут проникать вещества, вызывающие ее коррозию —кислород, влага, ионы и молекулы электролитов. Суммарный эффект от работы пор обоего рода определяет влаго- и газопроницаемость полимерного материала. [c.25]

    Для кабелей связи ввиду особенностей их конструктивной формы и условий эксплуатации требуются некоторые мероприятия, отличающиеся от мероприятий по защите трубопроводов от коррозии. Все кабели телефонной и телеграфной связи имеют в соответствии с нормалью VDE 0816 либо совершенно герметичную металлическую оболочку вокруг сердечника, либо (если эти кабели выполнены целиком из полимерного материала) металлическую ленту для электрического экранирования [1, 2]. У кабелей с защитной оболочкой из джута и жидкотекучей массы над металлической оболочкой переходное сопротивление на землю значительно меньше, чем у кабелей с полимерной оболочкой. На центральных телефонных станциях или усилительных подстанциях металлические оболочки или экраны соединяют с эксплуатационным заземлителем, чтобы улучшить экранирующее действие оболочек кабеля и уменьшить переходное сопротивление на землю эксплуатациониых заземлителей. Еще несколько лет назад применяли преимущественно кабели с металлической оболочкой. При наличии опасности коррозии для таких кабелей необходимо было предусматривать катодную защиту. Современные кабели слоистого типа с полимерной защитной оболочкой в катодной защите от коррозии в общем случае не нуждаются. [c.297]

    Под воздействием вибрации перестраиваются и разрушаются структурные связи во многих аморфных материалах, напр, в полимерах, находяцдихся в вязкотекучем состоянии. При этом ускоряются мех. релаксация (тиксотроп-ное снижение вязкости и упругости) и мехаиодеструкция (частичное уменьшение мол. массы) макромолекул. В результате облегчается, напр., виброформование полимеров (сокращается время переработки, снижаются рабочее давление и расход энергии), повышается кач-во изделий. При наложении на стационарную деформацию сдвига низкочастотных колебаний возникает эффект т. наз. реологич. нелинейности-увеличивается скорость течения полимерного материала (напр., при вибропрессовании порошков) и т.д. [c.366]

    В. пористых материалов зависит как от их природы, так и от величины пор и их распределения в объеме материала. В неорг. пористых материалах, химически инертных к воде, последняя прочно удерживается капиллярными силами в Порах размером от 0,1 до 200 мкм, поэтому наличие таких пор в наиб, степени влияет на В. При насыщении водой у таких материалов практически не меняются линейные размеры, но прочность снижается. В. полимерных материалов связана с наличием гидрофильных функц. групп в макромолекуле (напр., группа ОН в поливиниловом спирте, ONH-B белках и полиамидах), а также гидрофильных низкомол. компонентов-наполнителей (древесная мука, асбест и т.п.). Так, при контакте с водой поли-е-капроамид поглощает до 10-12% воды, полигексаметиленсебацииа-мид-до 3,0-3,5%, полидодеканамид-до 1.5-1,75%, поли-д<-фениленизофталамид-до 10%, причем скорость поглощения воды у первых трех выше. Поглощение воды алиф. полиамидами сопровождается увеличением линейных размеров и относит, удлинения, уменьшением прочности. Снижение прочностных св-в у неорг. материалов обусловлено хим. взаимод. с водой отдельных компонентов, входящих в их состав (напр., СаО н MgO в керамике), или действием воды как адсорбционно-активНой среды (увеличивает возможные трещины в материале). У термопластичных полимеров снижение прочности обусловлено изменением межмол. взаимод. или надмолекулярной структуры, а также гидролизом связей в макромолекулах. В. материалов на основе термореактивных смол зависит гл. обр. от типа наполнителя и его кол-ва, характера отвердителя и степени отверждения, В. резин-в осн. от способа и степени вулканизации, кол-ва и природы наполнителя. [c.406]

    Введение в состав макромолекул на стадии их синтеза небольшого кол-ва звеньев др. хим. природы может привести к существ, изменениям св-в полимерного материала. В качестве модифицирующих агентов используют мономеры, содержащие пероксидную или гидропероксидную группу, ненасыщ. производные красителей, стабилизаторов, физиологически акттных в-в и т. п. При использовании этого метода М.п. удается в одну стадию получать полимерные материалы, в к-рых все компоненты, в т.ч. и плохо совместимые с нолимером, связаны с его макромолекулами прочньпл ковалентными связями. Это предотвращает выделение ( вьшотевание ) компонентов на пов-сть полимеров при их переработке и эксплуатации. [c.106]

    При использовании дисперсных наполнителей и рубленого волокна осн. способ произ-ва Н.п.-мех. смешение наполнителя с расплавом илн р-ром полимера, форполи-мера, олигомера или мономера. Для этой цели используют смесители разл. конструкции и вальцы. Непрерывные волокнистые заготовки пропитывают полимерным связующим. Подробнее см. в ст. Полимерных материалов переработка. Для улучшения пропитки волокнистых наполнителей связующим, повышения степени диспергирования частиц наполнителя в матрице и увеличения прочности адгезионного контакта на границе раздела фаз наполнитель-матрица используют разл. методы модификации пов-сти наполнителей, а также метод полимеризагрли на наполнителях. Газонаполненные материалы получают вспениванием с помощью спец. агентов (порообразователей) или мех. вспениванием жидких композиций, напр, латексов. Пенистая структура полимерного материала фиксируется охлаждением композиции ниже т-ры стеклования полимера, отверждением или вулканизацией (см. подробнее в ст. Пенопласты, Пенопласты интегральные. Пористая резина). Жидкие наполнители механически эмульгируют в связующем, послед, превращение к-рого в матрицу Н.п. происходит без разрушения первонач. структуры эмульсии. [c.168]

    В этом способе подложкой может служить либо сам преобразователь, либо полимерный материал, который дет нанесен на преобразователь в последующей операции. Не все преобразователи имеют подходящие связывающие группы на поверхности, и поэтому часто лучше обеспечить.связь с материалом, который впоследствии можно нанести на преобразователь. Большинство из этих материалов —полим ы, напримф сополимеры малеинового ангидрида, сополим ы метакриловой кислоты/ангидрида и их производные [7.8-17- [c.527]

    Отмечавшаяся выше аномалия реологического поведения полимеров связана с изменениями их структуры в процессе переработки, основной причиной которых является высокая молекулярная масса и вытянутая линейная форма макромолекул, т. е. их анизодиаметричность. При этих условиях перемещение макромолекул одновременно как единого целого невозможно, так как количество энергии, необходимое для отрыва макромолекулы в целом от ее соседей, превышает энергию химических связей в главной цепи. Поэтому процесс вязкого течения полимера представляют как серию актов последовательного перемещения кинетических сегментов макромолекул. Достаточное число перемещений сегментов в соседнее положение равновесия в направлении действия силы приводит к перемещению центра тяжести молекулярного клубка, т. е. перемещению самой макромолекулы и необратимому изменению размеров и формы полимерного материала (рис. 1.8). При вытянутой форме макромолекулы трудно представить себе, чтобы она располагалась в одной плоскости и ее сегменты перемещались с одной скоростью вдоль направления действующих сил. Более вероятно, когда один конец ее оказывается в слое, движущемся с одной скоростью, другой — с другой скоростью (см. рис. 1.8). Если это так, то макромолекула будет постепенно вытягиваться (ориентироваться) Твдоль направления действия сил. [c.30]

    Образование тяжей можно рассматривать как процесс расслоения ориентированного полимерного материала в неоднородном поле напряжений. Как следует из наблюдений Гуля и Черни-на39,4о, следы тяжей начинают образовываться в сечении образца впереди растущего надрыва. Следовательно, так же как у пластмасс впереди трещины имеется зона расслоившегося материала в виде трещины серебра , так и у резин впереди надрыва имеется зона материала, подготовленного к расслоению на тяжи. Это подтверждается исследованиями в которых было показано, что структура полимерного материала вблизи дефекта, разрастающегося в процессе разрыва, сильно отличается от структуры, характерной для образца в целом. По существу, рвется не исходный полимерный материал, а материал иной структуры, ориентированный и обладающий иными (по сравнению с исходным) релаксационными свойствами. Изменения, которые претерпевает материал в месте роста надрыва, определяют характер процесса разрущения образца. При существенном изменении степени дополнительной ориентации соответственно изменяются все характеристики прочности материала. Скоростной киносъемкой процесса разрыва удалось измерить дополнительную ориентацию в месте растущего надрыва, определить форму и размеры растущего дефекта при быстром разрушении и скорость роста надрыва на различных стадиях процесса разрушения. К концу процесса разрушения скорость роста надрыва быстро и скачкообразно увеличивается, что, вероятно, связано с обрывом тяжей. [c.112]


Смотреть страницы где упоминается термин Полимерные материалы со связями: [c.28]    [c.381]    [c.247]    [c.74]    [c.375]    [c.101]    [c.189]    [c.179]    [c.74]    [c.234]   
Смотреть главы в:

Неорганические полимеры -> Полимерные материалы со связями




ПОИСК





Смотрите так же термины и статьи:

Полимерные материалы

Связь вла.ги с материалом



© 2024 chem21.info Реклама на сайте