Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы полимеризации степень

    Таким образом, под влиянием металлических катализаторов полимеризация олефинов может протекать с высокой степенью специфичности с образованием кристаллических полимеров, в которых все мономерные единицы расположены одинаковым образом. Для этого в процессе синтеза полимера необходимы регио-и стереоспецифические взаимодействия между растущей цепью полимера, катализатором и реагирующим мономером. [c.201]


    В промежуточном комплексе мономер — катализатор наблюдается определенное пространственное расположение молекулы мономера, что в некоторьгх случаях приводит к последующему образованию стереорегулярных полимеров. Строение промежуточного комплекса и пространственное расположение молекулы мономера в нем (н соответственно в макромолекуле полимера) зависят от полярности связи металл — углерод в катализаторе и среды, в которой протекает полимеризация. Степень полярности связи в органических соединениях щелочных металлов повышается в ряду Li <С N3 <С К. [c.86]

    Новые гетерогенные катализаторы полимеризации дают полимеры, отличающиеся повышенной правильностью строения. Увеличение регулярности строения при полимеризации этилена ведет к образованию Полиэтилена более линейного строения, а следовательно, и с большей степенью кристалличности. [c.290]

    Капилляр применяют для введения тока газа, чтобы предотвратить кипение толчками и перегрев жидкости во время перегонки вещества в вакууме. Так как воздух до некоторой степени является катализатором полимеризации эфира акриловой кислоты, то при введении через капилляр количество его должно быть минимальным. Лучше пользоваться инертным газом, например углекислым газой или азотом. Чтобы избежать полимеризации, может оказаться целесообразным в течение всего периода реакции пропускать через капилляр медленный ток углекислого газа. [c.117]

    Из приведенных данных о влиянии металлов на скорость окислительной деструкции ясно, насколько важна эффективная дезактивация остатков катализаторов полимеризации. Важно также, чтобы в полимер не попали железо и медь. Хотя некоторые вещества в значительной степени уменьшают вредное действие элементов переходной валентности, однако при этом никогда не удается полностью избежать снижения качества изделий, не говоря уже о том, что введение каждой новой защитной добавки ведет к удорожанию изделий. [c.186]

Рис. 10. Полимеризация этиленимина а присутствии различных кислотных катализаторов (зависимость степени превращения от времени) Рис. 10. <a href="/info/306450">Полимеризация этиленимина</a> а <a href="/info/500050">присутствии различных</a> <a href="/info/48898">кислотных катализаторов</a> (<a href="/info/330551">зависимость степени превращения</a> от времени)

    Различие между полимеризацией этилена и полимеризацией других а-олефинов заключается в возможности придания структурной регулярности поли-а-олефинам. Поэтому катализатор Циглера может быть одинаково эффективен при полимеризации этилена и высших а-олефинов, не являясь при этом лучшим катализатором для получения высоких выходов изотактических полимеров. Природа компонентов, их соотношение, способ приготовления и физическое состояние катализатора оказывают существенное влияние на свойства образующегося полимера. Например, при полимеризации этилена соотношение компонентов и условия реакции определяют молекулярный вес полимера. Оба эти фактора наряду с молекулярным весом полимера и физическим состоянием катализатора определяют степень кристалличности полимера и относительные выходы изотактического и атактического продуктов. От соотношения компонентов катализатора при полимеризации сопряженных диенов зависит получение [c.104]

    Типы полимеров, получаемых из различных олефинов при полимеризации на окиснохромовых катализаторах, и степень превращения за 6 час (в скобках указан процент превращения) приведены в следующем перечне. [c.312]

    В системе четыреххлористый титан — триэтилалюминий степень восстановления Ti зависит от молярного соотношения компонентов, температуры и длительности реакции. Не обнаружено устойчивых комплексов титан — алюминий вероятно, катализаторами полимеризации являются нестабильные поверхностные комплексы. Предложен метод определения активности триэтилалюминия по его способности восстанавливать четыреххлористый титан. [c.531]

    Окиснохромовый катализатор относится к однокомпонентным катализаторам полимеризации олефинов, в к-рых образование центров роста не требует обработки соединения металла переменной валентности металлоорганич. соединением. Существует точка зрения, согласно к-рой активный компонент окиснохромового катализатора — поверхностные соединения хрома в степени окисления 6 (предположительно поверхностные хроматы). Образование центров роста связано с восстановлением до соединений, в к-рых степень окисления ионов хрома не превышает 3. При алкилировании мономером координационно ненасыщенных ионов хрома в низкой степени окисления происходит образование активной связи металл — углерод. [c.221]

    Оказалось, что скорость полимеризации растет с увеличением мощности ультразвука и концентрации катализатора. Но степень конверсии при этом достигает 90%, тогда как в обычных условиях она составляет — 25% [c.196]

    Активность фосфорной кислоты в качестве катализатора полимеризации растет с повышением ее концентрации (рис. 6.1), но в меньшей степени, чем кислотность. Так, повышение концентрации Н3РО4 со 100 до 110% увеличивает кислотность примерно в 10 раз и константу скорости реакции — приблизительно в 3 раза. Дальнейшее увеличение концентрации кислоты ведет к ускорению дезактивации катализатора в результате накопления на нем смолообразных продуктов оптимальной концентрацией кислоты считается 108-110% Н3РО4. [c.194]

    Самыми важными параметрами процесса полимеризации о.те-фипов из крекинг-газов являются продолжительность реакщщ, активность катализатора, давление, степень гидратации катализатора и температура. Все эти параметры в известной степени вза-имно связаны л их. можно изменять только, в оиределепных узких пределах. [c.236]

    Воспользовавшись принципом стационарного состояния, можно найти зависимости средней степени полимеризации Р и суммарной скорости реакции v от концентрации катализатора. Средняя степень полимеризации определяется следующим образом  [c.83]

    Полимеризация этилена при низком давлении (ниже 40 кгс/см ) с использованием металлоорганических катализаторов. Полимеризация протекает, как правило, при температуре 80°С в суспензии по ионно-координационному механизму. Образуются менее разветвленные и более длинные макромолекулы. Средневесовой молекулярный вес полимеров находится в пределах 80 000— 3 000 000, а степень кристалличности 75—85%. Такой полиэтилен называется полиэтиленом низкого давления (ПЭНД) или полиэтиленом высокой плотности (ПЭВП). [c.5]

    Sjiij 29,16 Дж/(моль -К). Степень окисл. +1. Быстро тускнеет на воздухе из-за образования пленки LiN и LijO, энергично реаг. с водой, разбавл. минер, к-тами, галогенами. Получ. электролиз расплавл. смеси Li l и КС1 (или ВаСЬ) с послед, очисткой от примесей вакуумной дистилляцией, ректификацией или зонной плавкой. Примев. катализатор полимеризации анод в хим. источниках тока компонент сплавов на основе Mg и А1 жидкий Л.— рабочая среда тепловых трубок , теплоноситель в ядерных реакторах Li — в произ-ве трития. Попадая в организм, вызывает слабость, потерю аппетита, головокружение, сонливость. [c.303]


    ФЕНОЛЯТЫ, продукты замещения атома водорода гидоок-сильной группы в молекулах фенолов на металл общая ф-ла (АгО)пМ (гг — степень окисления металла). Производные щел. и щел.-зем. металлов — ионные соед. раств. в воде, не гидролизуясь, не раств. в орг. р-рителях высокоплавки, нелетучи образуют аддукты с Н2О, АгОН и гидроксидами щел. металлов. Ф. многовалентных металлов по св-вам очень близки соответствующим алкоголятом. Ф. многоатомных фенолов или нитро-, амино- и др. фенолов со смешанными функциями — внутрикомплексные соединения. Получ. взаимод. фенолов с гидроксидами [в случае М(1) и М(П) р-цию проводят в водном р-ре] или с галогенидами, алкоголятами, карбоксилатами, сульфидами металлов (в неводных средах). Примен. сырье в произ-ве аром, оксикислот (р-ция Кольбе — Шмитта) катализаторы полимеризации щелочные агенты в лаб. синтезах. [c.616]

    Способы приготовления гидроперекисей и перекисей подробно изучены Хоукинсом [3]. Промышленное получение гидроперекиси кумола и ее дальнейшее использование в реакциях дают некоторые интересные примеры каталитических реакций. Кумол получается из пропилена и бензола в жидкой или паровой фазе в качестве катализатора используются кислоты или катализаторы Фриделя — Крафтса, нанример ВРз. Окисление кумола ведется в эмульсии или в растворе при температуре около 90° в присутствии солей металлов или слабых щелочей при малых степенях превращения для уменьшения разложения продукта. Помимо того что гидроперекись кумола используется в качестве катализатора полимеризации, она [c.462]

    Присутствие ненасыщенной группы считалось активирующим фактором при полимеризации степень полимеризации зависит от внешних условий реакции (температура и катализатор), а также от типа заместителя [76]. Ненасыщенные группы мсгут быть в большем или меньшем количестве в )Т леводородах, альдегидах, спиртах, кислотах, простых, и сложных эфирах, лактонах, нитрилах, изонитрилах, солях ненасыщенных карбоновых кислот и т. д. [c.643]

    Остгофф, Бюхе и Грабб [18] нашли, что смеси полидиметилсилоксана (очищенного от следов кислых и основных веществ, остающихся от катализатора полимеризации), вулканизованные электронами с энергией 800 кэв при дозе. 10 мегафэр, не обладают (или обладают только в очень малой степени) релаксацией напряжения при 130°. Подобный же образец, вулканизованный перекисью бензоила, релаксирует гораздо быстрее, и было сделано предположение, чтО это происходит вследствие наличия кислотных продуктов разложения перекиси, которые вызывают перегруппировки цепей, сопровождающиеся релаксацией напряжения. [c.195]

    Под влиянием щелочных катализаторов полимеризации в первую очередь подвергаются соединения, содержащие сопряженные двойные связи или двойные связи, поляризованные наличием электроотрицательных заместителей у углеродного атома при двойной связи, легко вступающие во взаимодействие со щелочными металлами и их органическими производными [363]. К ним относятся диены и их производные, стирол и его производные, нитрилы и эфиры акриловой кислоты, акролеин и его производные. В значительной степени ускоряется также полимеризация карбонильных соединений, эпоксидов, лактонов и лактамов [36—39, 77, 134, 238. См. также 360]. Ускорение полимеризации моноолефиновых соединений для щелочных катализаторов малохарактерно. Известно несколько работ по полимеризации этилена под действием металлического натрия, однако процесс идет лишь в жестких условиях, с малой степенью превращения и с образованием низкомолекулярных продуктов [211, 216, 264, 334]. Металлический натрий при этом превращается в карбид [263]. Данные Пайнса и др. [318] [c.14]

    Помимо соединений типа перекисей (т. е. источников свободных радикалов), имеются еще две группы соединений, легко осуществляющих полимеризацию, — катализаторы Фриделя-Кра-фтса, которые проводят не только алкилирование и изомери-т зацию, но являются также эффективными катализаторами полимеризации, и щелочные металлы или их органические производные. В последние годы эти две категории инициаторов стали объектом многочисленных исследований но механизму и кинетике. По этому вопросу было опубликовано несколько обзоров [202—205]. Наиболее интересным методом, демонстрирующим существенные различия в действии различных катализаторов и существование в основном трех различных механизмов реакции, является сополимеризация [206] эквимолекулярной смеси стирола и метилметакрилата. Результаты опытов такого типа приведены в табл. 23, из которой видно, что, когда применяются кислые катализаторы, первоначально образуется почти чистый полистирол, тогда как щелочные металлы производят почти чистый полиметилметакрилат. Катализаторы, обычно считающиеся источниками свободных радикалов, образуют сополимеры в отношении 50 50. Таким образом, подобные опыты служат превосходным критерием механизма полимеризации. Однако при гетерогенных реакциях такой метод, возможно, не приведет к успеху, если геометрические ограничения каталитической поверхности благоприятствуют полимеризации одного мономера в большей степени, чем другого. [c.245]

    ЛЙТИЙ м. 1. Li (Littiium), химический элемент с порядковым номером 3, включающий 5 известных изотопов с массовыми числами 6-9, 11 (атомная масса природной смеси 6,941) и имеющий типичную степень окисления L 2. Li, простое вещество, мягкий серебристо-белый металл применяется для легирования чугуна, бронзы, как катализатор полимеризации, Li-B производстве трития, Li-как теплоноситель в ядерных реакторах. [c.238]

    Существенным недостатком волокон из атактического ПВХ является низкая температура размягчения, которая обусловливает усадку волокна при нагревании, стирке или химической чистке. Разработанный недавно метод получения более стереорегулярного и более высококристаллического ПВХ, имеющего повышенную температуру размягчения, расширяет возможности применения этого дешевого полимера. Полимеризация жидкого мономера при низкой температуре (—30 °С) приводит к образованию продукта с более высоким содержанием синдиотактических сегментов и более низкой степенью разветвленности. Поскольку использование алкилпронзводных бора и металлалки-лов в качестве катализаторов полимеризации сопряжено с рядом трудностей, в одном из современных процессов применяется каталитическая свободнорадикальная система, состоящая из гидроперекиси кумола, двуокиси серы и метилата натрия (в соотношении 1 1,5 1,6). Предполагаемый механизм реакции представлен на приведенной ниже схеме  [c.345]

    Молекулярный вес циклических диметилсилоксанов можно повысить применением в качестве катализаторов полимеризации кислот, солей и оснований. Из кислых катализаторов наиболее )аспространенным является концентрированная серная кислота 339, 340, 1047, 1453, 1681,2182]. Реакцию чаще всего проводят путем встряхивания или перемешивания (с применением быстроходной пропеллерной мешалки) мономеров с 0,1—0,8% кислоты до достижения требуемой степени полимеризации. Желательно, чтобы количество непрореагировавших низкомолекулярных соединений было как можно меньшим, а вязкость высокомолекулярной части не слишком высокой, чтобы не затруднять дальнейшую переработку. В остальном технология подобна технологии приготовления масел. Кроме серной кислоты, пригодны также и другие кислотные катализаторы, например хлорсульфоновая кислота [340, 1453] (около 0,25%) однако этот метод требует длительного встряхивания (70—80 час.), причем образуются полимеры с низким молекулярным весом. Из прочих кислотных катализаторов были предложены фосфорная кислота, [1681] и фосфорный ангидрид [1047]. Течение реакции иногда ускоряется добавлением смачивающих средств [340] или повышением температуры реакции (особенно при применении фосфорного ангидрида). Готовый продукт необходимо отмыть до нейтральной реакции, высушить и освободить от низкомолекулярных соединений. Иногда реакционную смесь перед промывкой разбавляют, так как она слишком вязкая. [c.362]

    В настоящее время стало ясно, что специфическое действие новых катализаторов полимеризации, отн эсящееся к недавно открытым явлениям, рассматриваемым в этой монографии, обусловлено, по-видимому, по крайней мере для части катализаторов, наличием твердой поверхности, хотя в некоторых случаях наличие макроскопической или даже микро--скопической твердой поверхности не является необходимым. Теперь можно считать установленным, что даже коллоидные суспензии многих металлоорганических комплексов весьма активны при полимеризации этилена в циглеровских условиях они вызывают образование главным образом неразветвленного продукта. Становится также все более очевидным, что при ионной или радикальной полимеризации при условии наличия растворимого комплексно-координационного катализатора и без каких-либо ясно видимых границ раздела фаз можно достигнуть некоторой степени стереоспецифичности. [c.27]

    Более поздний патент [23] еще в большей степени подкрепляет эту точку зрения. В нем предлагается при полимеризации этилена и других а-олефинов использовать хлористый алюминий и любой из перечисленных ниже металлов натрий, калий, литий, рубидий, цезий, бериллий, магний , цинк, кадмий, ртуть, алюминий, галлий, индий и таллий в сочетании с производными титана, циркония, гафния или тория. В число этих производных металлов IVA группы входят соли одноосновных органических кислот, например ацетат титана и пропионат циркония, комплексные соли двухосновных органических кислот, например натрийтитапмалонат и налийтитаноксалат, алкоголяты, например тетрабутилтитанат и дихлор-бутилтитанат, а также производные аминоспиртов, например триэтаноЛ-аминтитанат. Особо подчеркивается, что необходимо использовать такой свободный металл или элемент вместе с хлористым алюминием, так как в сочетании с производными металлов IVA группы он сам по себе не является эффективным катализатором полимеризации. Лучше всего брать [c.174]

    Эндер [161] и Энг [173], изучая фильтрат, содержащий избыток непрореагировавшего алкила алюминия и растворившиеся алкилхлориды металла, нашли, что этот фильтрат не способен полимеризовать этилен до твердого полиэтилена. Авторы снова диспергировали оставшийся после фильтрования твердый осадок в октане, тщательно оберегая дисперсию от контакта с водой и кислородом, и обнаружили, что этот осадок еще обладает каталитическими свойствами и превращает этилен в твердый полимер с почти той же начальной скоростью, что и до фильтрования, но имеет более короткое время жизни. Если полученную вначале густую массу отфильтровать и провшвать на фильтре октаном до тех пор, пока не отмоются растворимые металлоорганические соединения, а затем вновь диспергировать промытый твердый галогенид металла в октане и исследовать его, то оказывается, что он почти полностью утратил каталитическую активность. Следовательно, для получения твердого полимера необходимо сочетание растворимых алкилов или алкилхлоридов металлов (алюминия и титана) и нерастворимых га.логенидов и хлоргалогенидов металлов. По-видимому, промывка в значительной степени вызывает разрушение комплексов, в результате чего остается лишь галогенид титана (в данном случае, возможно, смесь треххлористого и двухлористого титана), который в данных условиях не является катализатором полимеризации. Это подтверждается и тем, что при добавлении новой порции алкила алюминия, растворенного в октане, к промытой неактивной диспергированной массе активность катализатора почти полностью восстанавливается. [c.209]

    Полимеры, полученные на алфиновых катализаторах,, обычно имеют исключительно высокий молекулярный вес, например алфиновый полибутадиен может обладать молекулярным весом до 7 ООО ООО и не содержит при этом поперечных связей. В целом полимеризация протекает с очень большими скоростями, которые, так же как и характеристическая вязкость полимера, зависят от природы катализатора. Полимеризация одного и того же мономера при использовании различных катализаторов может протекать с различными скоростями, и образуюш иеся при этом полимеры могут иметь различные степени полимеризации. Вообш е говоря, чем больше скорость полимеризации, тем выше характеристическая вязкость образующегося полимера. Для каждого данного алфинового катализатора повышение его концентрации приводит к увеличению скорости реакции, но не оказывает заметного влияния на молекулярный вес. Замена одного из трех компонентов катализатора приводит к изменению скорости полимеризации и характеристической вязкости образующегося полимера. [c.244]

    Анионную полимеризацию осуществляют ири 50— 100° С под действием катализаторов, наир, гидроокисей, алкоголятов или фенолятов щелочных металлов, а также третичных аминов, в присутствии добавок соединений с подвижным атомом водорода (т. наз. инициаторов ). Образующиеся при этом простые полиэфиры аморфны, за исключеиием полифенмлглицидилового эфира, к-рьш содержит кристаллич. фракцию в количестве до 26% (ее содержание уменьшается с повышением темп-ры полимеризации). Степень полимеризации обратно пропорциональна концентрациям инициатора и катализатора. При применении моно- и бифункцио нальных инициаторов , папр. спиртов, фенолов или гликолей, образуются лпнейные полимеры с одной или двумя концевыми группами ОН, а при использовании инициаторов с функциональностью более двух, папр. триметилолпропана. этилендиамина,— олигомеры разветвленной структуры с несколькими группами ОН в молекуле. Химич. свойства полиэфиров определяются наличием в их молекулах гидроксильных групп (последние могут взаимодействовать с карбоновыми к-тами, изоцианатами и др.). [c.316]

    Молекулярная масса. Для П. со степенью полимеризации 150—200 и меньше мол. масса м. б. определена анализом концевых групп. Этот метод применим лишь при отсутствии циклич. пептидов и низкомолекулярных примесей, содержащих функциональные группы, аналогичные концевым группам линейного П. Концевые аминогруппы м. б. определены титрованием хлорной к-той (в неводной среде в присутствии кристаллич. фиолетового) или методом потенциометрич. титрования. Определение концевых аминогрупп по Ван-Слайку (измерением объема азота, выделяющегося при обработке пептида азотистой к-той) возможно даже в случае нерастворимых в воде полимеров. Иногда П. обрабатывают 2,4-динитрофторбензолом и определяют количество модифицированных концевых групп спектрофотометрически. Концевые карбоксильные группы м. б. оттитрованы метилатом натрия в органич. растворителе-в присутствии тимолового синего. С-Концевая аминокислота П., полученного полимеризацией карбоксиан-гидридов а-аминокислот (см. ниже), может нести специфич. эфирную или амидную группировку катализатора полимеризации, которая м. б. подвергнута количественному анализу. [c.14]

    K2S2O8 — NaHSOe- Глубина полимеризация трифторхлорэтилеиа при 40—60° С вплоть до 50—60% превращения линейно зависит от времени. В предположении нулевого порядка по мономеру рассчитаны кажущиеся константы скоростей и энергии активации. Константы скорости пропорциональны концентрации катализатора в степени 0,8. С увеличением температуры реакции резко падает вязкость расплава полимера [c.46]

    Кинетику полимеризации метилметакрилата или винилпири-дина в присутствии лолибутадиена исследовали японские ученые Скорость полимеризации метилметакрилата пропорциональна концентрации мономера в степени 1,2 и концентрации катализатора в степени 0,5. Полимеризация винилпиридина идет по реакции первого порядка. [c.74]

    По данным Фурукава и др. каталитическая активность соединений бора соответствует легкости их взаимодействия с кислородом, в связи с чем сделано заключение, что полимеризация стирола инициируется короткоживущими продуктами реакции между триалкилбором и кислородом. Гидрохинон ингибирует этот процесс, хотя в меньшей степени, чем радикальную полимеризацию. Сополимеризация стирола с металметакрилатом в присутствии указанных катализаторов подчиняется законам радикального процесса. Колесников и др. 4 4 считают, что истинными катализаторами полимеризации являются перекиси типа КгВООК и В(ООК)з. [c.316]

    До сих пор основное внимание в этой книге уделялось чисто теоретическим аспектам рассматриваемых проблем, мы аграничивались обсуждением основных вопросов Как происходит химическое превращение Какие факторы регулируют его и т. д. Мы пытались дать ответы на эти вопросы и систематизировать ответы, основываясь на представлениях об изменении координационного числа, координационной геометрии и степени окисления в процессе химического превращения. Однако мы не старались установить связь между подобной информацией и, например, проблемами использования неорганических комплексов как катализаторов реакции полимеризации, применяемых в промышленности с целью синтеза соединений со специфическими свойствами, или катализаторов полимеризации пропилена в стереоспецифические полимерные формы. Интересно, что умение деполимеризовать такие полимеры, стереоспецифически или нет, может оказаться даже более важным, чем решение прямой задачи, так как поможет найти способы борьбы с засорением окружающей среды отработанными полимерными материалами. Было бы неразумно полагать, что, вооружившись лишь знанием фундаментальных основ и идеальных моделей процессов, можно тотчас же покинуть академическую башню из слоновой кости и применить наши знания для решения мировых проблем. Если мы посмотрим на реальный мир, то увидим, что нас опередили и что самое большее, что мы сможем сделать, — это объяснять механизмы реакций, найденные в большинстве случаев эмпирическим путем (иногда даже случайно), но тем не менее с успехом применяемые в течение многих лет. Можно совершенствовать методики проведения этих реакций или даже придумывать новые их варианты, однако. [c.244]

    Катализаторы полимеризации. Алкоголяты циркония упоминаются в многочисленных патентах, посвященных полимеризаци-онным процессам циглеровского типа. В одном из этих патентов предложено использовать алкоголяты циркония в качестве самостоятельных катализаторов, активируемых ионизирующим излучением Однако в большинстве примеров циркониевые соединения являются компонентами системы, например, совместно с галогенидами кремния или сурьмы и металлом, имеющим более высокий окислительный потенциал (например, натрием или магнием) Для полимеризации этилена соединения циркония используются в сочетании с триизобутилалюминием й сульфидом кадмия для полимеризации олефинов применяется система, содержащая бутилат циркония, триэтилгаллий и хлор а для полимеризации ароматических виниловых соединений можно использовать алкоголяты или алкоксигалогениды совместно с алкилалюминием Метилат циркония катализирует реакцию образования металлфталоцианинов образующийся с хорошим выходом продукт характеризуется высокой степенью чистоты Алкоголяты циркония служат также катализаторами реакций полимеризации и переэтерификации [c.253]

    Ряд вопросов, касающихся важнейших деталей механизма полимеризации на системах Циглера—Натта (например, структура активных центров, причины регулярного построения цени и т. д.), еще не нашли своего экспериментально обоснованного решения. Относительно каждого из таких вопросов в литературе имеется целый ряд идей и соображений, носящих в значительной степени гипотетический, а нередко и взаимоисключающий характер. Предполагается, что в зависимости от природы и мольного соотношения компонентов комплексных металлоорганических катализаторов, природы среды и мономера могут иметь место координационно-анионный, анионный, катионный, координационно-радикальный или свободнорадикальный механизмы инициирования и роста цепи. Эти механиздш представляют крайние случаи и поэтому между ними не должно быть резкой грани. Зачастую на одном и том же катализаторе мономер может полимеризоваться одновременно по двум механизмам. Такие процессы пока недостаточно изучены, а интерпретация экспериментальных данных не всегда однозначна. Принято считать, что при полимеризации на типичных комплексных металлоорганических катализаторах полимеризация протекает по координационно-анионному механизму. При этом принимается, без необходимых для этого строгих доказательств, что атом углерода, образую- [c.30]

    Главной причиной снижения каталитической активности катионитов при высокой температуре является десульфирование и некоторые другие процессы, рассмотренные в гл. 1 (стр. 15сл.). В углеводородных средах при температуре до 150°С эти процессы идут сравнительно медленно, не вызывая серьезного снижения каталитической активности катионита КУ-2 после его многократного использования в качестве катализатора полимеризации третичных амиленов . Однако при более длительном использовании в той же реакции активность катализатора падает, и это приводит к снижению степени превращения олефинов - Значительно менее термостойкий катионит КУ-1 можно применять для ускорения изомеризации [c.162]


Смотреть страницы где упоминается термин Катализаторы полимеризации степень: [c.337]    [c.303]    [c.188]    [c.319]    [c.154]    [c.64]    [c.102]    [c.543]    [c.391]    [c.16]    [c.215]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.95 , c.96 , c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы полимеризации

Полимеризация степень полимеризации

Степень полимеризации



© 2025 chem21.info Реклама на сайте