Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение ионитов для концентрирования веществ

    Ионообменная хроматография имеет широкие границы применения, например, метод этот используют для определения концентрации солей в растворах электролитов для разделения ионов путем выделения одного из них (или группы ионов) щ смеси для концентрирования веществ из сильно разбавленные растворов для удаления из раствора ионов, мешающих выполнению анализа. [c.58]


    Важной проблемой в анализе является концентрирование веществ перед их определением в сильно разбавленных растворах (природные, промышленные воды и др.). Раньше упаривали большие объемы растворов, что сопряжено с затратой времени н возможными потерями веществ. Применение ионообменников упрощает задачу. Фильтрацией разбавленного раствора через ионообменник поглощают подлежащие определению элементы, а затем извлекают их из ионообменника небольшим объемом элюента. Предложены методы концентрирования ионов свинца, меди, серебра, железа и т. д. Особое значение имеет метод ионообменного концентрирования в геохимии при анализе природных вод. Отпала необходимость в трудоемкой операции отбора больших [c.40]

    Концентрирование следов элементов на стационарном ртутном капельном электроде (СРКЭ) обычно проводится электролизом исследуемых растворов при определенном потенциале [1]. При близких полярографических свойствах определяемых и сопутствующих ионов необходимо предварительное разделение их. В некоторых случаях более селективным может быть способ концентрирования малых количеств веществ, основанный на использовании окислительно-восстановительных реакций с участием металлической ртути. В работах [2, 3] такой способ был нами применен для концентрирования и определения микроколичеств селена и висмута. [c.247]

    Первые эпизодические работы по применению ионного обмена в химическом анализе были опубликованы около 70 лет назад. По мере совершенствования ионообменных сорбентов и обш его расширения числа ионообменных исследований выявились три четких направления целесообразного аналитического применения ионообменных процессов концентрирование, удаление мешающих анализу компонентов, разделение смесей близких по свойствам компонентов с последующим определением изолированных индивидуальных веществ обычными, неспецифическими методами [68-79]. [c.14]

    В предыдущих главах были описаны различные методы концентрирования микроэлементов в водах. Следует обратить внимание на необходимость осторожного применения для концентрирования микроэлементов в водах экстракции и сорбции, которые были опробованы только на искусственно составленных растворах. Также следует быть осторожным и при интерпретации полученных результатов [720-722]. При определении общего содержания микроэлементов в природных и сточных водах обычно рекомендуют проводить следующие подготовительные операции I) отделение суспендированных частиц фильтрованием или центрифугирование.м 2) разложение органических веществ озолением, мокрой минерализацией или облучением ультрафиолетовы.м светом 3) перевод одноименных ионов в одну степень окисления. [c.110]


    В настоящее время процессы ионообменной сорбции находят все более широкое применение в промышленности. В частности, путем ионного обмена производятся умягчение и обессоливание воды, очистка различных растворов, улавливание и концентрирование ценных металлов из разбавленных растворов, разделение смесей веществ и т. д. В ряде случаев ионный обмен может успешно конкурировать по технико-экономическим показателям с процессами ректификации, экстракции и др. Этому способствует простота аппаратурного оформления ироцессов ионного обмена. [c.581]

    Благодаря большим достижениям в синтезе ионообменных смол их стали применять далеко за пределами первоначальной области их использования — в водоочистке. Иониты применяются всюду, где требуется удаление, выделение и концентрирование ионов в растворах. Иониты используются в энергетической, химической, пищевой, фармацевтической, металлургической и в ряде других от--раслей промышленности. Ионообменные смолы применяются для разделения ионов, которые до настоящего времени не могли быть разделены с помощью других методов. В частности, их применяют Для разделения редкоземельных элементов, продуктов распада радиоактивных веществ и т. Дг Широкое применение иониты находят при изготовлении чистых реагентов. [c.481]

    Методы ионного обмена. Рассмотренные методы все-таки не дают той степени умягчения, которая требуется для некоторых областей применения воды кроме того, они громоздки и связаны со значительными расходами реагентов. В последние годы широкое распространение получили методы ионного обмена. Твердые материалы, способные к ионному обмену с окружающей средой, получили название ионитов. Сюда относятся различные вещества неорганические и органические, природные или синтетические. Одним из простейших ионообменных материалов является сульфоуголь, получаемый обработкой бурых углей концентрированной серной кислоты при нагревании. В настоящее время наибольшее значение приобрели различные ионообменные смолы, вырабатываемые на основе синтетических полимеров. В зависимости от того, какие ионы в этих смолах обмениваются — катионы или анионы, — различают катиониты и аниониты. Иониты представляют собой твердые электролиты, у которых один поливалентный ион является нерастворимым, а ионы противоположного знака способны к обмену на ионы, находящиеся в окружающем растворе. [c.70]

    Обмен ионами между раствором электролита и твердой фазой, являющийся разновидностью сорбционных процессов, имеет широкое практическое применение. Он используется для концентрирования ионов из разбавленных растворов, очистки веществ от примесей электролитов, определения суммарного содержания солей в природных водах и разделения некоторых ионов при их одновременном присутствии в растворе. Особенно удачным оказалось сочетание ионообменных процессов с хроматографическим методом, положившее начало развитию ионообменного хроматографического анализа многокомпонентных гомогенных растворов. Разделение анализируемой смеси ионов в растворе позволяет легко идентифицировать и определять их количественное содержание доступными химическими или физико-химическими приемами анализа. [c.37]

    Метод тонкослойной хроматографии по чувствительности и возможности идентификации, наряду с методом бумажной хроматографии, превосходит все приемы разделения и концентрирования малых количеств веществ из сложных смесей. Он нашел весьма широкое применение при анализе органических соединений. В неорганическом анализе тонкослойная хроматография используется сравнительно недавно, однако области ее применения расширяются с каждым днем. Методы разделения неорганических ионов выполнены в большинстве случаев на закрепленном слое сорбента (силикагель с добавкой гипса или крахмала) методом восходящей хроматографии. Обычно сочетаются распределительная тонкослойная хроматография с ионообменной и адсорбционной. Выбор сорбента-носителя, способа проведения (восходящая и нисходящая хроматография на закрепленном или незакрепленном слое сорбента-носителя) и метода хроматографирования (распределительная, ионообменная, адсорбционная хроматография) открывают широкие возможности для использования тонкослойной хроматографии в исследованиях систем, содержащих неорганические ионы. [c.184]

    Для практического применения уравнения (31) необходимо определить, в соответствии с изменениями каких величин может изменяться кажущийся окислительный потенциал. В растворе одновременно может присутствовать а- -р- -6 веществ, а именно комплексов окисленной формы, Р — восстановленной, ионы М , k , Н+, ОН" и молекулы воды. Однако имеется а + р-)-2 уравнений связи а- -р уравнений комплексообразования (уравнения (23) и (24)) и уравнения (13) и (30). Следовательно, окислительный потенциал может меняться от четырех независимых параметров. В качестве независимых параметров удобнее всего принять величины, которые могут быть непосредственно измерены или заданы, а именно pH, рА, рСо (рСр а) и Р%,о- Последняя величина имеет значение при изучении комплексообразования в смешанных растворителях и концентрированных растворах электролитов, когда активность воды может заметно меняться. [c.194]


    Разнообразно применение ионообменных смол хроматографическое разделение (в том числе групповое разделение веществ заряженных и незаряженных ц разделение по знаку заряда), удаление ионов из растворов, концентрирование ионов, изменение солевого состава жидкостей, введение нужных ионов в реакционную смесь прц проведении реакции посредством фильтрования через колонку, катализ. [c.83]

    При создании соответствующих условий ионообменная хроматография позволяет сконцентрировать весьма малые количества вещества. Благодаря простоте техники ионный обмен очень перспективен, экономичен и широко используется в аналитических целях [47—51]. Однако еще мало работ по применению ионообмен-. ных смол для концентрирования элементов при химико-спектральном анализе [22]. По-видимому, разделение металлов ионным обменом неудобно из-за больших объемов растворов, получаемых после разделения. Кроме того, может быть неполное поглощение и неполное вымывание определяемых ионов из колонки. [c.178]

    Вид изотермы адсорбции зависит как от природы адсорбента, так и от природы адсорбата и его состояния в растворе (знак и величина заряда иона, наличие комплексообразования, гидролиза, полимеризации, коллоидообразования и т. д.). Форма изотермы адсорбции может нести информацию о дополнительных явлениях, сопровождающих адсорбцию (наличие капилляров на поверхности, взаимодействие адсорбированных частиц между собой на поверхности адсорбента и др.)- Для рещения различных задач (концентрирование изотопов, выделение их из продуктов деления и т. д.) важно иметь сведения о начальных участках изотерм адсорбции, полученных при крайне низких концентрациях веществ в растворе. Применение радиоактивных индикаторов дает возможность изучать адсорбционные изотермы до концентрации 10 ° г см и ниже. [c.148]

    Основы метода избирательной сорбции, нашедшего впоследствии щирокое применение для очистки, концентрирования и разделения веществ и известного под названием хроматографического, были разработаны около 50 лет назад русским ученым М. С. Цветом. Хроматографический метод анализа, одной из разновидностей которого является метод разделения ионов, основан на различной сорбируемости отдельных компонентов анализируемой смеси веществ различными сорбентами из различных растворителей. При пропускании раствора анализируемой смеси через колонку сорбента она разделяется на отдельные компоненты, располагающиеся в виде зон. Хроматографический метод анализа исключительно чувствителен и позволяет разделять смеси чрезвычайно сложного состава, содержащие очень близкие по химическим свойствам вещества. [c.552]

    Чувствительность реакции не является константой и в зависимости от многих причин может изменяться иногда в очень широких пределах. Чем чувствительнее реакция, чем меньшее количество вещества она позволяет обнаруживать, тем выше ее ценность. С помощьк> малочувствительных реакций можно открыть тот или иной иок в сравнительно концентрированных растворах, тогда как высокочувствительные реакции дают возможность обнаруживать следы вещества, позволяют работать с весьма малыми количествами исследуемого объекта и пользоваться очень разбавленными растворами. Применение чувствительных реакций имеет большое значение для целей дробного-анализа (см. ниже). Несмотря на потери, которые, особенно заметны при операциях с малыми количествами анализируемого вещества,, при помощи высокочувствительных реакций удается установить наличие того или иного иона в остатке. [c.12]

    Одним из наиболее экономичных методов, позволяющих сконцентрировать сбросные вещества и в некоторых случаях вернуть их в производство, является ионный обмен, который нашел широкое применение 1]. Спецификой процесса очистки по сравнению с другими процессами, использующими ионный обмен, являются прежде всего большие объемы очищаемых растворов, содержание извлекаемых веществ в которых очень мало, необходимость получения высоких коэффициентов очистки и концентрирования извлекаемого продукта. В ряде случаев исходные концентрации при очистке на 2—3 порядка ниже, чем в других технологических процессах, например гидрометаллургических. Кроме того, очистка должна быть возможно более [c.170]

    В последние годы для очистки все больше используются ионообменные сорбенты. Однако применение их ограничено. Это ограничение связано с тем, что ионообменные смолы избирательно адсорбируют примесь лишь в случае небольших концентраций основного вещества в растворе. Для этого раствор с большим содержанием примеси должен быть значительно разбавлен. Известно, например, что концентрированные растворы солей щелочных металлов и аммония не очищаются с помощью ионообменной адсорбции на катионитах от примеси щелочноземельных и тяжелых металлов. Нами экспериментально проверено с помощью радиоактивного Са , что на сульфокатионите КУ-2-4 при концентрации в растворе ЫН4+ 1,2% микропримесь кальция практически не выделяется. Подобные явления наблюдаются и в случае ионов щелочных металлов. Это мешает широкому применению ионообменных смол для указанной очистки. [c.131]

    При наличии большого количества анализируемого веш,е-ства может быть проведено макроопределение галогенов. Определение хлора и брома основано на разрушении органического соединения с переводом присутствуюш,их в нем галогенов в ионную форму и на последуюш,ем определении их одним из существующих методов. Описан целый ряд методов разрушения органических соединений путем сплавления. Мы остановились на более простом из них — сплавлении с едким натром и нитратом калия. Было установлено, что наиболее полное разложение органического соединения достигается применением для сплавления не твердого едкого натра, а его 80%-ного раствора, не содержащего карбонатов (готовят по ГОСТ 4517—48), что приводит к равномерному распределению навески вещества в жидкой холодной смеси, и при дальнейшем равномерном нагреве легко происходит разложение вещества при более низкой температуре. Применение концентрированного раствора едкого натра значительно облегчает и сокращает время анализа, так как отпадает необходимость предварительного нагрева смеси для получения однородного плава кроме того, в этом случае не происходит вспышек вещества, что иногда имеет место при сплавлении с твердым едким натром. [c.312]

    Способность к ионному обмену используют для концентрирования, очистки и разделения смесей разнообразных органических веществ. При этом оказывается возможным селективно и четко разделить (не говоря уже о концентрировании и очистке) компоненты смеси благодаря тому, что реакционная способность, т. е. способность к обмену, является функцией строения последних. Особо следует отметить развивающееся в последние годы направление по разделению сложных белковых смесей и выделению индивидуальных белков, основанное на применении специально приготовленных ионитов (в виде тонких слоев), обеспечивающих высокую селективность. [c.289]

    Другой важный способ применения сорбентов — мембранный процесс, использующий практическую непроницаемость или различную проницаемость ионообменных мембран для разных ионных компонентов раствора. Весьма существенно то, что хроматографические методы позволяют достичь большой степени концентрирования радиоактивных изотопов и могут быть применены к любому малому количеству вещества, вплоть до нескольких атомов. В ряде случаев важно и то, что весь интересующий радиоизотоп может быть собран в очень маленьком объеме фильтрата, например, в одной капле. [c.356]

    Другие непредвиденные трудности были обусловлены стоимостью регенерирующих веществ и разложением ионообменных смол. В связи с незначительным эффектом применения ионного обмена в очистке сахара возникла необходимость удешевления регенерации смолы и применения весьма долговечных ионитов, не разлагающихся нод действием концентрированных растворов сахара [381]. Колебание стоимости регенерации и цен на патоку создавали временами условия, экономически неблагоприятные для применения ионообменных процессов. Так как важнейшим назначением процесса обессоливания является уменьшение выходов патоки, экономичность этого процесса возрастает в периоды низких цен на патоку. Разработка в последнее время смол, стойких в растворах сахаров, допускающих более экономичную регенерацию и не вызывающих инверсии сахарозы, благоприятствует широкому применению ионного обмена. Хотя промышленное использование ионного обмена в очистке сахара требует дополнительных обширных испытаний, с применением этого метода определенно повышается выход сахара и снижается выход патоки, и поэтому при проектировании новых заводов эта возможность должна быть подвергнута тщательному анализу (ем. гл. VIII). [c.140]

    Целесообразно рассмотреть возможность применения ионного обмена для концентрирования раствора и устранения трудностей, связанных с осаждением цинка из разбавленных растворов при помощи химических реагентов. Применение На-катионитов в этом случае более целесообразно, чем Н-катионитов, так как устраняет образование кислот, которые перед сбросом в сточные воды должны быть нейтрализованы. Поскольку относительно обмена натрий-цинк имеются сравнительно скудные сведения, необходимо провести приближенный расчет. Так как катионы кальция и цинка двухвалентны и близки ио активности, для приближенного решения задачи можно использовать данные ио обмену натрий-кальций. Из рассмотрения данных по умягчению воды, приведенных на рис. 36 (гл. УП), отчетливо видно, что при удельном расходе регенерирующего вещества 97,4 кг/м поваренной соли полнота регенерации близка к 80% и для раствора ириведенной выше концентрации величина проскока цинка в фильтрат будет незначительной. Для получения раствора с максимально возможной концентрацией иона цинка следует принять удельный расход поваренной соли, обеспечивающий регенерацию, ио возможности близкую к 100-процентной. При этом по имеющимся данным (рис. 35) обменная емкость равна око.по 0,4 г-экв/л. Так как за [c.167]

    Сборник статей но теорпп н применений) ионного обмена. Описано применение ионного обмена для очистки води, сахарных сиропов, для разделения и анализа сложных органических веществ (аминокислоты, алкалоиды). Дано описание ионного обмена для концентрирования и извлечения металлов из руд, а также для разделения редкоземельных элементов. [c.4]

    Некоторые образцы, например металлы и вещества высокой чистоты, редкие природные и искусственные соединения очень дороги или имеются в небольших количествах. Современные инструментальные методы анализа позволяют непосредственно определять микроэлементы на уровне 10 -10 г/г в пробах массой несколько миллиграммов. Применение для концентрирования техники микроанализа позволяет эффективно использовать атомно-эмиссионные, атомно-абсорбционные и атомно-флуоресцентные с электротермической атомизацией методы, искровую масс-спектрометрию, проточпо-инжекционный анализ, электронный и ионный микрозонд, для которых максимальный объем пробы находится на уровне микролитров. Кроме того, при этом уменьшается расход проб, реагентов высокой чистоты, сокращается продолжительность анализа. Для получения правильных и воспроизводимых результатов с помощью техники микроанализа необходима высокая квалификация аналитика. [c.20]

    Существуют иониты, специфичные по отношению к другим ионам (В1, РЬ, Hg, Ре), в состав которых входят комплексообразующие группы. Такие иониты имеют важное значение при концентрировании следовых количеств веществ. К этому же типу ионитов можно отнести иониты, группы которых являются специфическими в отношении ряда других групп. В качестве примера можно назвать применение ионитов в гидрогенсульфитной форме для разделения карбонильных соединений [50]. [c.373]

    Иониты используют не только для хроматографического разделения смесей органических веществ, но они находят широкое применение и для процессов деионизации как в лабораторном, так и в промышленном масштабе. Смешанные иониты (например, амберлит МВ) удаляют из растворов одновременно катионы и анионы. Деионизирующая батарея, состоящая из таких ионитов, может быть использована для получения дистиллированной воды, которая по чистоте обычно превосходит воду, полученную перегонкой. В промышленности деионизацию применяют не только для смягчения воды, но и в других технологических операциях, например для обессоливания мелассы в сахарном производстве и т. д. Деионизацию можно использовать также и для концентрирования редких металлов из очень разбавленных растворов. Используя соответствующий ионит, можно улавливать ионы селективно. Способность ионитов задерживать молекулы определенной величины, обусловленную различной степенью сшивания, используют для отделения ионизированных молекул на основе их молекулярных весов. Наконец, в виде высокомолекулярных кислот или оснований иониты могут найти применение в качестве катализаторов, например при этерификации, дегидрировании спиртов, образовании ацеталей, гидролизе и алкоголизе. [c.549]

    Методика работы с применением такого экстрактора состоит в следующем [8]. 1—5 г анализируемого вещества помещают в стакан емкостью 250 мл, добавляют IOyW-i концентрированной азотной кислоты, нагревают до кипения и кипятят в течение 30 мин. По охлаждении раствор фильтруют, осадок на фильтре хорошо промывают азотной кислотой (1 200), фильтрат и промывную воду упаривают до 10—15 мл. В присутствии иона фосфата добавляют нитрат железа. В случае анализа раствора неизвестного состава его дважды упаривают с концентрированной азотной кислотой до 10—15 мл. Полученный раствор через отверстие Е вводят в нижнюю часть экстрактора D и стаканчик споласкивают 20—30 м4 раствора нитрата аммония (700 г нитрата аммония растворяют в 1 л 10%-ной азотной кислоты). В колбу В вводят 60 мл воды и 75 мл диэтилового эфира, присоединяют к прибору и нагревают на водяной бане. Испаряющийся прн этом диэтиловый эфир конденсируется в обратном холодильнике А и далее поступает в трубку F, по которой опускается вниз и через крупнопористый фильтр входит в нижнюю часть экстрактора D в виде мелких капелек, которые проходят сквозь экстрагируемый раствор и собираются над ним в виде эфирного слоя. После заполнения нижней части экстрактора эфирный слой по мере поступления диэтилового эфира из трубки F непрерывно сливается в колбу В, унося с собой некоторое количество нитрата уранила. Вследствие испарения диэтилового эфира в колбе В содержание в нем нитрата уранила непрерывно повышается, что вызывает также повышение его концентрации в водном слое, находящемся в этой же колбе. Через 30 мин. в нижнюю часть экстрактора D через отверстие Е вводят 10 мл смеси (1 1) насыщенного раствора нитрата аммония и концентрированной азотной кислоты для возмещения снижения их концентрации в экстрагируемом растворе вследствие перехода вместе с диэтиловым эфиром в колбу В в процессе экстракции. После этого экстракцию продолжают еще в течение 30 мин. По окончании экстрагирования колбу В отделяют от прибора, эфир удалякэт упариванием на водяной бане, водный раствор переносят в стакан емкостью 250 мл, прибавляют 8 мл серной кислоты (1 1) и упаривают для удаления азотной кислоты. В полученном растворе после соответствующего разбавления определяют содержание урана любым подходящим методом. [c.294]

    Растворенные в воде соли удаляют путем дистилляции, электродиализа, ионного обмена и обратного осмоса. Дистилляция — это процесс превращения поступающей на обработку воды в водяной пар, который затем конденсируется. Дистилляция представляет собой один из способов, применяемых для опреснения морской воды. Электродиализ состоит в разделении положительных и отрицательных ионов с помощью селективных мембран, пропускающих при прохождении постоянного электрического тока ионы из обрабатываемого раствора, находящегося по одну сторону мембраны, к концентрированному раствору, находящемуся по другую сторону мембраны. Проблемы, возникающие при электродпализном способе опреснения воды, сопряжены с химическим осаждением слаборастворимых солей и засорением мембраны коллоидными массами. Для предотвращения засорения мембран опресняемая вода из поверхностных источников должна пройти предварительную обработку (химическое осаждение и очистка с использованием активного угля для извлечения из воды молекул органических веществ и коллоидов). Обессолнванпе, проводимое путем ионного обмена, описано в п. 7.9. Вследствие высокой стоимости этих процессов, по-видимому, ни один из них не найдет широкого применения в практике очистки воды. [c.212]

    Концентрирование осадка на поверхности раздела двух несмешивающихся жидкостей используют как метод отделения основной массы анализируемого вещества осаждением элемента в виде труднорастворимого соединения с органическим реагентом [325, 330]. Применение флотации при осаждении основного элемента сводит к минимуму сорбцию ионов на поверхности осадка и устраняет нежелательную операцию фильтрования раствора. Показано, что потери примесей в результате экстракции в условиях осаждения N1 и Рс1 диметилглиоксимом [330] и Мо а-бензоиноксимом [329], а также при выделении 2г в виде манделята [518, стр. 483] (вторая фаза СНС1з) не имеют места. [c.296]

    Физико-химические и методические основы адсорбциопно-комплексо-образовательного хроматографического метода были освещены в ряде работ [16— 23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка солей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]

    Перекись водорода обладает максимальной стабильностью в слабокислых растворах, но она гораздо менее устойчива в щелочной среде, чем в кислых растворах умеренной концентрации (см. стр. 349). Стабильность снижается п и добавке очень малых количеств ионов тяжелых металлов, вроде ионов железа или меди, и твердых частиц, или растворении больших количеств почти любых веществ. Хотя чистая перекись бария сравнительно нерастворима в воде, окись бария, всегда присутствующая в техническом продукте, растворяется с образованием основной среды, и поэтому желательно применять достаточно концентрированную кислоту и вводить ее в контакт с твердой фазой таким образом, чтобы раствор все время был кислым. Целесообразно брать кислоту, которая образует нерастворим ую бариевую соль и таким образом позволяет удалить барий из раствора (например, серную кислоту, двуокись углерода или фосфорную кислоту) вместе с тем при применении этой кислоты необходимо избегать такого образования осадка, при котором происходит обволакивание частиц перекиси бария, что исключает возможность дальнейшей их реакции. Так, практически перекись водорода не обнаружена при введении в реакцию концентрированной серной кислоты с негидратированной перекисью бария при 20° или 10—50%-ной серной кислоты при температурах ниже 0° [5]. Получавшийся твердый остаток содержал большую часть исходной перекиси бария, вероятно, частицы были покрыты нерастворимым сернокислым барием. Если перекись бария до обработки кислотой встряхивать с водой для превращения ее в гидрат ВаОа-вНзО, то образование перекиси водорода улучшается, вероятно в связи с большим удалением частиц перекиси бария друг от друга и лучшей их растворимостью, однако значительная доля исходного активного кислорода может теряться из-за высокой щелочности на стадии гидратации. Поэтому для гидратации пользуются разбавленной соляной или фосфорной кислотой. [c.97]

    Извлечение металлгалогенидных комплексов органическими растворителями нашло широкое и разнообразное применение в аналитической химии, радиохимии, гидрометаллургии, при очистке полупроводниковых веществ. Экстракцию соединений металлов с галогенид-ионами используют для разделения малых количеств определяемых элементов, для аналитического концентрирования, получения материалов высокой чистоты. Вольшое значение имеют многочисленные экстракционно-фотометрические аналитические методы, основанные на использовании галогенидов и особенно роданидов, а также радиохимические способы выделения радиоизотопов, в частности изотопов без носителя. Экстракция галогенидных и роданидных комплексов применяется в промышленности для разделения циркония и гафния, ниобия и тантала, для выделения галлия и теллура. Использование экстракции металлгалогенид-ных комплексов в гидрометаллургии будет в ближайшие годы значительно расширяться. [c.295]

    Для фиксирования выходящих компонентов были применены химические методы определения, используемые в промышленносанитарной химии. Хлорсодержащие вещества количественно определялись нефелометрически по хлор-иону после сжигания на платиновом катализаторе. Для определепия бензола был применен колориметрический формалитовый метод, специфический для ароматических углеводородов, основанный на их реакции с формальдегидом и концентрированный серной кислотой. [c.269]

    Рассматриваются выполненные в Институте химии силикатов исследования по оптическому эмиссионному спектральному анализу чистых веществ и перспективы их развития пути совершенствования и применения источников света, методов предварительного концентрирования примесей и конечного их определения, некоторые актуальные метрологические и технические вопросы спектрального анализа чистых материалов. Указаны возможности совершенствования нейтронного активационного анализа чистых веществ путем разработки универсальных схем разделения активированных примесей с помощью экстракции и ионного обмена. Предложена ионообменная схема разделения 28 примесей, обеспечивающая высокую чувствите,т1ьность, точность и скорость их определения в ряде чистых материалов. Библ. — 18 назв., рис. — 1. [c.317]

    Определение микропримесей хлоридов в вольфраматах и молибдатах любым из известных аналитических методов представляет собой значительную трудность, так как все эти методы основаны на осаждении труднорастворимых хлоридов серебра или ртути, а основные вещества анализируемых соединений—ионы W04 и МоО-4 —также образуют малорастворимые соединения с этими металлами. Разработанный в последние годы полярографический метод с предварительным концентрированием определяемого вещества на электроде 1—3] по той же причине не может быть непосредственно применен для определения хлоридов в указанных соединениях. Тем не менее этому методу следует отдать предпочтение благодаря более высокой чувствительности по сравнению с другими. Кроме того, задача устранения мешающих ионов молибдата и вольфрамата при определении хлоридов этим методом облегчается тем, что их полного удаления, по всей вероятности, не потребуется, так как известно [4], что концентрирования этих ионов на ртутном электроде из кислых растворов, содержащих небольшие количества вольфрама (VI) и молибдена (VI), не происходит. Исходя из этих соображений полярографический метод с предварительным концентрированием определяемого вещества на электроде избран нами для определения микропримесей хлоридов в вольфраматах и молибдатах кальция и стронция. [c.104]

    Эхерн [49] исследовал возможности использования источника с вакуумной искрой для анализа на примеси веществ, находящихся в жидкой фазе. Применение специальной техники концентрирования примесей жидкости на электрод ионного источника показало, что для обнаружения и идентификации примеси покрытие ею электрода ионного источника может составить примерно 0.01 монослоя или меньше. В переводе на жидкость это составило около 10 атомных частей или около 10 г. В отдельных случаях было необходимо для обнаружения бериллия 7.10 2 г и серебра 8.10 1 г. [c.122]

    Определенный интерес могут представлять случаи применения смеси ионитов для синтеза, когда катионит и анионит находятся в таких ионных формах, которые образуют целевой продукт в виде тр)днорастворимого или малодиссоциированного соединения. Такие варианты могут быть предусмотрены при синтезе веществ высокой степени чистоты. Однако процессы получения труднорастворимых соединений с применением смеси ионитов осложнены необходимостью разделения твердых фаз — ионита и осадка, а в некоторых случаях, особенно при использовании концентрированных растворов, образованием осадка в порах ионитов. Этот возможный вариант ионообменных превращений заслуживает тщательной технологической и аппаратурной разработки. [c.168]


Смотреть страницы где упоминается термин Применение ионитов для концентрирования веществ: [c.403]    [c.164]    [c.403]    [c.278]    [c.356]    [c.148]    [c.87]    [c.519]    [c.176]    [c.158]   
Смотреть главы в:

Ионообменные высокомолекулярные соединения -> Применение ионитов для концентрирования веществ




ПОИСК





Смотрите так же термины и статьи:

Концентрирование ионов ионита



© 2025 chem21.info Реклама на сайте