Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительная деформация взаимодействия

    Многочисленные данные, указывающие на благоприятное влияние заряда частиц на коллоидную устойчивость, ясно показывают, что происхождение сил отталкивания надо искать во взаимодействии диффузных электрических слоев. Следует, однако, отметить, что первоначальные наивные взгляды на отталкивание, согласно которым оно порождается непосредственным кулоновским взаимодействием одноименно заряженных частиц, оказались неправильными. Коллоидная частица в золе действительно заряжена относительно водного раствора, но вместе с окружающим ее диффузным слоем противоионов она образует электрически нейтральный комплекс. Взаимодействие между такими комплексами может быть связано только с деформацией их ионных атмосфер, и количественно его следует интерпретировать именно с этой точки зрения. [c.210]


    С другой стороны, как указывалось нами в главе I, псевдоожиженный слой в целом является устойчивым относительно деформации расширения—сжатия и может совершать лишь малые колебания около этого устойчивого положения равенства веса частиц и взвешивающей силы взаимодействия потока псевдоожижающей среды. Основная характерная частота этих чисто гравитационных колебаний должна быть тогда порядка [1, с. 476] [c.66]

    Соотношения (13.13) и (13.14) наиболее эффективны для расчета относительной ориентации взаимодействующих сопряженных молекул на начальных участках пути химической реакции между ними. На этих участках, когда реагенты еще достаточно далеки друг от друга, можно пренебречь деформациями связей молекул, происходящими непосредственно в зоне реакции. Такие деформации (изменения длин связей и углов, их разрывы и образование) уже не могут быть описаны в приближении теории возмущений, оперирующей с МО изолированных молекул. [c.516]

    Прочность связи полимер-волокно лежит в основе главных свойств таких пластиков. Она определяется смачивающей или пропитывающей способностью связующего, величиной адгезии связующего к волокну, усадкой полимерной составляющей при ее отверждении (реактопласты) или затвердевании (термопласты), возможностью химического взаимодействия связующего и наполнителя, значением коэффициента объемного расширения компонентов пластика, относительной деформацией волокна и полимера под действием приложенной механической нагрузки. [c.57]

    Относительная деформация связующего должна быть не ниже аналогичного параметра волокна. В противном случае при деформации пластика под действием нагрузки происходит нарушение адгезионного взаимодействия с разрушением полимерной составляющей. [c.58]

    В пользу свернутых структурных элементов в пленках из ПЭАУ-2, полученных из смеси растворителей, говорит и характер деформационного поведения ПЭАУ-2 при растяжении. Как уже отмечалось, при относительной деформации 200% на кривых зависимости Ор—е наблюдается резкий перегиб. Известно [63], что наклон этой кривой в любой ее точке представляет собой модуль, который является функцией общего числа связей в пространственной сетке полимера. Следовательно, наблюдаемое возрастание модуля свидетельствует об увеличении взаимодействия между полимерными цепями при растяжении выше 300%. По-видимому, это происходит, когда относительно свернутые элементы начинают разворачиваться. Наглядной иллюстрацией изложенных представлений служит зависимость Мс (молекулярная масса отрезка цепи между соседними поперечными связями) от степени растяжения (рис. 5.12). Как было показано в работе [63], подобная зависимость коррелирует с деформационными кривыми и подтверждается данными электронно-микроскопических исследований. Наличие двух ветвей (восходящей и нисходящей) на кривых деформационной зависимости Мс связано с перестройкой структуры полиуретана в процессе растяжения разрывом связей, образующих пространственную сетку на первом этапе деформирования, их перераспределением и образованием новых связей на втором этапе, когда происходит ориентация структурных элементов и более плотная их упаковка. Из рис. 5.12 видно, что характер деформационной зависимости Мс для ПЭАУ-1 и ПЭАУ-2 действительно согласуется с их деформационными кривыми (см. рис. 5.11). Наблюдаемый макси- [c.236]


    Значительное влияние на деформационные свойства полимеров оказывают химическое строение и характеристики макромолекул (молекулярная масса и ММР, гибкость цепей, наличие разветвлений и сшивок, регулярность строения и др.), а также надмолекулярная структура полимеров. Молекулярная масса полимеров существенно влияет на Гхр, Гс и Гт полимеров и поэтому варьированием молекулярной массы можно изменять температурные интервалы реализации полимерами различных физических состояний, т. е. изменять температурные области эксплуатации и переработки полимеров. Повышение молекулярной массы полимеров расширяет температурную область высокоэластического и вынужденно-эластического состояний вследствие снижения их Гхр и повышения Гп.т Высокоэластическая и вынужденно-эластическая деформация наступают лишь по достижении определенной критической молекулярной массы, при которой цепи способны проявлять достаточно высокую кинетическую гибкость и макромолекулы вследствие их большой длины сильно взаимодействуют друг с другом. При увеличении молекулярной массы до некоторого предела относительная деформация сначала возрастает, а затем практически не изменяется. [c.161]

    Во введении указывалось, что специфической особенностью полимерных материалов является их способность претерпевать большие обратимые деформации. Это свойство наиболее ярко проявляется у каучуков (деформации >1000%), которые при температуре выше температуры стеклования представляют собой слабо сшитые полимеры. Это полезное свойство до некоторой степени сохраняется и у полукристаллических полимеров. В каучуках при температурах выше температуры стеклования меж- и внутримолекулярные взаимодействия слабы так что их растяжение легко осуществить, и последующее возвращение в исходное состояние происходит без затруднений. В полукристаллических полимерах в кристаллических областях между молекулами осуществляются кооперативные взаимодействия, удерживающие сегменты друг с другом в строгом порядке, и существенную роль при деформации таких полимеров играют межмолекулярные взаимодействия в менее упорядоченных областях. При температурах выше температуры стеклования влияние этих сил настолько заметно ослабляется, что становится возможным вращение относительно связей между мономерными звеньями. Таким образом, выполняются требования, необходимые для проявления высокой эластичности (рис. 1). Межмолекулярные силы вызывают вязкое сопротивление, которое затрудняет протекание обратных процессов. Так, при относительных деформациях более нескольких процентов обратные процессы редко протекают до конца, хотя степень обратимости деформационных процессов можно повысить путем ослабления межмолекулярных взаимодействий, нагревая образец или вводя в него низкомолекулярные вещества, в которых он набухает. При температурах ниже температуры стеклования вращение вокруг ординарных связей затрудняется и образец становится труднее де- [c.26]

    Наряду с разрушением и образованием связей, обусловленных межатомными и межмолекулярными взаимодействиями, относительное скольжение сопровождается деформированием материала поверхностных слоев в зонах фактического касания. Сопротивление скольжению, обусловленное этим деформированием, называют деформационной составляющей силы внешнего трения. Ее величина существенно зависит от вида деформаций в зонах фактического касания. Анализ напряженного состояния в зонах реального контакта и проведенные исследования показывают, что обычно более твердые микронеровности одного из контактирующих тел внедряются в менее твердую поверхность другого. Различие в твердости контактирующих тел объясняется механическими и геометрическими неоднородностями свойств поверхностных слоев. [c.78]

    При сжатии порошка вначале, при давлениях до 30 МПа, масса уплотняется вследствие переупаковки частиц, скольжения их друг относительно друга (квазивязкое течение). Происходит некоторое разрушение частиц. При более высоких давлениях (30—100 МПа) уплотнение сопровождается хрупкой (дальнейшим разрушением частиц) и пластической деформацией и рекристаллизацией. Вначале на сцепление частиц оказывают влияние силы межмолекулярного и электростатического взаимодействий, затем, при больших давлениях, происходит упрочнение материала вследствие увеличения числа контактов между осколками и образования соединений с ковалентными связями. Температура системы повышается. Необратимые процессы уплотнения сопровождаются диссипацией механической энергии, превращающейся в тепловую, расходующуюся на рекристаллизацию, а в многокомпонентных смесях — и на возможные твердофазные реакции. Могут образовываться твердые растворы. Система стремится перейти в состояние с минимумом энергии Гиббса. [c.294]


    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]

    При сближении на достаточно малые расстояния ионы под влиянием сил взаимодействия будут двигаться один относительно другого по замкнутым орбитам. Взаимная деформация ионов при этом не происходит и ионы удерживают гидратационную воду. Таким образом, ионная ассоциация является продуктом соединения гидратированных или сольватированных ионов. [c.117]

    При охлаждении среднее значение энергии теплового движения и подвижность молекулярных звеньев уменьшаются, движение принимает характер преимущественно вращательного качания, поэтому молекулы каучука при пониженных температурах находятся в менее свернутом состоянии. При некоторой температуре, которая называется температурой стеклования, молекулы каучука принимают относительно вытянутую форму и каучук становится твердым и хрупким, способным только к упругим деформациям, т. е. переходит в стеклообразное состояние. С повышением температуры подвижность молекулярных звеньев, наоборот, увеличивается, поэтому в области высокоэластического состояния повышение температуры приводит к увеличению деформации при действии заданной нагрузки. При дальнейшем повышении температуры в значительной степени начинают развиваться необратимые пластические деформации, обусловленные понижением межмолекулярного взаимодействия и взаимным перемещением молекул в направлении действующих сил. Каучук ири этом переходит в вязкотекучее состояние, а температура этого перехода называется температурой текучести. [c.83]

    Таким образом, результаты анализа данных относительно величины и температурной зависимости eg в жидкой воде показывают, что основную роль в межмолекулярном взаимодействии в воде играет деформация водородных связей в жидкой воде по сравнению со льдом I. [c.122]

    Однако еще до достижения точечного контакта те области поверхности тел, которые расположены вблизи оси симметрии, подвергаются значительным локальным давлениям или натяжениям. Если взаимодействие поверхностей происходит в растворе электролита с концентрацией 10 моль/л при потенциале поверхностей 100 мВ, то, как следует из формулы (VI.33), электростатическое расклинивающее давление на расстоянии —10 А составляет примерно 10 атм. С другой стороны, на этом же расстоянии действуют и силы молекулярного притяжения (см. главу IV), создающие при константе Гамакера А = 10 эрг отрицательное давление примерно 50 атм. Очевидно, что такие напряжения могут явиться причиной значительных локальных деформаций у относительно мягких тел еще до того, как произойдет их соприкосновение, т. е. вступят в действие короткодействующие борновские силы отталкивания. Если же поверхности тел деформируются, т. е. теряют исходную форму, то интегрирование в уравнении (ХП.4) становится невозможным, несмотря на известную зависимость V (А), так как нарушается уравнение (ХП.5), а следовательно, и (ХП.6). [c.381]

    Рассмотренные выше положения относятся к движению одиночных капель и пузырей. При совместном движении множества ("коллектива") капель и пузырей наблюдается их гидродинамическое взаимодействие. Здесь закономерности движения изменяются, общий эффект аналогичен стесненному витанию твердых частиц движение капель и пузырей относительно сплошной среды замедляется. Одновременно ситуация осложняется постоянной коалесценцией и разрушением дискретных образований и их деформацией. [c.246]

    Способность молекул (и других химических частиц) к поляризации за счет смещения электронов и атомов под воздействием внешнего электрического поля определяется их полязируемостью а. Она измеряется относительной деформацией частицы, отнесенной к единице напряжения поля. Тогда энергия взаимодействия ди-поль-индуцированный диполь, названного индукционным взаимодействием, может быть оценена как [c.117]

    Каждый из двух описанных предельных случаев, очевидно, не может полностью соответствовать реальной ситуации, поскольку представление о равномерном распределении напряжения (модель Ройсса) фактически означает разрыв сплошности на межфазной границе раздела (Ед Ес), тогда как постоянство относительной деформации по всему объему образца (модель Фойгта) возможна лишь при условии скачкообразного изменения напряжения на границе раздела от Стс до Оа- Эти недостатки могут быть формально устранены учетом неравномерности распределения напряжения (или деформации) с помощью феноменологического параметра I, который может служить мерой взаимодействия между фазами, в рамках уравнения [257] [c.174]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    При больших скоростях нагрева образующиеся сферы мезофазы обладают высокой изотропностью и практически не способны к деформации. При замедленном нагревании частички мезофазы достигают относительно больших размеров. За счет деформации и, возможно, последующего разрушения (коллапса) они приобретают способность к образованию текстуры и к высокой степени трехмерного упорядочения при графитации. Из показанной на рис. 2-29 коалесцированной мезофазы, полученной после нагрева и выдержки при 440 С, видно, что ее форма отличается от сферической. С увеличением контактной пове])хности под действием температуры, способствующей росту подвижности, происходит переориентация большей части плоских гексагональных сеток в направлении, близком к параллельному. Это объясняется тем, что при коалесценции за счет взаимодействия концевых атомов плоских сеток поверхности они перестраиваются в направлении, перпендикулярном к касательной сфер (рис. [c.86]

    Начальной стадией деформации металла является упругая деформация (участок АВ рис. 2.8). С точки зрения кристаллического строения, упругая деформация проявляется в некотором увеличении расстояния между атомами в кристаллической решетке. После снятия нафузки атомы возвращаются в прежнее положение и деформация исчезает. Другими словами, упругая деформация не вызывает никаких последствий в металле. Чем меньщую деформацию вызывают напряжения, тем более жесткий и более упругий металл. Характеристикой упругости металла являются дна вида модуля упругости модуль нормальной упругости (модуль Юнга) - характеризует силы, стремящиеся оторвать атомы друг от друга, и модуль касательной упругости (модуль Гука) - характеризует силы, стремящиеся сдвинуть атомы относительно друг друга. Значения модулей упругости являются константами материала и зависят от сил межатомного взаимодействия. Все конструкции и изделия из металлов эксплуатируются, как правило, в упругой области. Таким образом, упругость - это свойство твердого тела восстанавливать свою первоначальнуто фор.му и объем после прекращения действия внешней нафузки. Модуль упругости практически не зависит от структуры металла и определяется, в основном, типом кристаллической решетки. Так, например, модуль Юнга для магния (кристаллическая решетка ГП% ) равен 45-10 Па, для меди (ГКЦ) - 105-10 Па, для железа (ОЦК) - 210-10 Па. [c.28]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    Аналогично этому получим выражения для других осей, где tix, и, (и — компоненты вектора относительного растяжения цепи, т. е. вектора, коллинеарного И и имеющего модуль ti. Можно принять, что сила натяжения взаимодействующих цепей не отличается от силы натяжения невзаимодействующих. Поэтому средние положения узлов в сетке взаимодействующих цепей меняются при деформации так же, как и в сетке невзаимодействующих. Для последней Джемс показал, что в гауссовской сетке ( малые / ) справедлив принцип геометрического подобия, по которому х—Кгигх, у— = k2toiy tiг=XзtQiz (индекс о относится к недеформированному состоянию). На основании этого принципа [c.113]

    На рис. 25,6, а изображен гипотетический случай образования соединений из ионов без перекрывания орбитали. 1< ак правило, в соединениях происходит частичное перекрывание атомных орбиталей и образование примеси валентной связи обычно приводит к уменьшению межъ-ядерного расстояния между атомами (рис. 25.6,6). Это формально соответствует искажению сферической формы ионов, т. е. смещению центра тяжести электронной оболочки иона относительно заряда ядра. Следовательно, деформация ионов при их взаимодействии должна сопутствовать их поляризации. Очевидно, ионы, обладающие большим зарядом ядра и тонкой электронной оболочкой, прижатой электростатическими силами к ядру, должны сами дес1юрмироваться слабо, но обладать повышенной деформирующей, поляризующей способностью. Напротив, отрицательно заряженные ионы, имеющие относительно меньший положительный заряд ядра и объемистую рыхлую [c.330]

    В кристалле с повышением температуры вследствие увеличения интенсивпости колебаний ионов или атомов относительно их положения равновесия расстояния между ними увеличиваются и силы взаимодействия ослабевают. Следовательно, для достижения той же величины деформации при повышенной температуре требуется меньшее усилие. Это означает, что модуль упругости кристалла с повышением температуры уменыггается. [c.157]

    В литературе имеются данные о том, что на криволинейную поверхность предпочтительнее наносить оптический слой в жидком состоянии. К этим материалам предъявляют различные требования в зависимости от условий проведения эксперимента и задачи исследования. Но основными из них являются хорошее сцепление материала с поверхностью изоляции, наличие линейной зависимости между деформацией материала и оптической разностью хода, а также отсутствие взаимодействия между оптически чувствительным материалом и исследуемой изоляцией. В качестве оптически чувствительных материалов применяют эпоксидные смолы, материал МИХМ-ИМАШ , фенолформальдегидные смолы, пластинки из бакелита ИМ-44, приклеиваемые карбиналь-ным клеем, и т. д. Принцип их использования состоит в пропускании сквозь слой оптически чувствительного материала пучка поляризованного света, который отражается от поверхности изоляции, вторично проходит сквозь оптический слой и воспринимается анализатором прибора. Относительная разность хода б, приобретенная поляризованным светом, связана при деформации в пре- [c.79]

    Сплавы этого класса представляют простейший, в некоторых отношениях, случай, поскольку их поведение при водородном охрупчивании можно относительно легко связать с простыми физикометаллургическими свойствами. Как уже указывалось, имеющиеся данные позволяют предполагать (правда, не с полной уверенностью), что связанные с водородом потери пластичности обусловлены присутствием включений и выделений [72, 74, 87]. Последовательность событий при этом, по-видимому, такова. Дислокации, несущие водород, при деформации скапливаются около частиц, в результате чего динамически может создаваться высо кая локальная концентрация водорода [314]. Часть этого водорода может освобождаться в результате перекрывания полей напряжений дислокаций, а еще часть водорода будет захвачена включением [314]. Когда на растягиваемом образце начинает формироваться шейка, водород принимает участие в локальных процессах, и может либо снижать прочность границы раздела частица/матрица, либо стабилизировать малые полости или трещины, образующиеся в частицах, либо проникать в полости растущие вокруг частиц и содействовать их росту, за счет внутреннего давления Нг. Отметим, что последнее взаимодействие начинается только на стадии образования шейки. Все перечисленные процессы могут облегчать и ускорять обычное вязкое разрушение и делать его возможным при меньшей деформации, что, в свою очередь, соответствует потере пластичности и уменьшению относительного сужения, или же ускоренному растрескиванию при испытаниях на КР. Весь ход событий можно проследить по рнс. 52. [c.139]

    Индуцированное водородом разрушение сплавов титана (включающее, как показывают результаты Нельсона [209] и Грина [179], и возможные многочисленные случаи КР) можно было бы объяснить в терминах относительного количества водорода, взаимодействующего со сплавом. Например, исходя из низкой фугитив-ности водорода (см. рис. 34), следует ожидать относительно малых его концентраций в условиях испытаний на КР. Малым, учитывая обычные значения растворимостей [224], должен быть и уровень растворенного водорода. Охрупчивание в условиях медленной деформации при низких уровнях [Н] [339] может протекать посредством дислокационного переноса водорода [342] (зависящего от характера скольжения) и индуцированного деформацией образования гидридов на полосах скольжения. Последующее разрушение может происходить в результате скола гидридов. В то же время при высоких уровнях [Н], приводящих к интенсивному предварительному формированию гидридов, характер разрушения будет другим [221], скорее всего, таким, как при больших скоростях деформации. Дальнейшее исследование причин такого различного характера разрушения титановых сплавов [302] должно охватывать как сложные эффекты образования гидридов [224, 226], так и вопрос о положении водорода в решетках сплавов [343]. [c.142]

    В работе Брайнта [61] деформация изотропного полиморфного полимера рассматривается как процесс, при котором первоначальная кристаллическая решетка ресинтезируется под действием механических сил в лучше ориентированную, но менее совершенную форму. Считая, что кристаллиты могут быть разрушены под влиянием внешней силы, автор предполагает, что приложение напряжения в направлении, перпендикулярном оси цепи, ослабляет взаимодействие между соседними молекулами и тем самым способствует облегчению смещения их друг относительно друга и повороту в направления растяжения. Легкость сдвига молекул зависит от величины приложенной силы и от угла между осью молекулы и направлением силы. [c.79]

    К числу основных признаков вязкотекучего состояния относится его реакция па действие напряжения. Под влиянием механических сил у полимеров в вязкотекучем состоянии развивается деформация течения Течение — это необратимое перемещение молекул относительно друг друга под влиянием приложенного извне усилия F, при этом в веществе возникают силы трения Ft. препятствующие течению, т. е. Г — —Ft. Внутреннее трение полимеров имеет в основном энергетическую природу, так как связано с преодолением сил взаимодействия между плотно упакованными макромолекулами Поэтому сетчатые полимеры с пространственной структурой, образованной химическими связями, в вязкотекучее состояние не переходят, так как эти связи препятствуют свободному перемещению макромолекул, необходимому для течения, Течение этих систем возможно лищь при pa3pyinetiHH поперечных связей (химическое течение) [c.253]

    Техническая гидроаэромеханика изучает законы движения, относительного покоя и взаимодействия жидкости с твердыми телами, которые либо находятся в ней, либо ее ограничивают. Под жидкостью понимают такую материальную среду, медленная деформация которой при постоянном объеме возможна под действием ничтожно малых сил. Жидкости делятся на два класса малосжпмае-мые — капельные и сжимаемые — газы. При движении газон со скоростями, значительно меньшими скорости звука, сжимаемостью газа можно пренебречь, В этом случае при исследовании движения газов применяют уравнения движения капельных жидкостей. [c.8]

    Связи между составными субъединицами фибрилл и между фибриллами нековалентны, а водородные связи, видимо, играют важную роль. Ткань, образованная переплетением волокон, позволяет объяснить эластичность и вязкость клейковины. Слабые деформации обратимы за счет возврата взаимодействий их к минимальному энергетическому уровню. После более существенной деформации возможно также прогрессивное и последовательное преобразование первоначальных связей между фибриллами (упругость). Нековалентные связи между волокнами позволяют им перемещаться относительно друг друга под действием значительных ограничений и сил (вязкость). В этой схеме функциональная единица является не полипептидной цепью, а белковой фибриллой. В зависимости от характера фибрилл (глиадины или глютенины) их способность к взаимодействию может варьировать. Так, изменчивость консистенции теста, подвергаемого механическим воздействиям, обусловлена перекомбинацией между фибриллами со слабой или сильной способностью взаимодействия [13]. В отличие от модели Гросскрейца [87] участие липидов здесь не является необходимым образование фибрилл зависит только от белков и наблюдалось при работе с обезжиренной мукой [15]. [c.221]


Смотреть страницы где упоминается термин Относительная деформация взаимодействия: [c.111]    [c.99]    [c.87]    [c.87]    [c.263]    [c.121]    [c.27]    [c.246]    [c.82]    [c.82]    [c.187]    [c.725]    [c.474]    [c.216]    [c.119]    [c.297]   
Физико-химия полимеров 1978 (1978) -- [ c.351 , c.366 , c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Деформация взаимодействия



© 2025 chem21.info Реклама на сайте