Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрия карбонат и едкий натр, определение

    Определение Sr " в почвах описано в 1266 -268]. Sr выделяют из почв экстракцией НС1, раствором ацетата аммония или же сплавлением золы со смесью карбоната натрия и едкого натра 1274]. После отделения стронция от других элементов препарат его оставляют на некоторое время для накопления дочернего Y добавляют неактивный Y, отделяют его от Sr и определяют активность. По последней и времени накопления высчитывают содержание Sr °. [c.117]


    Если среда исследуемого раствора кислая, а требуется довести ее до нейтральной или щелочной, к нему по каплям прибавляют раствор какого-либо из следующих веществ едкого кали, едкого натра, гидроокиси аммония, карбоната натрия, карбоната калия, ацетата натрия и ли других солей, образованных слабыми кислотами и сильными основаниями. Кроме того, можно также добавить соответствующие определенным значениям pH буферные. смеси. [c.201]

    Как правило, возможно многократное использование ионообменной хроматографической колонки. Если в частной статье не указано иначе, регенерацию катионитов и анионитов после проведения ряда определений осуществляют, пропуская через колонку соответственно 4% раствор хлористоводородной кислоты или 5% раствор карбоната натрия (2% раствор едкого натра). По окончании процесса, когда концентрации регенерирующего раствора на входе и выходе из колонки становятся равными, ее промывают водой до нейтральной реакции. [c.98]

    В препаратах, содержащих щелочноземельные и тяжелые металлы, определение проводят следующим образом испытуемое вещество растворяют в возможно меньшем количестве воды, прибавляют при охлаждении 2 мл раствора едкого натра и 2 мл раствора карбоната натрия. [c.168]

    Ускоренный метод можно применять для определения содержания двуокиси углерода, кальция и магния в известняках и доломитах [35, 72, 73]. Содержание двуокиси углерода оценивают по количеству титрованного раствора соляной кислоты, израсходованному на реакцию с карбонатами, с последующим титрованием избытка кислорода едким натром, затем в этой же пробе титруют кальций и магний комплексоном III с индикатором кислоты хром темно-синим. [c.82]

    Выполнение определения. Пипеткой берут 25 мл исследуемого мономера, помещают его в делительную воронку емкостью 50 мл, добавляют 5 мл 1 %-ного раствора едкого натра, встряхивают 2—3 мин для извлечения ДФП. Содержимое воронки оставляют в покое, и когда нижний слой станет совершенно прозрачным, его осторожно сливают в мерную колбу емкостью 50 мл. Извлечение повторяют четыре раза, собирая экстракт в одну колбу, нейтрализуют 20%-ным раствором серной кислоты до pH 6—8 по индикаторной бумажке, добавляют 2 мл свежеприготовленного диазотированного я-нитроанилина к2 мл 15%-ного раствора карбоната натрия, доводят объем раствора дистиллированной водой до метки, перемешивают и через 10 мин после прибавления карбоната натрия производят измерения оптической плотности на фотоколориметре. Определение оптиче-9 Зак. 648 257 [c.257]


    Определение ионов гидроксила в присутствии карбоната. В связи с очень слабой вторичной ионизацией угольной кислоты (/(2 = 6 10" ) титрование ионов гидроксила в присутствии достаточно заметных количеств карбоната невыполнимо. Так, в 0,01 М растворе карбоната натрия pH равно 11,2, следовательно, общее изменение pH при титровании 0,01 М раствора едкого натра составляет всего около 0,8. [c.116]

    При установке титра серной кислоты получаются очень хорошие результаты следующим образом. Растворяют взвешенный карбонат в 200 мл воды и прибавляют устанавливаемый раствор серной кислоты в избытке от 0,1 до 0,5 мл. Кипятят, пока не будет удалена двуокись углерода и объем раствора не уменьшится до 100 мл. Тогда охлаждают, пропуская одновременно через раствор ток воздуха, свободного от двуокиси углерода, и, продолжая пропускать воздух, титруют, как описано на стр. 209, раствором едкого натра, не содержащим карбоната. Из общего количества прибавленной серной кислоты вычитают кислотный эквивалент раствора едкого натра, определенный таким же способом 1.  [c.206]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]

    Влияние кальция можно устранить, поддерживая величину pH раствора ниже б, введением большого избытка хлорида аммония, а нри больших количествах кальция осадок фосфата следует переосаждать. Соли щелочных металлов и хроматы, даж и в больших количествах, не влияют на осаждение. Ванадий частично выделяется вместе с фосфатом алюминия, но после двукратного осаждения практически полностью отделяется от алюминия, если содержание последнего не превышает 50 мг. Многие элементы, влияющие на осаждение алюминия фосфатом, можно отделить от алюминия обработкой едким натром, а если присутствует кальций, то с добавлением карбоната натрия. Наиболее целесообразно поступать следующим образом. Раствор нейтрализуют едким натром (свободным от алюминия) и вливают в раствор, содержащий такое количество едкого натра, чтобы после осаждения гидроокисей остался избыток щелочи в 5—10%. Затем раствор разбавляют до онределенного объема, и после фильтрования отбирают половину для определения алюминия. В присутствии магния и никеля этот метод не пригоден. [c.570]

    Описан флуоресцентный метод определения бериллия, заключающийся в следующем. Анализируемый материал сплавляют со смесью карбоната натрия и буры. Плав растворяют в соляной кислоте, вводят цитрат натрия и хинизарин (1,4-диоксиантрахинон), а затем нейтрализуют раствор едким натром. Прибавляют еще хинизарина и интенсивность флуоресценции сравнивают со стандартами, приготовленными аналогичным способом 3. [c.588]

    Из объемных методов, которые рекомендуются для конечного определения, можно упомянуть титрование перманганатом после растворения осадка в кислоте и восстановления урана до четырехвалентного состояния и растворение осадка в воде с последующим титрованием урана едким натром Описан снектрофотометрический метод, основанный на образовании окрашенного в оранжевый, до красного, цвет соединения после обработки осадка карбонатом аммония и перекисью водорода. [c.750]

    Авторы предпочитают устанавливать титр раствора едкого натра (свободного от карбоната) по бензойной кислоте или по бифталату калия (стр. 208), а затем перечислять на фосфор, основываясь на соотношении 23 1. В этом случае при осаждении фосфора должны строго соблюдаться предписанные условия. Б огда это невыполнимо, проще всего определять фосфор любым-другим вариантом алкалиметрического метода, но применять тот же вариант при установке титра раствора едкого натра по стандартному образцу с определенном содержанием фосфора, имеющему одинаковый с анализируемым материалом состав. [c.790]


    Плавиковый шпат разлагается сплавлением с едким кали в золотом тигле или с карбонатом калия и селитрой в платиновом тигле и последующей обработкой плава водой или холодной разбавленной азотной кислотой. Полученные этими способами плавы растворяются значительно легче, чем плавы, получаемые в результате сплавления с соответствующими солями натрия. Когда не требуется определение фтора, плавиковый шпат можно разлагать нагреванием тонкого порошка пробы с серной или хлорной кислотой или же обработкой при нагревании разбавленной (1 1) соляной кислотой, содержащей борную кислоту. [c.822]

    Предложенная классификация позволяет разделить сточные воды на сравнительно ограниченное число типов, для каждого из которых может быть выбрана наиболее рациональная технологическая схема огневого обезвреживания. В качестве примера рассмотрим определение типа сточной воды для щелочного стока производства капролактама со следующим составом примесей натриевые соли низших дикарбоновых кислот (в основном адипинат натрия) — 20—21,9% циклогексанон — 0,1—0,7% циклогексанол — 1,8—2,5% едкий натр — до 1% циклогексан — до 0,5%> Рассматриваемая сточная вода содержит углеводород (циклогексан), окисленные углеводороды (циклогексанон, циклогексанол), органические соединения натрия и минеральное вещество (едкий натр), т. е. относится к классу II. В ней содержатся как легколетучие (циклогексан), так и высококипящие органические вещества (натриевые соли органических кислот), т. е. по наличию легколетучих веществ эта сточная вода должна быть отнесена к группе Б. Экспериментальное исследование огневого обезвреживания показало, что температура отходящих газов, равная 980— 1000° С, является рабочей. При этом натриевые соли органических кислот превращаются в карбонат натрия, а едкий натр подвергается карбонизации, т. е. конечным минеральным продуктом процесса обезвреживания является карбонат натрия, имеющий температуру плавления 850° С, близкую к рабочей температуре процесса. В связи с этим сточная вода входит в подгруппу 1. Известно, что при температуре 980—1000°С карбонат натрия частично возгоняется, поэтому рассматриваемую сточную воду следует отнести к подгруппе в. Таким образом, в соответствии с предложенной классификацией щелочной сток производства капролактама представляет сточные воды типа ПБ1в. Предложенная классификация сточных вод распространяется и на жидкие горючие отходы, в составе которых могут быть минеральные вещества и органические соединения некоторых металлов. [c.123]

    Для проверки влияния добавок на помол известняка Гош, Харрис и Джовет [7] повторили оригинальные эксперименты Франгискоса и Смита с электролитами (карбонат натрия и едкий натр). Результаты, полученные Гошем и др., были основаны на удельной поверхности, которая увеличивалась при добавке едкого натра на 40% (при 0,01% ЫаОН). При добавке карбоната натрия максимальное увеличение суммарной поверхности составляло 105% при 0,02% ЫагСОз, что было более наглядно, чем первоначальные результаты Франгискоса и Смита. Эти авторы утверждают, что при использовании метода измельчения падающим грузом их экспериментальная работа подтверждает теорию Ребиндера относительно микротрещин. Но так как в настоящее время в практике такой вид воздействия используется редко, то для оценки возможности практического применения этих результатов была выбрана стержневая мельница. Высказывалась также мысль, что может оказаться интересным определение степени флокуляции (образование хлопьев в пульпе), так как во время флокуляции пульпа амортизировала бы удары стержней, что отразилось бы на тонине измельченного продукта. В случае измельчения кварца с добавкой армака Т было установлено, что степень флокуляции увеличивалась с повышением концентрации армака Т, что в конце концов приводило к получению более крупного продукта. [c.189]

    N раствор едкого натра. Продажный едкий натр всегда содержит небольшие количества сульфата, карбоната, хлорида, кремнекислоты, а также воды. Поэтому титрованный раствор NaOH нельзя приготовить простым растворением его навески в определенном объеме воды. [c.195]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Предпочтение следует отдать 30—35% раствору едкого кали, хотя он и обладает меньшей поглотительной способностью, чем едкий натр. Образующийся в результате реакции К2СО3 имеет лучшую растворимость в едких щелочах в сравнении с карбонатом и бикарбонатом натрия, которые, выделяясь из раствора, будут забивать трубки поглотителя. Кроме того, раствор едкого кали меньше разрушает стекло. Раствор гидроокиси бария применяют при анализе газов с содержанием Oj не выше 1%. В этом случае через определенный объем титрованного раствора гидроокиси бария пропускают измеренный объем анализируемого газа и избыток гидроокиси бария оттитровывается щавелевой кислотой в присутствии фенолфталеина. По ходу определения протекают следующие реакции  [c.28]

    Для определения доброкачественности препарата 5 г его смешивают с 7,5 мл воды, причем полученная масса не должна обладать текучестью прн действии сапяной кислоты не должен выделяться углекислый газ (карбонаты). Примесь солей тяжелых металлов определяется следующим обра--10м 1 г препарата смешивают с 5 мл разведенной соляной кис юты, 45 мл воды, нагревают до кипения и фильтруют. 10 мл фильтрата нейтрали.чуют раствором едкого натра (по фенолфталеину), прибавляют 1 мл воды, 1 И1 разведенной уксусной кислоты и 1 мл 20 о-ного раствора хлоргидрата гндро-ксиламина. Спустя 10 мин прибавляют 1—2 кан.,1и 2%-ного раствора сульфида иатрия, причем полученный раствор не должен содержать тяжелых металлов более чем ]Омл эталонного раствора, к которому прибавлены те же реактивы, т. е. ие более 0,0025%. [c.70]

    Описанный Виккертом Л. 5-41] весовой метод определения ЗОз состоит в том. что проба газа отбирается из газохода через стеклянную трубку, конец которой нагревается до температуры выше точки росы. Газ протягивается через охлаждаемый льдом поглотительный сосуд с пористым фильтром, заполненный 20%-ным раствором едкого натра с добавкой формальдегида. Скорость протягивания газа составляет 10 л/ч, а продолжительность отбора пробы—2,2 ч. После отбора пробы раствор нейтрализуется уксусной кислотой. Из раствора ион ЗО осаждают 10%-ным раствором хлорида бария. Через 16 ч после осаждения осадок сульфата бария отфильтровывают через плотный фильтр, промывают, озоляют, прокаливают и взвешивают (I мг сульфата бария соответствует 0,343 лг ЗОз). Чтобы получить надежный результат весового определения (погрешность при взвешивании не более 5%), нужно иметь не менее 10 мг сульфата бария. Это эквивалентно около 3,5 мг ЗОз или, при объеме пробы газа 25 л, около 0,004 об. %. Если в газе содержится 0.001% ЗОз, то при том же объеме пробы погрешность определения только за счет взвешивания осадка составит 20% от определяемого количества ЗОз. Уменьшить ошибку, т. е. увеличить количество ЗОз в пробе за счет увеличения продолжительности отбора пробы, нельзя, так как при этом будут нарушены поставленные автором условия и через щелочь пройдет столько кислых газов (СОг, ЗОз, ЗОз), что весь едкий натр перейдет в карбонат и сульфат. [c.292]

    Извлечение алкалоидов в виде основания. При извлечении (калоидов Б Виде оснований соли алкалоидов, в виде которых [И содержатся в растениях, переводят в основания. Это дости-ется обработкой сырья различными щелочами. При количествен- М определении алкалоидов в растительном сырье чаще всего пользуют растворы аммиака и едкого натра, а также карбонат трия и гидроксид кальция. Выбор щелочи зависит от свойств и роения алкалоидов. Извлечение свободных оснований алкалоидов оводится органическими растворителями, не смешивающимися зодой, обычно хлороформом, этиловым эфиром или дихлорэтаном. [c.145]

    Раствор двусолянокислого /-орннтина доводят до pH 7 с помощью водного раствора едкого натра, затем кипятят его с избытком карбоната окисной меди и фильтруют. Этот метод определения а-аминогрупп в а-аминокислотах, основанный на образовании внутрикомплексных (хелатных) соединений двухвалентной меди, описан Куртцем [1]. [c.223]

    Смесь 1 имоля сухого порошкообразного карбоната-С бария, 1,0 г цинковой пыли и 0,200 г металлического натрия (кусочки размером с горошину) помещают в фарфоровую лодочку для сожжения и погружают в трубку Викора для сожжения (длина 600 мм, диаметр 19 мм) в атмосфере безводного аммиака. Вслед за лодочкой в центр трубки помещают тампон из железной проволоки (5,0 г, примечание 6). Дальний конец трубки соединяют с прибором для подсчета пузырьков и цилиндром с безводным аммиаком. Пропуская через трубку аммиак со скоростью 3 пузырька в 1 сек., часть трубки с железом и реакционной смесью нагревают до температуры 650° н поддерживают при этой температуре в течение 4 час. Выделение газа продолжается до тех пор, пока трубка не охладится. Содержимое трубки, за исключением железа, вымывают в колбу емкостью 250 мл, снабженную насадкой Кьельдаля для перегонки. Раствор подкисляют 2 н. серной кислотой и собирают 20—30 мл дистиллата в колбу с 20%-ным избытком 1 н. раствора едкого натра илн едкого кали. Полученный раствор можно использовать или непосредственно, или после испарения досуха в вакууме. Выход цианистого-С натрия, определенный обычным титрованием нитратом серебра, количественный, и молярная удельная активность не отличается от активности исходного соединения (примечание 7). [c.648]

    Для определения урана этим методом к 20 мл анализируемого раствора прибавляют небольшой избыток 10%-ного раствора едкого натра, не содержаш,его карбонатов, выпавший осадок центрифугируют в течение 5 мин. на центрифуге с 2000 оборотов в минуту, затем растворяют в минимальном объеме 10%-ной азотной кислоты, полученный раствор нейтрализуют 3%-ныь1 раствор(5м едкого натра, устанавливают pH в пределах 2—3, прибавляют 0,5 мл 30%-ного раствора перекиси водорода и выдерживают в течение 30 мин. После этого выделившийся осадок ураниловой соли перурановой кислоты центрифугируют, промывают 3 раза 3%-ным раствором нитрата аммония, подкисле кного азотной кислотой до pH 2—3, растворяют в 20 мл разбавленной серной кислоты (1 2) и титруют 0,05 N раствором перманганата калия. [c.101]

    Молибден определяют в сталях методом колориметрического титрования с использованием этилксантогената калия (в среде 0,3—0,4 N НС1) после отделения молибдена от железа избытком едкого натра, карбоната натрия или перекиси натрия и NH4OH [240]. Ксантогенатный метод (с экстракцией бензолом) применялся для определения молибдена в почвах и породах [1184а]. [c.241]

    Выполнение определения. Навеску технического едкого натра (4—5 г) растворяют в мерной колбе вместимостью 1 л и разбавляют водой до метки. После перемешивания отбирают 25,0 мл раствора пипеткой в колбу для титрования, добавляют 5 капель раствора фенолфталеина. Раствор, окрашенный в ярко-малиновый цвет, охлаждают в кристаллизаторе в воде со льдом и титруют 0,1 н. раствором соляной кислоты почти до полного исчезновения окраски. При титровании кислоту вводят малыми порциями, чтобы не происходило титрование NaH Oa до Н2СО3. Раствор все время хорошо перемешивают круговыми движениями, но не очень энергично во избежание поглощения СО2 из воздуха. Записывают отсчет по бюретке он соответствует расходу кислоты на гидроксид и половину карбоната. [c.144]

    Определение проводят в 0,04—0,012 N растворах NaOH, что соответствует примерно pH 12,6—13 [122, 133, 136, 151, 320, 327, 631, 1093, 1159, 1198]. Для создания среды [133, 136, 151, 320, 327, 1077] используют 20%-ный раствор едкого натра, очищенный от кальция на колонке с окисленным углем. Другие авторы для этой цели рекомендуют смесь едкого натра с карбонатом натрия [973, 1639], либо буферный раствор с pH 12,6 (едкий натр и бура) [1058, 1093, 1255]. [c.87]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Схема анализа. Приступая к анализу неизвестного вещества или к определению составных частей сложной смеси нескольких веществ, химик-аналитик должен обстоятельно продумать ход анализа. Метод, дающий вполне удовлетворительные результаты при определении того или иного вещества в одном случае, может оказаться совершенно неудовлетворительным в другом. Особенно сильно искажаются результаты определений при анализе сложных смесей. Примеры несостоятельности хорошо известных методов весьма многочисленны. Например, метод определения кремневой кислоты путем выпаривания досуха солянокислого раствора анализируемого вещества и последующего обезвоживания сухого остатка дает хорошие результаты, если кремневой кислоте не сопутствуют примеси, выпадающие вместе с нею в осадок. Но этот метод нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, титан, висмут и др. Осаждением смесью едкого натра и карбоната натрия можно хорошо отделить ионы алюминия от houob железа и кальция, выпадающих в осадок е виде Ре(ОН)з и СаСОд. Но тот же метод непригоден для отделения ионов алюминия от ионов железа и цинка. Оксалатный метод, который обычно применяют для определения кальция в присутствии магния, неприменим, если ионы кальция содержатся в незначительном количестве, а ионы магния—в большом количестве. Определение свинца в виде сульфата дает вполне хорошие результаты, если это определение проводят в отсутствие ионов бария, кальция, серебра и сурьмы. [c.287]

    Ход анаяпза. Навеску около 5 г воздушно-сухого сильноосновного анионита АВ-17 (амберлит IRA-400, IRA-410 и др.) помещают в стеклянную колонку, как указано выше, и переводят в ОН-форму пропусканием 100 мл 1 н. метанолового раствора едкого натра, который необходимо, приготовить заранее (за 1—2 суток), чтобы осел карбонат натрия, не растворимый в спирте. От избытка едкого натра анионит отмывают метиловым спиртом небольшими порциями. Окончание отмывания проверяют по фенолфталеину. Определение солей проводят по методике, описанной для катионного обмена. Полноту вымывания основания из анионита в фильтрат проверяют по фенолфталеину. Выделенные методом анионного [c.163]

    Ход определения. Вариант А. (Определение сахарозы после гидролиза.) Отбирают 100 мл пробы или меньший ее объем, разбавленный до 100 мл дистиллированной водой, а иногда и больший объем пробы и подш,елачивают раствором карбоната натрия до слабой щелочной реакции, которую проверяют лакмусовой бумажкой. Смесь выпаривают на водяной бане приблизительно до 50 мл и фильтруют. Фильтр с осадком промывают дистиллированной водой. Фильтрат разбавляют дистиллированной водой до 100 мл, подкисляют 5 мл разбавленной соляной кислоты, подогревают на водяной бане до 60—70° С, дают постоять при этой температуре 2 мин, после чего быстро охлаждают. Затем нейтрализуют разбавленным раствором едкого натра. Отдельно приготовляют раствор Фелинга, сливая растворы I и II в соотношений 1 1. К пробе прибавляют 20,0 мл этой смеси и нагревают приблизительно 10 мин на кипящей водяной бане. После быстрого охлаждения до комнатной температуры последовательно прибавляют 0,2 г иодида калия, 10 жл соляной кислоты и 20 мл раствора роданида калия. Смесь титруют 0,1 н. раствором тиосульфата до обесцвечивания крахмала. Раствор должен оставаться бесцветным не менее 3 мин. Таким же образом проводят холостое определение с дистиллированной, водой. [c.376]

    Примеры несостоятельности хорошо известных методов при некоторых условиях весьма многочисленны. Метод определения кремневой кислоты выпариванием досуха солянокислого раствора и обезвоживанием сухого остатка дает хорошие результаты в обычном случае, но его нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, или висмут. Осаждением сьЕесью едкого натра и карбоната натрия можно очень хорошо отделить алюминий от железа и кальция, но не от железа [c.80]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Ход определения. Приготовляют кислый раствор соли ртути (П), содержащий не более 0,1 г ртути в 100 мл и свободный от кадмия, цинка, олова и от элементов, подобных алюминию, образующих соли, растворимые в растворе сульфида натрия и осаждаемые сульфидом аммония. Анализируемый раствор нейтрализуют почти полностью раствором чистого карбоната натрия, обрабатывают свежеприготовленным сульфидом аммония , добавляя его в небольшом избытке, и затем приливают при сильном перемешивании 10 %-ный раствор едкого натра до начала осветления раствора. Тогда нагревают до кипения и добавляют еще раствор едкого натра, пока анализируемый раствор не станет ровсем светлым, что указывает на переход всей ртути в сульфосоль. Если раствор не совсем прозрачен, его фильтруют и промывают остаток горячей водой, содержащей по 10 Л1л указанных выше растворов едкого кали и сульфида калия на 1 л. К фильтрату постепенно прибавляют достаточное количество 25%-ного раствора нитрата аммония для превращения едкого натра в. нитрат натрия и для разложения сульфосоли ртути. (Объем прибавленного раствора нитрата аммония должен быть равен объему ранее [c.249]

    По аналогии с методом, применяемым для титрования бора , при определении германия также рекомендуют нейтрализовать раствор, до введения маннита, и последующее титрование маннитогерманиевой кислоты проводить до одинаковой величины pH. Отмечено, что в этих условиях менее-сказывается влияние посторонних ионов и на холостой опыт расходуется меньшее количество едкой щелочи, что особенно важно при определении малых количеств германия. Титрование проводят следующим образом. К 80 мл слабокислого раствора соли германия прибавляют 7 капель бромкрезолового пурпурного и нейтрализуют приблизительно 0,02 н. свободным от карбоната раствором едкого натра до pH = 6,2, что определяется сравнением окраски анализируемого раствора с окраской буферного раствора (33,9 мл 0,1 М лимонной кислоты и 66,1 мл 0,2 М раствора двузамещенного фосфата натрия), содержащего такое же количество индикатора. Затем прибавляют 10 г маннита и титруют раствором едкого натра до pH = 6,2. [c.351]

    Ход определения. Приготовляют прозрачный сернокислый раствор сульфата цинка, свободный от элементов сероводородной групцы, сероводорода и элементов, образующих легко гидролизующиеся соли. Прибавляют несколько капель метилового оранжевого или метилового красного, затем раствор едкого натра или карбоната натрия до нейтральной реакции и разбавляют водой. Объем раствора после разбавления должен быть не менее 250 мл и раствор должен содержать не более 0,1 г цинка в 100 мл. Подкисляют раствор так, чтобы кислотность его стала по возможности близкой к 0,01 н. (приблизительно 0,25, мл серной кислоты на 1 л), охлаждают до комнатной температуры и пропускают быстрый ток сероводорода в течение 30—45 мин. Затем дают постоять около 30 мин, фильтруют и промывают осадок холодной водой. Осадок обрабатывают далее, как указано на стр. 483 и 484. [c.482]

    Для определения скандия в тортвейтите предложен следуюш ий метод. Сплавляют 1 г тонко измельченной руды с 5—6 г едкого натра в серебряном или никелевом тигле при темно-красном калении. Во время сплавления перемешивают жидкую массу серебряной или никелевой палочкой. По охлаждении плав выщелачивают горячей водой. Остаток отфильтровывают, промывают горячей водой и растворяют в концентрированной серной кислоте хфи нагревании. Полученный раствор вливают в большое количество холодной воды, находящейся в стакане, и ополаскивают сосуд, в котором проводилось растворение осадка. К раствору прибавляют избыточное количество раствора аммиака, выделившийся осадок отфильтровывают, промывают и растворяют в азотной кислоте. Полученный раствор выпаривают досуха, нитраты растворяют в холодной воде, осан дают скандий сульфатом калия и оставляют на ночь. Отфильтрованный осадок промывают насыщенным раствором сульфата калия и затем обрабатывают холодным 25%-ным раствором карбоната аммония. Скандий при этом переходит в раствор в виде двойного карбоната. Осадок отфильтровывают и промывают холодным раствором карбоната аммония. Фильтрат кипятят до полного удаления аммиака, причем скандий осаждается в виде двойного карбоната. Осадок отфильтровывают промывают горячей водой, прокаливают и взвешивают в виде ЗсзОд. оп. ред.  [c.616]

    Все эти минералы, по-]шдимому, разлагаются прй сплавлении с пиросульфатами щелочных металлов, но так же, как и обработка с серной кислотой, этот способ скорее используется для технических проб на торий, чем для полного анализа. Для сплавления лучше пользоваться пиросульфатом натрия, чем пиросульфатом калия, вследствие большей растворимости некоторых образующихся в результате сплавления двойных сульфатов натрия. При определении кремния в тех случаях, когда минерал не разлагается кислотами, когда присутствует фтор или требуется определить также содержание бора или фтора, обычно применяют сплавление с карбонатами или едкими щелочами. Сплавлением с карбонатом натрия пользуются также при проведении полного анализа фосфатов. Для определения фтора в минералах, растворимых в горячей концентрированной серной кислоте, можно пользоваться методом отгонки. В техническом анализе для разложения материала иногда применяют сплавление с едким натром или перекисью натрия, но при выполнении полного анализа оба эти реагента менее пригодны, чем карбонат натрия, так как они обычно менее чисты и, кроме того, слишком сильно действуют на сосуды, в которых проводят сплавление. [c.620]

    Отделение магния от кальция не представляет затруднений, когда магний присутствует в значительном количестве. Отделение проводят так, как описано в гл. XL (стр. 694). Но если очень малые колйчества магния сопровождаются большими количествами кальция, то для отделения надо применять один из специальных методов. Из них наиболее удовлетворительным является следуюш ий метод предложенный для отделения малых количеств магния от сульфатов поблочных металлов, хотя при применении этого метода одновременное определение кальция в том же растворе становится невозможным. Применительно к анализу продажных солей кальция отделение проводится следующим образом. 10 г соли кальция перевоДят в раствор и разбавляют его до 100 мл. Если для растворения соли была применена кислота, т избыток ее после удаления кипячением Og, SOj и т. п. нейтрализуют едким натром. Прибавляют окись кальция (полученную прокаливанием 0,3—0,4 г карбоната кальция), нагревают до кипения и фильтруют, но не промывают осадка. Осадок растворяют в соляной кислоте, удаляют кальций двукратным осаждением, как описано на стр. 705 и сл., и определяют магний в соединенных фильтратах, как описано в разделе Определение в виде пирофосфата магния (стр. 719). Об отделении малых количеств кальция от больших количеств магния см. стр. 694. [c.716]


Смотреть страницы где упоминается термин Натрия карбонат и едкий натр, определение: [c.16]    [c.99]    [c.242]    [c.95]    [c.242]    [c.13]    [c.20]    [c.164]   
Основы аналитической химии Часть 2 (1965) -- [ c.0 ]

Основы аналитической химии Кн 2 (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ циркуляционной воды башен определение едкого натра, карбоната натрия и бикарбоната натрия

Едкий натр

Едкий натр, определение

Едкий ттр

Карбонат бария определение в присутствии едкого натра

Натрия карбонат

Натрия карбонат и едкий натр, определение при совместном

Натрия карбонат и едкий натр, определение при совместном присутствии

Определение едкого натра и карбоната натри

Определение едкого натра и карбоната натрия при совместном присутствии в растворе

Определение едкого натра и карбоната при совместном присутствии

Определение кал ция карбонатах



© 2025 chem21.info Реклама на сайте