Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные эффекты координации

    ОСНОВНЫЕ ЭФФЕКТЫ КООРДИНАЦИИ [c.423]

    Основные эффекты координации в реакциях лигандов базируются на том факте, что образование новых связей изменяет реакционную способность исходных соединений. Если проследить, как изменяются свойства координационных центров при переходе от простых ионов, таких, как Мд(П) или Са(П), к ионам, свойства [c.440]


    Рис. 19.1 на примере координации молекулы этилена иллюстрирует образование а- и я-связей с /-орбиталями иона металла. При образовании ст-связи электронная шютность со связывающей орбитали субстрата смещается на ион металла. Одновременно в я-системе происходит обратный процесс, т. е. увеличение плотности на этилене. Эти эффекты приводят к активации молекулы и к увеличению длины С—С-связи. В общем случае вследствие противоположного направления движения электронов в зависимости от природы металла и других лигандов могут наблюдаться различные эффекты, связанные с увеличением (или уменьшением) электростатического заряда на субстрате, изменением кислотно-основных и нуклеофильных (или электрофильных) свойств его, а также изменением поляризуемости. [c.531]

    Эффект образования связи обусловлен взаимодействиями иона металла с растворителем и лигандом. Суммарная энергия связи определяется как стерическими, так и электронными факторами. Очевидно, что чем более объемистым является лиганд, тем более вероятно возникновение стерических препятствий к координации этого лиганда со стороны других лигандов, присутствующих в системе, и, следовательно, тем ниже будет энтальпия образования комплекса. Электронные эффекты можно в общем разделить на энергию о- и я-связей и, в случае переходных металлов, на энергию кристаллического поля. Чем больше а-донорная способность лиганда (т. е. чем более основен лиганд), тем выше прочность а-связи металл — лиганд. Аналогично чем выше электроноакцепторная способность металла, тем более устойчивые комплексы он образует. Акцепторная способность тем выше, чем больше электроположительность, выше степень окисления, и для данного иона металла с данной степенью окисления тем выше, чем больше положительный заряд на центральном атоме комплекса. я-Дативное взаимодействие, обусловленное переходом электронов с заполненных орбиталей иона металла соответствующей симметрии на вакантные орбитали лиганда той же симметрии, также повышает энтальпию комплексообразования. Однако я-дативное взаимодействие не зависит от основности, так как под основностью подразумевается способность донора к взаимодействию с протонами, а поскольку у протонов нет заполненных р-орбиталей, то они и не могут участвовать в образовании я-связей. В случае переходных металлов следует также учесть влияние природы лиганда на энергии ( -орбиталей металла. Энергетические уровни пяти -орбиталей, равноценные в свободном ионе металла, в поле лиганда расщепляются. Рассмотрим приближение группы из шести отрицательно заряженных лигандов к иону металла при этом заряд лигандов равномерно распределяется по сферической поверхности, окружающей ион металла. Энергии всех -орбиталей повышаются в результате электростатического отталкивания между отрицательно заряженной сферой и отрицательно заряженными -электронами (рис. 14.2,а). Если затем эти шесть лигандов расположить по вершинам октаэдра в виде [c.250]


    В предыдущих главах основное внимание уделялось таким реакциям, в которых изменения в координационной сфере можно было рассматривать совершенно независимо от изменения степени окисления, и наоборот. В ряде случаев это различие между такими процессами представляется достаточно условным, как, например, в случае окислительно-восстановительной реакции во внутренней сфере комплекса, происходящей с образованием и разрушением мостиковых связей путем замены лигандов. Однако даже и в этом случае обычно можно рассматривать замещение и окисление-восстановление как разные этапы многостадийного процесса. В этой главе мы увидим, как можно применить принципы, установленные для простых реакций, к системам, в которых эти два этапа очень тесно связаны между собой. Основным фактором, определяющим те изменения в координационной сфере, которые вызываются окислением-восстановлением, является соотношение между собой электронной конфигурацией в окисленном и восстановленном состоянии центрального атома и координационным числом. Если рассмотреть эту проблему в общем виде, то можно установить, что в случае ионных соединений элементов 0-блока (один из предельных случаев) координационные числа определяются взаимодействием таких факторов, как заряд, электроотрицательность и размер лиганда, способ координации лигандов около центрального атома и другие стерические эффекты. В то время как в случае ковалентных соединений (другой предельный случай) координационное число в значительной степени зависит от характера атомных орбиталей центрального атома, которые могут быть использованы для образования связей металл— лиганд, в ковалентных комплексах действует правило 18 электронов при этом предполагается, что несвязанные [c.220]

    ИК-спектры металлсодержащих бифункциональных винилпиридиновых анионитов подтверждают одновременную координацию металлом атомов азота пиридинового кольца и заместителей подобно тому, как это отмечено для низкомолекулярных аналогов [22, 23]. Поэтому, несмотря на снижение основности азота пиридинового кольца из-за положительного индуктивного эффекта заместителей, константы устойчивости рассматриваемых комплексов больше по сравнению с монофункциональным анионитом АН-25. [c.173]

    Для лигандов, содержаш,их несколько типов групп, способных к координации, обычно линейная зависимость между основностью атома азота и координационной способностью справедлива лишь приближенно. Она выполняется только для лигандов, образуюш,их одинаковое число хелатных циклов равного размера и обладающих одинаковой способностью к образованию л-связей. При этом, если отсутствуют стерические затруднения, изменение свободной энергии (энтальпии) смещается параллельно со значениями р/снь- (в воде). Большее или меньшее отклонение от линейных зависимостей между Р меь- и р нь-, вероятно, все же обусловлено энтальпийными и энтропийными эффектами (или и теми и другими вместе). [c.83]

    Знание кислотно-основных свойств комплексных соединений дает возможность сделать заключение о влиянии координации на свойства лигандов, об эффектах взаимного влияния лигандов, о распределении электронной плотности в комплексе. Ценная информация может быть получена о формах, в которых существуют комплексные соединения в средах различной кислотности, и о равновесных превращениях этих форм, что важно как для характеристики их химического поведения, так и для аналитических целей. [c.58]

    Спектр свободного нитрат-иона наблюдается у кристаллических — нитратов щелочных металлов [109—111 ], Со(КОз)а 6Н2О, Со(Шз)2 [112], [Со(КНз)5 N0] Шз)з [ИЗ], Fe (МОз)з 9Н2О [110] и ряда других соединений [114—116]. Однако значительная часть нитратов характеризуется более сложной формой спектра, чем это следует из теории для симметрии Так, в спектре нитратов щелочноземельных элементов отмечено расщепление полосы V3 [110, 117—120], инфракрасный спектр N0 в нитратах переходных и тяжелых металлов (безводные соли и низшие гидраты) в области частот основных колебаний состоит как правило, из пяти — шести интенсивных полос [114, 117, 121—136]. Подобное, усложнение спектра нитрата Гейтхауз и др. [137], Гейтхауз и Коминз [138] и, независимо от них, Рыскин [139, 140] объясняют эффектом координации. При возникновении координационной связи между одним (или двумя) из атомов кислорода NOJ" и центральным атомом одна из связей N—О становится неравноценной двум другим. В результате ось симметрии третьего порядка исчезает и группа NO3 приобретает симметрию С2 (ось второго порядка и две взаимно-перпендикулярные плоскости симметрии) или (если не сохраняется плоская конфигурация иона). Понижение симметрии приводит к снятию вырождения с колебательных переходов V3 Е) и V4 Е), ранее запрещенное полносимметричное колебание Vj (Л ) становится активным в спектре поглощения. [c.132]


    Количественное совпадение экспериментальных данных с моделью Сартори, Фурлапи и Дамиани могло казаться случайным, поскольку, как уже упоминалось, основной вклад в величину сдвига полос поглощения воды вносит водородная связь, которая, как правило, имеет место в гидратах. Трудность сравне-иия усугубляется взаимозависимостью эффектов координации и водородной связи. Дело в том, что поляризация связей ОН в ноле катиона, обуславливая усиление кислотных свойств воды, шриводит к упрочнению водородной связи, а следовательно, дИ к понижению частот валентных колебаний более сильному, -чем в случае, если бы каждый фактор действовал независимо ,(теория этого явления рассматривается, например, в [400]). В качестве иллюстрации сошлемся на данные работы [313]. Известно, что диэтиловый эфир образует с водой более проч-лую водородную связь, чем нитрометан. Спектроскопически это проявляется в более значительном смещении полос для [c.184]

    Отталкивание и притяжение между координированным лигандом и окружающими аминокислотами могут влиять на величину константы равновесия, хотя довольно трудно количественно оценить этот эффект. К сожалению, в нашем распоряжении нет небелковых комплексов с пятью лигандами вокруг центрального атома Ре(П), которые позволили бы сравнить соответствующие константы равновесия (разд. 7.3). Константы равновесия связывания N комплексами Ее" гемоглобина и миоглобина, по-видимому, не превышают 10 [121]. Это значение представляется очень низким (ср. сданными, приведенными в работе [77]) и, по всей вероятности, отражает упомянутые, выше пространственные затруднения, а также невыгодность переноса заряженной частицы — аниона — в более гидрофобное окружение внутри белка из-за ослабления сольватации. Гемоглобин в 5 раз сильнее связывает СО, чем железопротопорфирин в водном растворе в присутствии 5 10" М пиридина [155], что, по-видимому, определяется стабилизацией связи Ее—С белком. Однако это отношение следут, конечно, разделить на константу равновесия (которая неизвестна) связывания шестого лиганда (вода или пиридин) пентакоординационным комплексом Ее(И). Полученное отношение будет, вероятно, отражать существенное дестабилизирующее действие белка. Однако нас в основном интересует координация кислорода. Из рентгеноструктурных данных, по-видимому, следует, что аминокислотные остатки вокруг дистального координационного положения размещены таким образом, чтобы свести к минимуму всякие силы отталкивания и перегруппировки белка, которые могли бы уменьшить константу равновесия связывания кислорода, разумеется, в предположении, что кислород связывается, образуя структуру V. С другой стороны, не получено никаких данных о значительном увеличении константы равновесия, например вследствие образования водородной связи. В ероятно, этот фрагмент белка, рассматриваемый вне связи с остальной частью белковой глобулы, не влияет или оказывает лишь не- [c.162]

    СН2-группы, обладающие большим объемом, затрудняют доступ молекул растворителей к координированной МНг-группе, что способствует повышению кислотного характера комплекса. Кроме того, при рассмотрении кислотно-основных свойств важно учитывать так называемый индуктивный эффект. Он состоит в следующем. В результате координации молекулы амина центральным ионом электронная пара азота оттягивается к центральному атому. При этом происходит смещение электронной плотности от атомов водорода к азоту, что приводит к усилению тенденции к отщеплению ионов водорода. В случае этилендиамина смещение электронного облака от азота к центральному атому может быть компенсировано не только за счет электронов связи азот — водород, но и за счет связей углерод — азот. Поэтому тенденция к отщеплению протона не должна проявляться столь сильно. Таким образом индуктивное влияние направлено на ослабление кислотных свойств. Действием индуктивного эффекта объясняют уменьшение скорости обмена дейтерием с тяжелой водой при переходе от (Со (МНз)6 + к [СоЕпзР+. Одновременное и противоположное действие этих факторов приводит к усилению кислотных свойств этилендиаминовых комплексов по сравнению с аммиачными. [c.289]

    Влияние заместителей на направление электрофильной атаки можно предсказать на основании электронных эффектов заместителей. 2-Алкилфураны преимущественно замещаются по положению 5 (в отличие от 2-алкилпирролов, для которых обычно предпочтительно положение 4). 2,5-Диалкилфураны подвергаются замещению по положению 3. Фураны с электроноакцепторными группами в положении 2, такие, как альдегид и карбоновая кислота, обычно реагируют в основном по положению 5. Такие соединения гораздо устойчивее фурана к кислотно катализируемому разложению например, фуран-2-карбоновая кислота нитруется в положение 5 смесью азотной и серной кислот. Фуран-2-карбоксальдегид также алкилируется по Фриделю—Крафтсу в присутствии кислот Льюиса, но, возможно из-за координации катализатора по карбонильному кислороду, замещение в данном случае идет по положению 4. [c.250]

    Внутренняя энтропия. Внутренняя энтропия лиганда также определяется длиной его цепи. Чем длиннее цепь, тем больше внутренняя энтропия лиганда. При координации будет теряться основная часть этой внутренней энтропии, что даст отрицательный эффект при комплексообразовании. Внутреняя энтропия лиганда с жесткой структурой, например IV, значительно меньше, чем внутренняя энтропия соответствующего алифатического лиганда V, поэтому отрицательный энтропийный эффект, обусловленный потерей внутренней энтропии лиганда, при образовании хелата с алифатическим производным будет выше, чем в случае ароматического аналога. [c.270]

    Растворители типа С—О образуют внешнюю сольватную сферу вокруг внутренней гидратной сферы, так каж они недостаточно силыно основны в льюисовском смысле, чтобы вытеснить молекулы воды из оординационных положений у центрального атома, в этом случае в органическую фазу переносится большее количество воды. В гомологическом ряду основность растворителя убывает с ростом молекулярной массы, причем одновременно уменьшается взаимная растворимость воды и растворителя. Способность к координации зависит также от стерических эффектов, вследствие чего наблюдается такой ряд для различных типов активных растворителей спирты> кетоны>простые эфиры>слож-. ные эфиры. Взаимное положение простых эфиров и кетонов в этом ряду определяется тем, что атом кислорода в кетонах менее экранирован алкильными группами, чем в простых эфирах в других отношениях простые эфиры являются более сильными льюисовы-ми основаниями. Способность молекул растворителя к координации зависит также от других структурных факторов например, было найдено, что несимметричные кетоны (7у1Р1БК и т. д.) являются достаточно хорошими активными растворителями. [c.212]

    Уоррен подтвердил, что многие чистые стекло-образуюЩие окислы дают очень устойчивые стекла. Тенденция к кристаллизации возрастает с увеличением содержания катионов. Основываясь на этом, Хегг разработал основные условия, которым должен удовлетворять химизм веществ, способных образовывать стекла. Такая разработка была тем более необходимой, что развитие изучения стеклообразного состояния нуждалось в обобщении и расширении правил Захариасена, особенно для органических стекол, которые представляют собой типичные продукты процессов конденсации и полимеризации . Поэтому вопрос о том, будет ли данный расплав образовывать стекло при переохлаждении, зависит не только от координации ионов, но также от полярных сил, формы и размера молекул, которые могут препятствовать правильной ориентации в кристаллической структуре. Ионы и малые радикалы в расплавах неорганических солей не способны образовывать стекла, так же как расплавы металлов и органические вещества с небольшим числом молекул. Чем более неправильны, крупны и объемисты атомные группы (например в смолах, алкалоидах, сахарах и т. д., которые Тамман в своих классических исследованиях называл модельными стеклами) , тем более они способны затвердевать в виде аморфных или стекловидных агрегатов. Эти теоретические предположения были подтверждены Парксом и его сотрудниками на органических, стекловидных веществах (см. А. II, 254, 266 и ниже). Особенно ценны полученные ими результаты изучения полимеров углеводородов типа полиизобутилена, так как эти полимеры представляют пример полимеризации неполярных молекул до образования комплексов с высоким молекулярным весом — около 5000. На этих агрегатах обнаружена, вследствие препятствующих стерических эффектов, отчетливая тенденция к образованию стекла кроме того, они обладают ди-польным моментом, возрастающим с увеличением степе-, ни полимеризации. [c.202]

    Любое дальнейшее уточнение механизма влияния неподеленных пар электронов на сокращение связей гидридов элементов первого периода представляет большой интерес. Как указывалось выше, основной причиной этого сокращения является неравноценность зарядов ядер на атомах X и Н. Однако в случае такого элемента, как фтор, атом водорода колеблется в силовом поле, которое определяется не только самой связью ХН, но и силами отталкивания между ядром атома водорода и тремя наборами орбиталей неподеленных пар электронов, каладая из которых дает свой диполь. (Значительная доля дипольного момента молекулы аммиака обусловлена скорее электронами неподеленной пары, а не связями МН.) Учитывая величины расстояний, которые реализуются в рассматриваемом случае, эти вторичные силы вполне могут быть существенными для соединений элементов первого периода. Это находит отражение в весьма значительных изменениях частот, которые наблюдаются, например, при передаче электронов неподеленных пар на вакантную орбиталь или атому другого элемента. Поразительное уменьшение частот колебаний неассоциированных ЫНз или МНг, которое наблюдается при координации атома азота, вполне может быть связано с подобными явлениями, хотя такие эффекты нелегко отличить от эффектов, возникающих за счет изменения самого эффективного ядерного заряда. [c.103]

    Следующий вопрос, с которым мы сталкиваемся, — это вопрос о том, какое именно физическое свойство может наиболее достоверно характеризовать основность. Измерение констант равновесия включает по крайней мере три или четыре соединения основание и сопряженную ему кислоту, кислоту и сопряженное ей основание, не говоря уже о сольватированных соединениях. Хорошо известно, что порядок измерения основности в некотором ряду веществ может измениться даже на обратный, если для координации использовать кислоты с различными стерическими требованиями [50]. Аналогичная инверсия может наблюдаться и при более слабых взаимодействиях оснований с донорами водородной связи [30]. Поэтому можно было бы попытаться использовать некоторые свойства свободной молекулы в газовой фазе, такие, как дипольный момент или ионизационный потенциал, чтобы получить идеальный или внутренний фактор основности, который дает значение электронной плотности в точке основности молекулы. Хотя такие измерения лучше коррелируются с идеализированной моделью (контролируемой, например, с помощью индукционного эффекта), они далеки от реальности химического эксперимента. Поскольку химик обычно имеет дело с реакциями, которые происходят между молекулами в растворе, для него очень важны эмпирические данные о системах в условиях эксперимента. Поэтому измерение термодинамических констант кислотно-основных реакций представляется наиболее реальцым путем оценки основных свойств веществ. [c.198]

    Стоун и его ученики [153, 199, 329] представили много данных относительно координации фосфинов с льюисовскими кислотами элементов П1 группы в газовой фазе. Как мы и предполагали, результаты в большинстве случаев можно объяснить с помощью индукционных и пространственных эффектов, причем фосфор оказывается мало чувствительным к последним. Однако порядок основности следующих соединений по отношению к триметилбору С2Н5(СНз)гР > (СНз)зР > (СНг = СН)(СНз)2Р > >-(С2Н5)зР > (СНг = СН)зР, подтверждает, что стерическое отталкивание нескольких этильных групп по сравнению с метильными оказывает намного большее влияние, чем их малые вклады в полярность. Поэтому удивительно, что по отношению к самому борану (и ни к какой другой кислоте Льюиса элементов П1 группы) триметилфосфин более основен, чем триметиламин [153, 329]. Этот интересный вывод основан на изучении реакции замещения одного основания другим, а не на прямом сравнении энтальпии диссоциации аддуктов и поэтому требует окончательной проверки. Другие особенности аддуктов с бороводородами рассматриваются в разд. VI. [c.261]

    Арилоксибораны, ароматические эфиры борной кислоты, легко образуют подобным же образом аддукты с сильно основными аминами [187—190]. Известно, однако, что в случае простых алифатических производных только триметилборат В(ОСН,з)з образует аналогичные комплексы [191 —196]. Установлено, что химический сдвиг В связан со структурой кристаллических аддуктов [197]. Имеются также определенные доказательства образования нестабильных аддуктов трпэтилбората [192, 197]. Стерические эффекты могут быть ответственными за невозможность образования стабильных аддуктов высших алифатических эфиров бора с аминами [191], хотя рассматривалось также участие в координации электронов кислорода, как показано в уравнении (1-44) [189] [c.66]

    Как показано выше, введение в структуру иминодиуксусной кпслоты 2-оксиэтильной группы снижает основность атома азота. Включение в окси-алкильный радикал добавочной метиленовой группы (ОПИДА) приводит к значительному затуханию индукционного эффекта гидроксильной группы, поэтому основность атома азота ОПИДА и ИДА практически одинакова. Однако устой- чивость комплексов ОПИДА выше, чем у ИДА, что свидетельствует об участии гидроксильной группы в координации. Сравнение констант устойчивости комплексов ОЭИДА и ОПИДА показывает уменьшение стабильности хелатов (1 I) последнего соединения на 0,4—0,9 единицы по сравнению с комплексами ОЭИДА, что связано с увеличением размера хелатного цикла (табл. 26). [c.144]

    Реакции замещения при фосфорильном центре подвержены влиянию общего кислотного и основного катализа, различающихся кинетическим изотопным эффектом (I < kujku < 2 и / н/ о > 2, соответственно). Помимо этого часто наблюдается катализ электрофильными реагентами, например ионами металлов (за счет координации по фосфорильному атому кислорода или по уходящей группе), или нуклеофилами, как в случае катализа ароматическими аминами алкоголиза производных фосфорной кислоты [26]. [c.50]

    Простые эфиры, альдегиды, кетоны, сложные эфиры и нитросоединения дают аналогичные эффекты, уменьщающиеся в указанном порядке. Углеводороды совсем не дают этого э( )фекта. Последнее находится в согласии с предложенным Латимером и Родебушем объяснением сильно основного характера четвертичных аммониевых оснований, базирующемся на предположении, что водород, связанный с углеродом, не склонен к координации. [c.56]

    В случае алкоголятов алюминия такие резонансные граничные структуры проявляются в незначительной степени и основное влияние оказывает индуктивный эффект алкоксигрупп, благодаря чему гидридный водород в алкоксиалюмогидридах менее подвижен, чем в Ь1А1Н4, и отщепляется только при действии более сильных электрофильных групп. Согласно такому представлению способность алкоголятов алюминия к координации с донорами должна быть значительно больше, чем эфиров борной кислоты [496, 499] [c.413]

    Влияние внутримолекулярной координации оказывается более ущественным, чем внешний катализ под влиянием соединений с близкой нуклеофильностью. Так, на примере реакции с н-каприло-вой кислотой обнаружено, что скорость реакции не изменяется при цобавлении этилацетата и трифторуксусной кислоты. Авторы предполагают, что столь важный эффект внутреннего содействия связан с увеличением электрофильности (кислотности) протона при образовании связи между кислородом и бором. Однако, по-видимому, основной причиной, как и для ртутноорганических соединений, является энергетическая выгодность образования замкнутого переходного состояния, так как иначе реакция могла бы осуществляться под действием более электрофильного протона. Важность нуклеофильной координации подтверждается тем, что протолиз триэтилбора осуществляется такой слабой кислотой, как ацетамид. Тиофенол реагирует значительно быстрее фенола вследствие лучшей координирующей способности серы. Наконец, при сравнимой кислотности и одинаковой возможности координации существенную роль играет пространственный фактор например, смесь фенола и пиридина реагирует значительно быстрее, чем 8-оксихинолин. [c.121]

    Однако на донорно-акцепторные взаимодействия оказьтают влияние не только сила льюисовских кислот и оснований, но также и другие факторы — стерические, электронные и др. Так, даже в системах, в которых обнаруживается лишь только донорное или акцепторное свойство растворителя, особенности пространственного строения растворителя могут приводить к разной степени взаимодействия с растворенным веществом. Или, например, в случае реперного акцептора, способного к дативному л-взаимодействию (обратной координации), последний будет взаимодействовать с л-акцепторнымн молекулами растворителя (например, ацетонитрилом) более сильно, чем можно было бы ожидать на основании его основности. Исследования Бургера и сотр. [18, 19] донорной способности растворителей с использованием комплекса переходного металла в качестве реперного акцептора четко показали большое значение подобных вторичных эффектов, искажающих шкалу растворителей. [c.36]

    Сольватацией реагентов нельзя объяснить двойной эффект в этой системе. Координация пиперидина увеличивает кислотность NH-rpyппы, но в то же время увеличивается и основность молекулы-партнера. Следовательно, образованный комплекс сольватируется как при нуклеофильной, так и при электрофильной атаке растворителя соотношение этих процессов отражено в значениях коэффициентов при )ЛГ и АМ. [c.78]


Смотреть страницы где упоминается термин Основные эффекты координации: [c.311]    [c.108]    [c.317]    [c.178]    [c.138]    [c.534]    [c.423]    [c.250]    [c.110]    [c.147]    [c.136]    [c.365]    [c.129]    [c.311]    [c.262]    [c.129]    [c.207]    [c.279]    [c.274]   
Смотреть главы в:

Неорганическая биохимия Т 1 _2 -> Основные эффекты координации




ПОИСК





Смотрите так же термины и статьи:

Координация

Координация с металлами, основные эффекты



© 2025 chem21.info Реклама на сайте