Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение муравьиной кислоты в присутствии уксусной кислоты

    В определенных случаях для защиты аминогруппы могут использоваться простые ацильные производные, например формильная [30], трифторацетильная [31] и фталильная [32, 33] группы. Формильные производные аминокислот и пептидов (34) легко получают действием муравьиной кислоты в присутствии уксусного ангидрида и расщепляютс.ч спиртовым раствором хлорида водорода. Интересно, что формильная группа легко удаляется также окислением до соответствующей карбоновой кислоты (35) с последующим самопроизвольным декарбоксилированием. [c.379]


    Работа 8. Определение муравьиной кислоты в присутствии уксусной кислоты [c.308]

    Показано, что гасящее влияние кислот на эмиссию натрия усиливается в ряду кислот лимонная, азотная, борная, серная, соляная и фосфорная [488]. По данным работы [713], муравьиная и уксусная кислоты повышают интенсивность испускания натрия, винная и лимонная кислоты — снижают. Объясняется это изменением поверхностного натяжения раствора и его влиянием на размер капель аэрозоля. В присутствии 100%-ной уксусной кислоты чувствительность повышается в 5—10 раз. При атомно-абсорбционном определении натрия в силикатах в пламени ацетилен—воздух борная кислота устраняет все влияния [620]. [c.123]

    Полученная соль муравьиной кислоты дальше не окисляется иодом последний также не реагирует с имеющимся (в виде примеси) метиловым спиртом. В присутствии этилового спирта, уксусного альдегида, ацетона определение дает неверные результаты, так как эти [c.50]

    Другая цель качественного органического анализа состоит в открытии определенного органического вещества в какой-либо смеси продуктов. Эта задача, по причине чрезвычайного разнообразия и большой изменяемости органических соединений, сопряжена со значительными трудностями, и здесь нет возможности установить точных общих правил, как в анализе неорганическом [4, с. 139]. Происходило это потому, что методы неорганического анализа для разделения или осаждения ионов практически не могли найти применения в органическом анализе. Правда, существует, казалось бы, некоторая аналогия между качественными реакциями на неорганические ионы и реакциями на определенные функциональные группы в органических соединениях. Но, во-первых, органические реакции вообще менее специфичны и избирательны во-вторых, идентификация какой-либо функциональной группы редко дает представление вообще о соединении, скорее она может быть использована для группового анализа, для установления, к какому классу соединений можно отнести испытуемое вещество. Присутствие некоторых функциональных групп с трудом можно было установить химическими методами исследования, а физические методы еще не были в достаточной степени разработаны. Тем не менее в конце аналитического периода истории органической химии, как это видно из цитированного руководства Жерара и Шанселя, имелась уже некоторая система в вещественном качественном анализе, позволяющем идентифицировать определенные органические соединения, особенно имеющие практическое значение, и в первую очередь для медицины. В этом руководстве указаны, например, способы идентификации органических оснований, или алкалоидов (анилина, никотина), большой группы собственно алкалоидов (морфина, наркотина, стрихнина, хинина и др.), органических кислот (синильной, уксусной, муравьиной, бензойной, щавелевой, виннокаменной, лимонной и яблочной), а также группы углеводов, белковых веществ, мочевой кислоты, карбамида (мочевины), креатина, цистина, ксантина и т. д. [c.290]


    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Во избежание образования и накопления гидроокиси у катода кислотность растворов солей металлов в процессе электролиза должна быть постоянной. Минимальная необходимая кислотность зависит прежде всего от константы гидролиза соли и потенциалов выделения на катоде металла и водорода. При этом необходимо учитывать, что при электролизе, сопровождающемся выделением водорода, значение pH прикатодного слоя всегда выше pH в объеме электролита, особенно в том случае, когда в растворе присутствуют соли щелочных металлов. Для поддержания постоянной малой кислотности электролитов цинкования, никелирования, кадмирования, железнения и других к ним добавляют специальные вещества, сообщающие в определенном интервале pH высокие буферные свойства. Такими веществами являются слабо диссоциированные неорганические и органические кислоты (борная, уксусная, аминоуксусная, муравьиная и др.) или их соли. [c.344]

    Уксусная кислота горячая аммиак, исключая очень низкие и очень высокие концентрации нитрат аммония, нагретые растворы лимонная кислота аэрированная муравьиная кислота в присутствии кислорода соляная кислота, разбавленные и концентрированные растворы фосфорная кислота, горячие концентрированные растворы углекислый калий, горячие концентрированные растворы хлористый натрий, особенно горячие растворы нитрат натрия, разбавленные растворы двуокись серы, особенно высокой концентрации серная кислота, разбавленные и концентрированные растворы хлористый цинк, особенно расплавленный Хлор сухой соляная кислота, исключая определенные концентрации и температуры [c.390]

    Определение суммы камфена, трициклена и фенхенов в изомеризатах (2]ЭВ). в настоящее время количественный состав продуктов каталитической изомеризации пинена наиболее рационально устанавливать с помощью ГЖХ. Прежде в них определяли количество терпенов, образующих эфиры при взаимодействии с муравьиной или уксусной кислотами в присутствии катализаторов (S3B). С названными кислотами вступают в реакцию камфен, трициклен и фенхены, т. е. терпены, содержащиеся в техническом камфене, поэтому это определение часто называли также определением камфена. [c.180]

    Муравьиная кислота в присутствии уксусного ангидрида быстро дегидратируется [уравнение (2.23)]. Соединения с двойными связями, включая ароматические соединения и фураны, мешают определению гидроксилсодержащих соединений в методиках с использованием этилацетата (растворитель), так как при этом частично реагируют с уксусным ангидридом. К другим классам соединений, мешающим при определении воды и гидроксильных групп, относятся альдегиды, первичные амиды, имиды, гидразины, оксимы, амины и меркаптаны, так как все они в различной степени частично реагируют с уксусным ангидридом. [c.52]


    Как уже отмечалось, определение воды с помощью уксусного ангидрида невозможно в присутствии муравьиной кислоты вследствие протекания побочной реакции. [c.32]

    Много внимания было уделено нами разработке и улучшению методов раздельного определения компонентов получаемого конденсата, спиртов, альдегидов и кислот. Получаемый конденсат — сложная смесь органических продуктов, среди которых главными являются ацетальдегид, формальдегид, метанол, уксусная кислота и др. Установлено присутствие муравьиной кислоты, метилформиата, метилаля, ацетона, этилового спирта. [c.368]

    Для определения уксусной и муравьиной кислот при их совместном присутствии использована их способность окисляться ионами меди(1П) при кипячении в течение 30 мин [14]. Избыток Си определяют с помощью мышьяка(П1) и иода. Церий(IV) окисляет только муравьиную кислоту при кипячении с обратным холодильником в течение 1,5 ч в присутствии хрома (III). Оста- [c.10]

    Селективное окисление муравьиной кислоты в присутствии уксусной можно проводить растворами Се . Сумму муравьиной и уксусной кислот определяют редокс-титрованием раствором меди(1П), по разнице рассчитывают содержание ацетата [12]. При определении муравьиной и щавелевой кислот формиат окисляют избытком раствора Ag . Оксалат определяют окислением раствором церия (IV) [13]. [c.91]

    Трудность в изучении проблемы действия уксусной кислоты обусловливается сложностью определения малых количеств уксусной и других летучих кислот в присутствии больших количеств серной кислоты. Однако Крейг разработал удовлетворительный метод определения уксусной и муравьиной кислот в электролите аккумуляторов. [c.161]

    Тиобарбитуровый метод отличается высокой точностью и надежностью, и его можно использовать для слежения за ходом образования муравьиной кислоты. Присутствие других кислот и альдегидов, например уксусной, щавелевой, глиоксиловой и формилпировиноградной кислот, ацетальдегида, формальдегида и малонового альдегида, не мешает определению. Все эти соединения не вступают в реакцию с 2-тиобарбитуровой кислотой, даже если находятся в десятикратном избытке, и, следовательно, не препятствуют образованию хромофора из самой муравьиной кислоты [12]. Последнее особенно важно, поскольку высокая специфичность метода позволяет надежно определять муравьиную кислоту среди продуктов периодатного окисления, сопровождающегося переокислением . Ввиду того что муравьиная кислота может образовываться при боргидрндном восстановлении двуокиси углерода [28], следует исключить возможность появления последней в смеси и обязательно проводить холостые опыты. Выбранное значение pH раствора (2,45) позволяет избежать побочного образования муравьиной кислоты, которое имеет место в щелочной среде. Альдегидные группы восстанавливают перед стадией получения хромофора, так как они мешают образованию последнего. Маловероятно, что полисахаридный скелет может разрушаться в слабокислой среде, давая, например, гликолевый альдегид. Однако, если это может произойти, добавляют меньшее количество серной кислоты и тем самым повышают конечное значение pH, что приводит к некоторому снижению чувствительности метода. [c.81]

    V Метод совместного определения муравьиной кислоты и формальдегида разработан А. С. Молотковой и В. К. Золотухиным [64]. К анализируемому раствору добавляют в избытке растворы Naj Os (1 н.) и КМп04 (стандартный), выдерживают смесь 20—30 мин при комнатной температуре, затем подкисляют серной кислотой (1 4) и немедленно прибавляют избыточное количество 0,1 н. стандартного раствора соли Мора. Избыток последней оттитровывают 0,1 — 0,5 п. раствором КМПО4 при комнатной температуре. Метод позволяет определять сумму формальдегида и муравьиной кислоты в присутствии уксусной, бензойной и других кислот, не окисляемых перманганатом. V [c.15]

    Шарма и Мехротра установили, что при увеличении концентрации серной кислоты до 50—66% и кипячении все кислоты, исследованные Уиллардом и Янгом, за исключением янтарной и уксусной, количественно окисляются до двуокиси углерода. Позднее было показано что при действии чистого сульфата церия (IV) муравьиная кислота не окисляется в сколько-нибудь заметной степени и что количественное окисление объясняется, с одной стороны, высокой концентрацией серной кислоты, с другой — каталитическим действием примесей. При добавлении к чистому сульфату церия небольших количеств хрома (III) в качестве катализатора результаты оказываются такими же, как при использовании неочищенного сульфата церия. Это делает возможным определение глицерина и гликоля в их смесях одну аликвотную порцию окисляют в отсутствие катализатора до муравьиной кислоты, другую — в присутствии хрома (III) —до двуокиси углерода. Аналогичные методики разработаны для анализа смесей муравьиной кислоты с формальдегидом или метиловым спиртом. Шарма установил также, что в отсутствие катализатора альдозы окисляются до муравьиной кислоты кетозы образуют двуокись углерода. В присутствии Сг происходит полное окисление до двуокиси углерода и воды. [c.428]

    При определении в воздухе рабочей зоны муравьиной кислоты в виде этилформиата ее улавливают из воздуха в абсорбере с 15 мл 0,1 н NaOH [83]. Предел обнаружения 0,1 мг/м При одновременном присутствии в воздухе муравьиной и уксусной кислот их поглощали в двух последовательно расположенных абсорберах, содержащих по 10 мл 0,1 н раствора Na2 03, через которые пропускали 50 л воздуха с расходом 1—2 л/мин [84]. Сконцентрированные кислоты можно регенерировать добавлением 1 мл 0,5 н НС1 и анализировать прямым методом на стальной колонке (2м х 3 мм) с Порапаком Q содержащим 4% (85%-ной) Н3РО4. Все внутренние поверхности хроматографа [c.118]

    Коррозионная среда. В зависимости от состава коррозионной среды МКК аустенитных коррозионно-стойких сталей может развиваться с различными скоростями. Одни среды могут вызывать быстрое разрушение границ зерен до полной потери металлом механической прочности и пластичности, другие — более медленное межкристаллитное разрушение. Быстрое разрушение происходит в растворах азотной, серной и фосфорной кислот, смесях азотной и фосфорной кислот, в муравьиной и уксусной кислотах и др. Присутствие в таких растворах некоторых веществ приводит к значительному ускорению МКК- Так, действие сернокислотных рестворов более интенсивно при наличии в них определенных количеств сульфата железа, сульфата меди, роданистого калия или аммония, соединений серебра и двухвалентной ртути, шестивалентного хрома и т. д. Наиболее часто МКК коррозионно-стойких сталей и сплавов наблюдается в кислых растворах. Кислые среды считаются самыми опасными в отношении МКК и используются для выявления у металла склонности к этому виду разрушения по стандартным методикам. [c.59]

    Отмечается [713], что при пламенно-фотометрическом определении натрия с помощью фильтрового фотометра К. Цейсс (модель П1) этанол снижает интенсивность излучения натрия за счет увеличения самоноглощения, изменения температуры пламени и кинетики процессов, несмотря на увеличение эффективности распыления раствора. При изучении влияния муравьиной, уксусной, винной и лимонной кислот на определение натрия с помощью спектрофотометра на основе спектрографа ИСП-51 установлено повышение чувствительности определения натрия в 5—10 раз в присутствии 100%-ной уксусной кислоты и в 1,5—2 раза для 2 М раствора кислоты [713]. В несколько меньшей степени влияет муравьиная кислота. Винная и лимонная кислоты снижают интенсивность излучения натрия. Основное значение придается роли поверхностного натяжения раствора. Отмечается, что уксусная кислота увеличивает эмиссию и абсорбцию натрия за счет уменьшения диаметра частиц аэрозоля [497]. Изучено влияние метанола, этанола, бутанола и уксусной кислоты на распределение свободных атомов в пламени ацетилен—воздух и на температуру [559]. Для этой цели применяли пламенно-фотометрическую установку на основе спектрографа ИСП-51, комбинированную горелку-распылитель. При концентрации органического растворителя 1 М температура пламени повышается на 100° С. Интенсивность линий натрия в присутствии органических растворителей максимальна в более высокой зоне пламени по сравнению с водным раствором. Общий объем пламени возрастает. Аналогичные результаты получены в работе [397]. [c.126]

    Было проведено сравнительное изучение различных реагентов-осадителей (вольфрамат оксалат в присутствии глицерина, муравьиной, уксусной кислот, пиридина, анилина, мочевины, антипирина, уротропина сульфат молибдат) для гравиметрического определения кальция на смесях, содержащих 20-кратный избыток магния [1338]. Исследовалась возможность предварительного выделения магния оксихинолином, а также осаждение гекса-нитроникелата калия и кальция, осаждение кальция в виде тартрата, иодата и пикролоната. Лучшим оказался вольфраматный метод. [c.35]

    По данным В. С. Громова и Л. А. Хрол [12], растворимость полисахаридов при водной обработке древесины значительно возрастает не только в присутствии муравьиной и уксусной кислот, но и в присутствии солей. Однако определенной зависимости между pH раствора и силой каталитического воздействия соответст- [c.186]

    Для устранения методических трудностей с определением формальдегида последний в некоторых случаях переводят в другие соединения, более удобные для хроматографирования. Так, было предложено действием этанола в присутствии п-толуолсульфокислоты превратить формальдегид в диэтилформаль (ацеталь). Присутствующие в изучавшихся смесях муравьиная и уксусная кислоты преобразуются в соответствующие этиловые эфиры (рис. 39) [276]. Как видно из рисунка, описанным методом можно с достаточной точностью определить содержание и формальдегида и муравьиной кислоты. С применением пламенно-ионйзаци-онного детектора находят относительное содержание метанола и формальдегида в контактном газе формалинового производства [277]. Полный состав смесей, содержащих водород, кислород, оксид и диоксид углерода и т. п., выполняется с применением трех колонок [278]. Анализ водных растворов муравьиной и уксусной кислот можно проводить и с применением катарометра [279]. [c.129]

    Муравьиную кислоту обычно определяют [10, 28] в растворе NaH Os методом обратного бромометрического титрования, у Быстрый метод определения муравьиной кислоты в водном растворе основан [29] на ее окислении взятым в избытке раствором Bfj в уксусной кислоте в присутствии пиридина (катализатор), с последующим иодометрическим определением избытка Big. у [c.87]

    В технической уксусной кислоте, кроме основного вещества, содержится еще муравьиная кислота и уксусный альдегид. В учебной лаборатории целесообразно ограничиться определением содержания уксусной и муравьиной кислот. Навеску технической уксусной кислоты растворяют в дистиллированной воде и титруют щелочью в присутствии фенолфталеина. Так определяют общую кислотность, т. е. суммарное содержание уксусной и муравьиной кислот. Уксусная и муравьиная кислоты довольно летучи чтобы избежать потерь при анализе, растворение навески следует вести в колбе с притертой пробкой. Учащиеся должны освоить приемы работы с пипеткой Лунге-Рея для взятия навесок летучих жидкостей снимают пробирку, закрывают нижний край, отсасывают с помощью вакуума воздух из пробирки и закрывают верхний кран. После этого погрулоьот носик пипетки в жидкость и открывают нижний кран, жидкость всасывается в щарик пипетки. Закрывают нижний кран, снимают с нижней части пипетки фильтровальной бумагой капли жидкости, надевают пробирку и взвешивают пипетку. Затем снимают пробирку, открывают оба крана и спускают жидкость в колбу для титрования. Закрывают краны, надевают пробирку, снова взвешивают пипетку и по разности определяют навеску жидкости, взятую для анализа. [c.178]

    Тесная связь строения углеводородной и кислотной частей нефти с близким числом атомов углерода в молекуле проявлялась также и в том, что содержание нафтеновых кислот повышается при переходе от нефтей менее цикличных, т. е. парафинистых, к нефтям нафтенового основания. Появилось значительное число экспериментальных данных, свидетельствующих о том, что среди кислот, выделенных из бензино-керосиновых фракций, присутствуют наряду с нафтеновыми кислотами низшие гомологи (С —С7) жирных кислот. Содержание этих кислот в нефтях значительно меньше, чем нафтеновых кислот, причем с увеличением молекулярных весов нефтяных фракций оно снижается точно так же, как снижается и доля парафиновых углеводородов в этих фракциях. Жирные кислоты никак нельзя было подвести под определение нафтеновые кислоты, поэтому еще Аскан предложил в качестве общего понятия, охватывающего все выделяемые из нефти карбоновые кислоты, ввести понятие более широкое, а именно нефтяные кислоты. Это предложение Аскана позже было поддержано Гурвичем. Что касается часто употребляемого названия нефтяные кислоты ( Ре1го1заиге ), — пишет Гурвич, то, по предложению Аскана, его следует оставить для обозначения вообще всех кислот, встречающихся в нефти, а в ней, кроме нафтеновых, попадаются, хотя и в небольших количествах, и некоторые кислоты жирного ряда муравьиная, уксусная и т. д. под нафтеновыми же следует подразумевать исключительно карбоновые кислоты, производящиеся от нафтеновых углеводородов [14]. Наметкин нефтяными кислотами называет кислоты, выделяемые из нефти щелочной обработкой, хотя он тут же подчеркивает И по составу и по свойствам нефтяные кислоты вполне соответствуют нафтеновым кислотам, т. е. синтетическим кислотам, являющимся производными нафтенов [15]. [c.310]

    Определение фурфурола [147, 150, 152]. В колбу емкостью 50 мл вводят 1 г Na l, 37,5 мл ледяной уксусной кислоты и 3 мл перегнанного анилина, перемешивают и колбу помещают на 15-мин в водяную баню с температурой 15°С. К полученному реактиву прибавляют 5 мл исследуемого водного раствора фурфурола, также нагретого до 15 °С. Через 1 ч 45 мин оптическую плотность раствора измеряют при 500—518 нм. По этой методике можно определять 5—40 мкг фурфурола в 5 мл раствора. Определению не мешает присутствие 5-кратного избытка формальдегида, 60-кратного избытка муравьиной или малеиновой кислоты [139]. Этим методом определяют фурфурол в разных объектах [119, 137, 156—158]. [c.113]

    Этанол на холоду в заметной степени ие реагирует с концентрированной перекисью водорода [2751, но в смесях внутри определенного интервала концентраций может быть вызвана детонация исключительной силы. Однако в присутствии иона трехвалентного железа реакция с этанолом идет до образования уксусной кислоты [288] или даже двуокиси углерода [275]. Трет-алкпловые спирты можно превратить перекисью в гидроперекиси алкилов [70] получен ряд продуктов из третичных ароматических спиртов [289]. Многоатомный спирт глицерин дает с перекисью водорода непосредственно муравьиную кислоту, причем промежуточными продуктами являются глицериновая и гликолевая кислоты [290]. В присутствии иона окисного железа образуется глицериновый альдегид, а карбонат кальция способствует образованию формальдегида и кислоты. Механизм этих реакций со спиртами изучен Мерцем и Уотерсом [291]. [c.343]

    Матвеев В. К и Ильинский М. А. Определение антрацена диенометрическим путем. Научно-исследовательские работы химических институтов и лабораторий АН СССР за 1940 г. Сборник рефератов. М.—Л., Изд-ЕО АН СССР, 1941, с. 88. 7683 Матвеев И. И. и Агашенко А. Г. Определение муравьиной и уксусной кислот в присутствии фенола. Тр. Ленингр. хим.- технол. ин-та им. Ленсовета, 1941, вып. И, с. 38 44. Библ. 12 назв. 7684 [c.291]

    Быстрый объемный метод определения муравьиной и уксусной кислот при совместном присутствии описан Fu hs oM.  [c.125]

    Метод определения уксусной кислоты в уксусном ангидриде был описан также Waltonn Withrow, s Метод основан на разложении муравьиной кислоты уксусным ангидридом в присутствии органических оснований, служащих катализаторами присутствие уксусной кислоты в ангидриде замедляет реакцию произведение скорости реакции на концентрацию уксусной кислоты есть величина постоянная. [c.136]

    Известно, что при облучении ацетона ультрафиолетовым светом (254 нм) происходит диссоциация его на радикалы, которые и взаимодействуют с молекулой уранина, в результате чего образуется, по-видимому, нелюминесцирующее соединение типа лейкооснования. Присутствие в водных растворах гептана, бензола, диэтилового эфира не влияет на фотохимическую реакцию, в то время как присутствие органических кислот (муравьиной, уксусной, монохлоруксусной, трихлоруксусной, пропионовой, щавелевой, янтарной) замедляет ее. Спирты оказывают слабое замедляющее действие. Фотохимическая реакция взаимодействия с ацетоном в водном растворе может быть положена в основу экспрессного аналитического метода количественного определения ацетона в воде. Предел обнаружения ацетона равен 10 %. [c.233]

    Разбавленные растворы слабых кислот титруют 0,01 н. раствором NaOH в присутствии фенолфталеина до слабого порозовения. Определение дает вполне удовлетворительные результаты. Мы определяли 0,1 — 1 мг уксусной кислоты в 2—5 мл раствора с ошибкой не более, чем 2%. Титрование 2,5—100 мм водных растворов, содержащих 3—5 y муравьиной, уксусной или молочной кислоты, мы выполняли с ошибкой около 2—4%. [c.176]

    Присутствие в водных растворах углеводородов (гептана, бензола), дибутилового эфира не влияет на фотохимическую реакцию, в то время как присутствие органических кислот (муравьиной, уксусной, монохлоруксусной, трихлоруксусной, пропионовой, щавелевой, янтарной) замедляет ее. Спирты оказывают слабое замедляющее действие. Фотохимическая реакция взаимодействия уранина с ацетоном в водном растворе может быть положена в основу экспрессного аналитического метода количественного определения ацетона в воде. Предел обнаружения ацетона данным методом равен 10 %  [c.191]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    МОЖНО получить на основании анализа газа в пространстве между двумя конусами охлажденного углеводородного пламени [102]. В спектре внешнего конуса таких пламен полосы углеводородного пламени лишь незначительно перекрываются другими системами полос. Химический анализ отобранных проб показал, что в этом случае газ в пространстве между конусами содержит большие количества формальдегида и перекисных соединений растворы давали кислую реакцию, вероятно, за счет образования муравьиной и других кислот ацетилен и окислы азота не были обнаружены. Было доказано, что наличие полос углеводородного пламени во внешнем конусе всегда связано с образованием перекисных соединений в пространстве между конусами, и хотя в нем всегда присутствуют альдегиды, в особенности формальдегид, скорость образования альдегидов не находится в связи с интенсивностью полос, тогда как изменение количества образующихся перекисей почти точно соответствует изменению интенсивности. Проба на перекиси проводилась путем пробульки-вания газа через дестиллированную воду в течение определенного промежутка времени, равного обычно десяти минутам, с последующим титрованием иодистым калием, подкисленным разбавленной уксусной кислотой. При исследовании горения метана и городского газа было обнаружено, что анализ на перекиси очень сильно зависел от раствора при проведении горения в некоторых определенных условиях анализ давал большие количества перекиси, если дестиллированная вода была слегка подщелочена, тогда как при слегка подкисленном растворе перекись получалась лишь в очень незначительных количествах. Если исходный раствор был нейтральным, то проба уже имела кислую реакцию за счет кислот, содержащихся в газе, отсасываемом из пространства между конусами, так что перекись могла быть определена даже без добавления уксусной кислоты при тщательной нейтрализации пробы перед титрованием свободный иод выделялся лишь в незначительных количествах, но последующее прибавление кислоты приводило к выделению больших количеств иода. Это, повидимому, указывает на то, что, несмотря на наличие небольших концентраций гидроперекиси, основная часть перекиси представляет. [c.74]


Смотреть страницы где упоминается термин Определение муравьиной кислоты в присутствии уксусной кислоты: [c.291]    [c.233]    [c.310]    [c.372]    [c.98]    [c.138]    [c.101]    [c.101]    [c.138]    [c.59]    [c.407]   
Смотреть главы в:

Аналитическая химия -> Определение муравьиной кислоты в присутствии уксусной кислоты




ПОИСК





Смотрите так же термины и статьи:

Муравьиная кислота

Муравьиная кислота в уксусной кислоте

Уксусная кислота определение

Уксусная кислота присутствии муравьиной



© 2025 chem21.info Реклама на сайте