Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация в ароматических системах

    Действием электростатических противоположных сил притяжения и отталкивания объясняются также и так называемые правила ориентации. Эти закономерности касаются определения места вступления нового заместителя при реакциях замещения атомов водорода у предельных углеводородов и в ядре у производных ароматических углеводородов. В этом отнощении наиболее изучены процессы замещения атомов водорода при нитровании, сульфировании, галогенировании производных бензола. Известно, что электронная плотность в циклах замещенных бензола, гетероциклических соединениях ароматической природы, конденсированных ароматических системах распределена неравномерно. Отсюда вступающий заместитель направляется в положение, которое определяется как самой природой атакующего реагента, так и характером уже имеющегося в соединении заместителя (ориентанта). [c.160]


    Во всех случаях соседство с кратной связью или ароматической системой проявляется в экранирующем действии я-электронных токов, важнейшей особенностью которых является анизотропный характер индуцированного ими магнитного поля. Это значит, что величина этого поля зависит от ориентации молекулы по отношению к внешнему магнитному полю. [c.68]

    Напряженность некоторых циклов, приводящая к небольшим изменениям гибридизации углеродных атомов в цикле, и зависимость величин индуцированных моментов от ориентации полярных групп вызывает необходимость более строгого, чем в ароматических системах, учета этих эффектов. Наиболее распространенным подходом [c.133]

    Хотя определенных экспериментальных данных о замещении в полициклических ароматических системах имеется пока очень мало, возникший в последнее время теоретический интерес к этой области побуждает рассмотреть вопрос о том, в каких случаях можно ожидать появления эффектов, которые нарушали бы ориентацию, определяемую влиянием сопряжения. В таких соединениях в некоторых положениях могут обнаруживаться стерические эффекты, обусловленные близостью атомов водорода различных колец. Рассмотрим, например, плоскую модель фенантрена (III). [c.516]

    С этой же точки зрения Робинсон рассматривает ряд частных примеров, а также общий вопрос об ориентации в ароматических системах, причем в первую очередь он считает необходимым обращать внимание на условия реакции и особенно на характер, анио-ноидный или катионоидный, реагента, во вторую — на самое сопряженную систему и в третью — на влияние, оказываемое присоединенными группами на эту систему. [c.115]

    При помощи ЙК-спектроскопии было показано, что в макромолекулах порошкообразного ПВС идет преимущественно внутримолекулярная дегидратация и образование полиеновых участков. Последние легко преобразуются в конденсированные ароматические системы. Волокна ПВС, при формовании которых создаются условия для ориентации макромолекул и упрочения межмоле-кулярных водородных связей, а также некоторой сшивки, при термообработке в значительной мере испытывают интермолекулярную дегидратацию. [c.174]

    Чтобы полностью описать органическое соединение, необходимо изучить как его строение, так и стереохимию [22—25]. Строение определяет класс соединения (алифатический, алициклический или ароматический), а также природу и положение различных функциональных групп. Для того чтобы определить относительную или абсолютную конфигурацию соединения, необходимо установить положение (а или р, цис или транс, син или анти и т. д.) заместителей относительно основной углеродной цепи, кольца или боковой цепи. Кроме того, необходимо установить конформацию кольца (кресло, ванна, твист-конформация и т. д.). Например, строение о-(-)-)-камфоры можно определить, исходя из ориентации алициклической системы, природы и расположения различных заместителей (карбонильная и алкильная группы), оно представлено структурой 1а. Затем необходимо установить конфигурацию метильной группы в положении 1 и гел-диметильного мостика 16, а также конформацию ванны циклогексанового кольца, откуда приходим к конфигурации 1в, отражающей строение и стереохимию этого циклического кетона. Как будет показано далее, ДОВ и КД могут дать ценную информацию о строении молекул, однако наиболее важны хироптические методы для изучения стереохимии [17—21]. [c.12]


    Другим весьма ярким примером большого значения процессов переноса энергии для химии низких температур могут служить опыты по облучению ультрафиолетовым светом твердых растворов ароматических соединений в насыщенных углеводородах и различных спиртах. В этих системах квант света, поглощенный ароматической молекулой с достаточно высоким выходом, может быть использован для разрыва С—Н-связи в молекуле среды. По-видимому, такой процесс очень сильно зависит от ориентации ароматической молекулы по отношению к молекулам среды. Дальнейшее исследование этого явления должно помочь выяснению механизмов, связывающих процесс переноса энергии по твердой среде с первичным разрывом химической связи. [c.337]

    Очевидно, одним из важнейших аспектов этого типа взаимодействий, создающим наиболее серьезные препятствия на пути количественного теоретического рассмотрения, является геометрия взаимодействия. Помимо зависимости дисперсионной энергии от размеров и средних расстояний между атомами молекул растворителя и растворенного вещества, необходимо рассмотреть направление поляризуемости, от которого также зависит сила дисперсионного взаимодействия. Поляризуемость обычно определяют из молярной рефракции, являющейся мерой общей поляризуемости молекулы. Однако, как правило, поляризуемость различна но разным направлениям, так что энергия дисперсионного взаимодействия будет зависеть от ориентации и геометрии взаимодействующих молекул. Этот эффект может оказаться особенно важным при сравнении ароматических и алифатических молекул близкой общей поляризуемости, если ароматическая система обладает геометрией, позволяющей ей более эффективно взаимодействовать с другой ароматической системой. Плоские молекулы могут взаимодействовать в различных взаимных ориентациях, в то время как замещенные производные циклогексана в конформации кресла будут иметь менее благоприятную энтропию ассоциации из-за небольшого числа взаимных ориентаций, обеспечивающих максимальный контакт взаимодействующих молекул. Введение алкильных заместителей часто уменьшает или вообще устраняет агрегацию красителей, стероидов и других молекул. [c.317]

    Механизм электромерного влияния на соотношение между орто- и /А ра-изомерами. Ясно, что ориентация, вызываемая эффектом поляризуемости+ ", может рассматриваться только в связи с реагентом, который стимулирует данный эффект. Как уже подчеркнул Уотерс [120], переходное состояние при замещении и исходное состояние ароматической системы должны при изучении ориентации рассматриваться раздельно необходимость соблюдения такого строгого подхода возрастает, если ориентирующая группа типа + создает особые различия между переходным и начальным состояниями. [c.269]

    Химику, работающему в области красителей, часто бывает необходимо синтезировать новый промежуточный продукт определенного строения и с определенным положением заместителей или найти новый способ получения уже известного продукта. Решение этих задач значительно облегчается, когда хорошо известны все закономерности, касающиеся места вступления заместителей, и которые наблюдаются при замещениях в различных ароматических системах. Поэтому эти правила ориентации следует обсудить несколько более подробно. [c.51]

    Более сложная картина наблюдается для ароматических и гетероциклических соединений, адсорбция которых может сопровождаться л-электронным взаимодействием с поверхностью металла. Такому взаимодействию естественно благоприятствует наличие положительных зарядов на поверхности электрода и, наоборот, прп достаточно большом отрицательном заряде поверхности в результате отталкивания л-электронов происходит изменение ориентации адсорбированных органических молекул. Таким образом, поверхностная активность органических веществ, молекулы которых обладают системой сопряженных л-электронных связей, характеризуется наличием двух адсорбционных состояний. Эту особенность и отражает кривая 3 на рис. 2.7, состоящая из двух участков, каждый из которых дает зависимость — АС° от Е для соответствующей ориентации молекул адсорбата. [c.47]

    Хорощо известно, что ароматическое ядро существенно влияет на свойства соединенной с ним аминогруппы (ослабление основных свойств анилина по сравнению с алифатическими аминами), а аминогруппа в свою очередь влияет на свойства ароматического ядра. Это результат сопряжения свободной э лектронной пары азота с подвижными п-электронами ароматического ядра. Сопряжение может осуществиться лишь при параллельной ориентации р-электронной орбитали электронной пары атома азота и п-электронной системы ароматического ядра  [c.499]


    Многие авторы считали, что стерические факторы могут определять (в ряде случаев почти полностью) скорость замещения, а в некоторых ароматических системах—и ориентацию заместителей. Приведем два примера. Голлеман (Holleman, 1924) полагал, что размеры реагента существенны для установления соотношения орто - пара-изомеров в реакциях замещенных бензолов. Он приводит цифровые значения соотношения (орто пара) (см. табл. 1) с тем, чтобы доказать, что это соотношение уменьшается по мере увеличения размеров реагента в результате стерических препятствий, возникающих при вступлении новой группы в орто-положенпе к ориентирующему заместителю. [c.508]

    Если у первого в области длинноволновой полосы поглощения (около 260 нм) наблюдается лишь слабый эффект Коттона, то у тирозина в той же области зафиксирован сильный эффект Коттона. Это результат сопряжения свободных электронных пар кислорода с я-электронной системой ароматического ядра и вызываемого этим сопряжением изменения ориентации электрического и магнитного моментов перехода. [c.505]

    Считают, что дифрагированный луч возникает лишь в том случае, если система плоскостей ароматических структур веществ углей находится в отражающем положении. При освещении монохроматическим пучком лучей возникают дифрагированные лучи, интенсивность которых измеряется счетчиком. Интенсивности полосы 100 могут служить мерой величины углеродных ароматических сеток, а полосы 002 — их пространственной ориентацией. [c.80]

    Ориентация при замыкании хинолинового цикла по типу I. Реакции циклизации типа I обычно заключаются во взаимодействии ароматического амина, в молекуле которого имеется по меньшей мере одно свободное ортоположение, с каким-либо реагентом или реагентами, которые предоставляют атомы углеродй, требующиеся для -завершения построения пиридинового кольца таким образом хинолиновая система строится по свободному ортоположению. В случае ароматических аминов с двумя свободными орто-положениями, в молекулах которых другие заместители расположены несимметрично [c.7]

    Направление реакции в л1ногоядерных конденсированных ароматических системах — нафталине, антрацене, фенантрене и др.— было предметом многочисленных исследований. Известно, что нафталин часто реагирует в а-положении (I), а антрацен — в мезо-положении 9 или 10 (П). Для фенантрена (П1) ориентация выражена менее ярко. Реакционная способность. иезо-положений (9 и 10) распространяется также на орто- и гара-положения ( 1, 3, 6 и 8) которые нитруются почти так же легко, как и положения 9 и 10. [c.169]

    Относительная реакционная способность и эффекты ориентации в ароматическом ядре количественно варьируют очень сильно. Толуол в 200 раз реакционносиособнее бензола в реакции бромирования в уксуснокислом растворе, и только в 30 раз более реакционносиособен при нитровании в среде нитрометана. Причины такого различия не отражены в данном упрощенном рассмотрении. Ошибки возникают при отождествлении промежуточного соединения в реакции с переходным состоянием в стадии, определяющей скорость реакции замещения. Хотя переходное состояние, вероятно, очень похоже на это промежуточное соедгшение, но оно с ним не тождественно. В истинных переходных состояниях степень вытягивания я-электронов из ароматической системы, возможно, меняется с природой вступающего заместителя. [c.363]

    Особое место занимают ароматические углеводороды, родоначальником которых является бензол. Характерной отличительной особенностью бензола является его плоская циклическая структура с единой я-электронной системой. Все атомы углерода в бензоле равноценны, что объясняется делокализацией я-электронов. Алканы преимущественно вступают в. реакции радикального замещения (5 ), а алкены и алкины— в реакции присоединения. Взаимодействие алкенвв и алкинов с водой, галогеноводородами и другими полярными молекулами происходит в соответствии с правилом Мар-ковникова. Данное правило отражает суть взаимного влияния атомов в молекулах. Диеновые углеводороды взаимодействуют с га-логедами и галогеноводородами с образованием преимущественно продуктов присоединения по положениям 1, 4. Это объясняется строением промежуточно образующегося карбкатиона. Особенностью арол атических углеводородов является их свойство легко вступать в реакции электрофильного замещения. Строение образующегося продукта реакции определяется правилами ориентации и природой атакующего реагента. [c.356]

    Хотя граничные электронные плотности применимы только для рассмотрения ориентации при замещении в данной ароматической системе, но развитие этого подхода привело к двум более сложным ИРС — сверхделокализуемости [53] и 7-фактору [19а, Ь, 55], которые пригодны для выяснения относительной реакционной способности различных ароматических систем. К сожалению, расчеты этих новых ИРС почти полностью относятся к карбоциклическим соединениям. [c.136]

    Три различных ИРС, обсужденных выше, соответствуют различным моделям переходного комплекса. Предположение, что на ориентацию непосредственно влияет распределение я-электронов, означает, что переходное состояние очень близко к исходному и что ориентация в значительной степени определяется электростатическими силами. Соответствующая модель для корреляции с граничной электронной плотностью менее ясна, но, вероятно, простейшей интерпретацией является взаимодействие с переносом заряда между реагентом и слегка измененной ароматической системой, в которой в значительной степени сохранилось циклическое сопряжение [19а, Ь ср, также 55]. Корреляция с энергиями локализации означает, что переходное состояние очень сильно отли- [c.136]

    При термической полимеризации диметибутадиипа в спектре ЯМР появляются три дополнительных (по сравнению со-спектром мономера) сигнала с б = 2,07, 2,30 и 2,43 м. д., первый из которых определяется СНд-груп-пами в р-положении к тройной связи, а оставшийся дублет — СНд-заме-стителями в ароматической системе, неэквивалентными, возможно, из-за их различной ориентации к плоскости ароматической системы [3]. Все эти сигналы появляются в спектре ЯМР почти одновременно, а соотношение их интенсивностей, примерно остающееся неизменным в ходе полимеризации подтверждает образование фрагментов Гб и Пб в составе 3 4 1. [c.322]

    Различные индексы реакционной способности соответствуют различным моделям переходных состояний и движущих сил реакции, При использовании индексов первой группы исходят иэ предположения о раннем переходном состоянии близком по структуре и положению на энергетическом профиле реакции к исходной молекуле. Индекс свободной валентности ( Рл) является современным видоизменением представлений Тиле об остаточном сродстве (см, разд. 1.1.1). Чем больще степень участия атома в положении г в образовании л-связей с соседними атомами ароматической системы, тем меньше его индекс свободной валентности и способность связываться с атакующим реагентом. Использование я-электронной плотности [дг), рассчитываемой суммированием вкладов всех заполненных МО, адетсватно представлению Об определяющем значении электростатического взаимодействия между субстратом и реагентом, благодаря которому электрофильная атака легче направляется на атомы с наибольшей, а нуклеофильная — с наименьшей электронной плотностью. Индекс собственной поляризуемости Птг отражает легкость изменения суммарной л-электронной плотности на атакуемом атоме под влиянием реагента. Чем больше индекс Ягг атома, тем легче в это положение должны идти реакциь как электрофильного, так и Нуклеофильного замещения. Граничная электронная плотность учитывает распределение электронной плотности только на граничных орбиталях на высшей занятой молекулярной орбитали (ВЗМО) при электрофильном замещении и на низшей свободной молекулярной орбитали (НСМО) после переноса на нее двух электронов при нуклеофильном замещении. Мерой граничной электронной плотности положения является коэффициент Сг , отражающий вклад атомной орбитали атома в положении г в граничную молекулярную орбиталь т. Считают, что электрофильное и нуклеофильное замещения протекают пр месту с наибольшим значением коэффициента Сг на соответствующей граничной орбитали. При свободнорадикальном замещении и ВЗМО, и НСМО рассматриваются как граничные орбитали [366]. Поскольку граничная электронная плотность пригодна только для рассмотрения ориентации в данной молекуле, для выявления относительной реакционной способности различных систем введен индекс, на-,званный срерхделокализуемостью (5г). При формулировке этого-индекса использована теория возмущений [361 ] в применении к модели, в которой вступающая группа образует слабую п связь с атомом в положении г, а я-система в целом не изменяется. К индексам теории граничных орбиталей [366] близки другие индексы, основанные,на представлении о переходном состоянии как комплексе с переносом заряда, например 7-фактор 43]. Обсуждавшиеся в. связи с концепцией одноэлектронного переноса корреляции между относительной реакционной способ- [c.127]

    Зачастую выводы о направлении реакции, сделанные иа основании мезо-морного эффекта, согласуются с опытом только потому, что самые мезомерные состояния выводятся из химических данных. Сюда относятся, нанример, явления ориентации в ароматических системах, где суждения о мезомерных изменениях в орто- и нара-местах опираются пск,лючительно на химические наблюдения. [c.215]

    Ориентация заместителей в ароматических системах. Замещение в бензоле и в других циклических ароматических системах может происходить под влиянием реагентов всех трех возможных типов, т. е. электрофильных, радикальных и нуклеофильных. В большинстве обычных реакций, как, например, при галогенировании, нитровании, сульфировании, диазосочетании и т. д., замещающий реагент электрофилен, так что само ароматическое соединение должно быть нуклеофильным. Но в реакции Гомберга зе оба реагента несомненно являются радикалами, а при гидролизе, алкоголйзе и аминолизе арилгалогенидов, аминов, эфиров и т. п., замещающий реагент нуклеофилен. (Этот перечень реакций является лишь иллюстративным, а не исчерпывающим в дальнейшем будут упомянуты еще некоторые реакции, принадлежащие к этим трем типам.) [c.368]

    Ароматические поликарбонаты, вследствие их неполярного характера, при действии воды или водяного пара поглощают только очень небольшие количества влаги. Равновесное влагосодержание зависит от химической природы поликарбоната, его кристалличности и степени ориентации, температуры системы и, если действуют смесью паров, от парциального давления водяного пара. Максимальное водопоглощение поликарбоната на основе бисфенола А, погруженного в воду при 25 °С, составляет 0,36%. На рис. 45 показано поглощение влаги при 25 °С литыми образцами размером 15 X 4 X 120 мм при погружении их в воду и выдернже на воздухе при 60%-ной относительной влажности. Для достижения равновесия требуется длительное время При 60%-ной относительной влажности равновесие достигается, если в полимере содержатся 0,20% воды. С точки зрения применения изделий из поликарбоната очень важным является то, что поглощение такого количества воды фактически [c.198]

    Структурная теория должна отражать основные общие черты ароматических систем их симметрию, стабильность и превращения. Центрическая формула отражает симметрию, но не объясняет стабильности. Формула Тиле отражает симметрию бензола и объясняет его устойчивость. В то же время рассмотрение способов разрушения бензоидных систем приводит к признанию формулы Кекуле, конечно, с учетом динамической гипотезы, позволяющей удовлетворить требования симметрии. Превращения, которые вызывают разрушение ароматической системы без разрыва кольца, протекают с образованием продуктов присоединения орто- или пара-хиноидных производных) все подобные превращения более понятны, если их интерпретировать на основе формулы Кекуле, а не какой-либо другой. Таким образом, последняя доэлектронная теория строения бензола явилась продолжением динамической гипотезы Кекуле. Вскоре после работ Кекуле Дьюар [14] предложил для бензола мостиковую статическую формулу, однако она совершенно не удовлетворяла требованию симметрии. В 1922 г. автор книги [15] обратил внимание на эту формулу, рассматривая пара-связь как качественно сравнимую с реакционноспособным компонентом двойной связи автор предложил объединить дьюаровские формулы с кекулевскими (каждую с двумя или тремя ориентациями, необходимыми для выполнения условий симметрии) в более сложную динамическую систему [c.160]

    Принимая во внимание трудности, связанные с детальным определением направления перемещения кето-енольиого протона, можно считать, что между этим объяснением и взглядами Тиле на механизм присоединения к а,Р-ненасыщенным кислотам нет больших различий. В то же время трактовку присоединения к галогенэтиленам по Лукасу и Джеймсону можно рассматривать как расширение основной идеи Тиле, состоящей в том, что сопряжение может определить направление присоединения к олефиновой связи в сопряженной системе. Это аналогично тому, что происходит при электрофильном замещении в ароматическом ряду, когда электроотрицательные (—/) галогенные заместители уменьшают скорость замещения, но не препятствуют предпочтительной о/ /тго-геара-ориентации, соответствующей их электроположительному поляризующему эффекту +Е), ответственному за сопряжение с ароматической системой. Точно так же как со-нитростирол представляет собой случай —I, - -Е и поэтому сходен с бромбензолом в реакции ароматического замещения, так и /г-нитростирол сходен с винилбромидом (—/, +Е) в реакции присоединения по двойной связи. Илиел и сотр. [17] показали, что введение и-нитрогруппы в стирол сильно уменьшает скорость присоединения бромистого водорода, но не изменяет ориентации, которая остается такой же, как в стироле. [c.786]

    На примерах алкилирования и ацилирования ферроцена по Фриделю— Крафтсу можно видеть, что электроноакцепторная группа (например, ацетил) пассивирует тот циклопентадиенил, в который она вступила, больше, чем другой, и следующий ацетил вступает в другой цикл. Этил активирует тот циклопентадиенил, в который он вступил, больше, чем другой, и второй этил замещает водород в том же цикле, причем образуется смесь двух изомерных гомоаннулярных диэтилферроце-нов—1,2-диэтилферроцен и 1,3-диэтилферроцен с значительным преоб-ладанпем 1,3-изомера. Такое замещение типично. Здесь сказываются свойства неальтернантной ароматической системы. Ориентация определяется обшей усиленной нуклеофильностью кольца за счет +/-эффекта этильной группы, без альтернирования этой нуклеофильности у четных и нечетных атомов. Преобладание 1,3-пзомера над 1,2-изомером объясняется большими пространственными затруднениями при образовании последнего. Неальтернаитность, видимо, является также и причиной отсутствия в ферроценовом ядре столь типичных для бензольного ядра перегруппировок, таких, как клайзеновская перегруппировка аллилового эфира фенола в о-аллилфенол (А. Н. Несмеянов, В. А. Сазонова)  [c.456]

    При реакции электрофильного ароматического замещения, как и при реакции электрофильного присоединения, электрофил взаимодействует с л-зарядом молекулы с образованием положительно заряженного интермедиата. Главное различие между этими двумя реакциями состоит в том, что в завершающей стадии реакции присоединения интермедиат присоединяет анион, в то время как завершающей стадией реакции замещения является отщепление протона с образованием ароматической системы (гл. 10, разд. 4, Б). В обоих случаях ориентация заместителя определяется сопряжением свободной пары кислорода с углеводородным остатком. Активация бензольного кольца при наличии алкокси-заместителя определяется сопряжением свободной нары электронов кислородного атома с делокализованной системой электронов кольца, особенно сильным в переходном состоянии (стр. 232). Сопрян<ение того же типа возможно для неспарепных электронов кислорода оксигруппы фенола, но в дополнение к этому — и это будет рассмотрено в следующем разделе — может произойти ионизация водорода, что приведет к возникновению полного отрицательного заряда на атоме кислорода, который будет взаимодействовать с ядром. Соответственно заместитель ОН (точнее, 0 ) является еще более активирующим и орто,пара-ориентирующим заместителем, чем ОК, в условиях, благоприятствующих ионизации водорода. Различие между этими двумя группами имеет большое практическое значение. Так, хотя простые ароматические эфиры легко вступают во все типичные д-реакции, фенол способен реагировать с рядом весьма слабых электрофильных реагентов, которые обычно не атакуют ароматического кольца даже в случае эфиров. Более того, фенол настолько легко способен давать полизамещенные производные, что следует подбирать специальные условия, если необходимо ввести лишь одну группу. Оба эти аспекта химии фенолов подробно рассмотрены в следующих параграфах. При этом намеренно не рассматривается поведение их эфиров, ибо оно в основном может быть предсказано, исходя из данных гл. 10, разд. 4, за исключением отдельных случаев, которые будут обсуждены. [c.341]

    Известно, что в некоторых случаях ориентация гетероциклов не имеет существенного значения для переноса заряда. Уайт показал, что образование внутримолекулярного комплекса с переносом заряда между ароматическими системами п-нитрофенильного (акцептор) и п-аминофе-нильного (донор) остатков не зависит от геометрическо го взаимного расположения колец [61]. [c.29]

    Поскольку атака происходит положительно заряженной частицей (даже хотя это одновременно и свободный радикал), ориентация в этой реакции аналогична ориентации в других реакциях электрофильного замещения (например, фенол и аце-танилид дают орто- и пара-замещение, главным образом паразамещение). Если молекула содержит алкильную группу, то атака на бензильное положение будет конкурировать с замещением в ароматическое кольцо. Ароматические субстраты, содержащие только лгега-ориентирующие заместители, вообще не вступают в реакцию. Конденсированные циклические системы реагируют хорошо. [c.339]

    По представлениям упомянутых исследователей, вещества каменных углей состоят из системы плоских ароматических сеток (ламелей]. Несколько строго параллельных слоев образуют турбостратные группы с межслоевым расстоянием 35 пм и ламелями битумов, которые менее ароматизированы. Каждый такой слой имеет произвольную ориентацию по отношению нормали к плоскости. Были вычислены размеры кристаллитов, хотя последние отличаются от кристаллитов графита, так как строгая ориентация атомов углерода имеет место лишь в двух направлениях. Многочисленные исследования углей с помощью рентгеноструктурного анализа привели к формированию несколько уточненных представлений об их строении. Советский ученый В.И.Касаточ-кин отмечал, что метод измерения интенсивности дифракционного максимума 002 по существу может быть применен лишь дпя определения упорядоченности углеродных слоев. В соответствии с этой концепцией предложена молекулярная модель веществ углей в виде пространственного полимера, структурной единицей которого является плоская гексагональная углеродная сетка с боковыми радикалами и функциональными группами. Структурные единицы в макромолекуле свйзаны боковыми цепями. [c.105]

    Коэффициенты экстинкции молекул часто сильно изменяются в результате адсорбции. Этот эффект, не говоря о любых других наблюдениях спектральных сдвигов, представляется весьма важным для интерпретации спектральных данных с каталитической точки зрения, так как появление таких изменений делает опасными и ненадежными попытки каким-либо путем оценить степень заполнения поверхности катализатора на основании наблюдаемых оптических плотностей полос поглощения адсорбированных молекул. Эти изменения не могут быть просто связаны с различиями в полярности, поскольку неизвестны соответствующие изменения в системах с растворителем. Изменение коэффициента экстинкции, пожалуй, может быть результатом специфических ориентаций молекул и их электронных векторов по отношению к электронному вектору полярной поверхности. Этот тип оптической анизотропии может приводить или к усилению, или к ослаблению интенсивности поглощения в зависимости от того, адсорбирована ли молекула так, что ее электронный вектор параллелен или перпендикулярен электростатическому полю поверхности. Хотя имеется очень мало количественных данных относительно влияния поля поверхности на интенсивность полос поглощения в ультрафиолетовой и видимой областях спектра, некоторые авторы обсуждали такие эффекты для инфракрасной области [3—5]. Как симбатные, так и антибат-ные изменения коэффициента экстинкции в зависимости от степени заполнения поверхности (0) наблюдались в инфракрасной и ультрафиолетовой областях. Коэффициент экстинкции для хемосорбированного на окиси меди этилена увеличивается с заполнением, тогда как на окиси никеля он падает, показывая, что направление изменения зависит не только от адсорбата, но и от природы адсорбента [6]. Когда с адсорбированными молекулами связано несколько полос поглощения, эти полосы могут по-разному изменяться с заполнением поверхности. Для ароматического соединения, адсорбированного так, что его плоскость параллельна плоскости поверхности, силовое поле, нормальное к поверхности, может увеличивать интенсивность плоских колебаний, в то время как интенсивность неплоских колебаний будет уменьшаться [7] в результате нелинейного изменения относительных интенсивностей с заполнением. Нелинейное изменение относительных интенсивностей полос поглощения связей С—О и С—Н кетонов, адсорбированных на монтмориллоните [5], и связей N—И и С—И аминов, адсорбированных на пористом стекле [8], было интерпретировано на [c.11]

    Кинетика. Представляется вероятным, что Н-связи гораздо чаще влияют на механизм рейкций, чем это принято думать в настоящее время. Если в реагирующей системе присутствуют группы, способные к образованию Н-связей, на ход реакции может влиять образование хелатных конфигураций, а также определяемая Н-связью упаковка реагирующих молекул или молекул реагентов и растворителя. Данные относительно мало- известных систем с Н-связями, приведенные в гл. 6, наводят на мысль, что такие эффекты могут быть более распространены, чем это принято думать. В то время как для прямого определения присутствия комплексов на основе Н-связи требуется энергия взаимодействия по крайней мере в две-три килокалории (при комнатной температуре), на активированный комплекс могут влиять еще более слабые взаимодействия. Например, группа С — Н хлороформа обнаруживает отчетливо выраженную способность к образованию Н-связи, между тем как группы С — Н в молекуле метилхлороформа таким свойством, по-видимому, не обладают. Однако метилхлороформ, несомненно, сохраняет некоторую тенденцию к образованию Н-связи, которая может проявиться в кинетике процесса, поскольку скорости реакций крайне чувствительны к энергии активации. Такого же рода соображения можно распространить и на связи С — Н в алканах, ароматических углеводородах и олефинах. Представляет интерес также способность ароматических углеводородов и олефинов выступать в качестве оснований. В результате, при сближении двух реагирующих ароматических молекул характер их ориентации может определяться преимущественно взаимодействием слабокислотных групп С — Не основными я-электронами ароматического ядра. На существование тенденции к такой ориентации указывает упаковка в кристаллических бензоле и нафталине. Для плоских молекул можно было бы ожидать компланарного расположения. В действительности же каждая ароматическая молекула наклонена по отношению к своим соседям таким образом, что осуществляется наиболее тесное сближение между группами С — Н и соседними ароматическими кольцами. [c.291]


Смотреть страницы где упоминается термин Ориентация в ароматических системах: [c.83]    [c.58]    [c.31]    [c.5]    [c.314]    [c.43]    [c.136]    [c.307]    [c.35]   
Теория резонанса (1948) -- [ c.368 , c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические системы



© 2025 chem21.info Реклама на сайте