Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция при гетерогенном катализе

    Основная предпосылка, лежащая в основе понимания механизма гетерогенного катализа, состоит в том, что при протекании каталитической реакции происходит адсорбция (почти всегда хемосорбция) одного или нескольких реактантов на твердой поверхности, перераспределение связей п десорбция продуктов. [c.10]

    Здесь мы рассмотрим закономерности кинетики гетерогенно-каталитических реакций в отсутствие диффузионного торможения, т. е. три из перечисленных стадий — адсорбцию, собственно реакцию и десорбцию. В обычных кинетических исследованиях эти стадии неразличимы тем не менее гетерогенно-каталитический процесс остается по своей природе сложным. Этим и объясняются характерные для гетерогенного катализа сложные и разнообразные кинетические закономерности. [c.79]


    При гетерогенном катализе лимитирующей стадией процесса могут быть скорость адсорбции и десорбции одного или нескольких исходных веществ на поверхности катализатора. Так, например, процесс синтеза аммиака [c.436]

    Гетерогенный катализ широко применяется в промышленности, например для синтеза аммиака, серной кислоты, метилового спирта, различных углеводородов. Как и в других гетерогенных процессах, здесь можно выделить ряд стадий. Наиболее обычными стадиями являются диффузия, обеспечивающая подвод исходных веществ к поверхности катализатора, адсорбция их на этой поверхности, взаимодействие адсорбированных веществ с образованием продуктов реакции, десорбция продуктов и, наконец, отвод продуктов реакции от поверхности катализатора в глубину соответствующей фазы с помощью диффузии. В тех случаях, когда решающей стадией является диффузия или адсорбция, скорость каталитической реакции определяется этими процессами. С изменением внешних условий роль определяющей стадии может перейти к другому процессу и изменить тем самым область протекающей реакции. [c.349]

    Из электронной теории катализа иа полупроводниках вытекают представления о том, что при уходе молекулы (радикала) с поверхности в объем на поверхности остаются ненасыщенные валентности. Наличие этих поверхностных валентностей и радикалов предопределяет возможность возникновения поверхностных цепных реакций. На этой основе Н. Н. Семеновым и В. В. Воеводским была развита цепная теория гетерогенного катализа, в которой катализатор выступает как полирадикал, обеспечивающий зарождение и развитие реакционных цепей на поверхности. Можно показать, что существует возможность перехода цепей с поверхности в объем в результате десорбции радикалов. Было экспериментально показано, что в подобном случае температура в объеме оказывается выше, чем на поверхности катализатора. Радикальный механизм не может претендовать на универсальность, так как образование и выход в объем радикалов требуют значительных затрат энергии. Кроме того, большинство гетерогенно-каталитических процессов обратимы, а принцип детальной обратимости несовместим с не-стационарностью течения реакций с участием промен уточных активных продуктов — атомов и радикалов. [c.303]

    За последние несколько лет стало очевидным, что исследования в области гетерогенного катализа тормозятся из-за недостаточного знания свойств поверхностей и природы адсорбирован-]1ых частиц. Для выяснения этих вопросов был разработай ряд новых экспериментальных методов, позволяющих исследовать поверхностные реакции в сильно идеализированных условиях. Это >1етод измерения контактной разности потенциалов, метод флеш-десорбции, метод дифракции электронов с низкой энергией и методы электронной и ионной эмиссионной микроскопии. Все эти экспериментальные методы, за исключением метода флеш-лесорбции, отличаются от применявшихся ранее тем. что в процессе реакции пепосредственно исследуется адсорбированный слой, а не продукты, появляющиеся в газовой фазе. [c.173]


    В связи с указанными особенностями гетерогенного катализа можно выделить четыре основные стадии этого процесса 1) диффузия исходных веществ к поверхности катализатора 2) абсорбция исходных веществ на активных центрах за счет химических и электростатических сил 3) взаимодействие адсорбированных веществ с образованием продуктов реакции 4) десорбция продуктов с поверхности и диффузия из в глубь фазы. [c.298]

    Развитие представлений об активированной адсорбции, изучение изменений энергии активации адсорбции, теплот адсорбции и десорбции с изменением степени заполнения поверхности и природы катализатора имеет важное значение для выяснения сущности гетерогенного катализа. [c.182]

    В гетерогенном катализе скорость химической реакции увеличивается под влиянием катализаторов, образующих отдельную фазу последние вместе с реагентами и продуктами реакции составляет гетерогенную систему. Это — обычно системы твердое тело — газ и твердое тело — жидкость. Реакция происходит на поверхности катализатора — твердого тела, а газ и жидкость могут рассматриваться в качестве резервуара частиц. Процесс в случае гетерогенного катализа включает в себя пять стадий подвод (транспорт) веществ к поверхности адсорбцию по крайней мере одного из реагентов собственно химическое превращение на поверхности десорбцию продуктов реакции отвод вешеств от поверхности. [c.764]

    Учитывая, что процессы гетерогенного катализа протекают непосредственно на поверхности катализатора, естественно, что все свойства поверхности, т. е. ее величина, химический состав поверхностного слоя, структура и т. п. играют существенную роль в активности катализатора. Даже относительно простые гетерогенные каталитические процессы, как, например, дегидрирование спирта, протекают в несколько стадий 1) приближение реагентов к поверхности катализатора 2) адсорбция и ориентация молекул реагента на активных центрах 3) деформация связей в молекулах 4) химическое превращение активированных молекул 5) десорбция и удаление продуктов реакции с поверхности катализатора. [c.98]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Весь каталитический процесс, осуществляемый на твердом катализаторе, можно разбить на пять последовательно протекающих стадий 1) диффузия молекул реагирующих веществ к поверхности катализатора 2) адсорбция молекул реагирующих веществ на катализаторе 3) химическая реакция 4) десорбция молекул продуктов реакции 5) диффузия молекул продуктов реакции с поверхности катализатора в жидкую или газовую фазу. Первая и последняя стадии называются диффузионными, остальные кинетическими. Все эти стадии могут идти с различными скоростями и скорость всего каталитического процесса лимитируется (определяется) его наиболее медленной стадией. При низких температурах диффузионные стадии не влияют на скорость катализа, так как они обычно идут быстрее кинетических процессов. Кинетические стадии (адсорбция, химическая реакция, десорбция) характеризуются невысокими значениями энергии активации и, следовательно, также идут с большой скоростью. С повышением температуры скорость диффузии растет медленнее, чем скорость химической реакции, и при высоких температурах диффузионные стадии лимитируют скорость гетерогенного катализа. [c.109]

    Если не рассматривать диффузию и считать, что равновесие адсорбция десорбция устанавливается быстро, то скорость каталитической реакции определяется скоростью реакции в адсорбционном слое, где роль реагента играют свободные адсорбционные центры. Простейший механизм гетерогенного катализа описывается схемой  [c.227]


    В этом разделе построена модель гетерогенного катализа диссоциированной смеси углекислого газа и азота на поверхности высокотемпературных теплозащитных материалов, учитывающая неравновесные реакции адсорбции-десорбции атомов кислорода и азота, молекул окиси углерода и их рекомбинацию в реакциях Или-Райдила 157—163]. С помощью интерпретации экспериментальных данных [c.137]

    Метод взвешенного слоя в последние годы широко внедрен в различные отрасли промышленности и, в частности, в ряд процессов химической технологии (адсорбцию и десорбцию, сушку, выщелачивание и экстрагирование, гетерогенный катализ, обжиг, газификацию и т. д.) в качестве прогрессивного технологического метода, обеспечивающего непрерывность взаимодействия газовой (жидкой) среды с зернистым твердым материалом в условиях выравнивания таких параметров процесса, как температура и концентрация. [c.229]

    В промышленности наиболее распространен гетерогенный катализ на твердых катализаторах, который и рассматривается ниже. Механизм гетерогенно-каталитического процесса слагается из массообменных и химических стадий. В общем случае при катализе на твердых катализаторах имеют место следующие элементарные стадии I) диффузия реагентов из ядра потока к поверхности зерен катализатора 2) диффузия в порах зерна катализатора 3) активированная (химическая) адсорбция реагентов на поверхности катализатора с образованием поверхностных химических соединений 4) перегруппировка атомов с образованием поверхностных комплексов продукты — катализатор 5) десорбция продукта (регенерация активных центров катализатора) 6) диффузия продукта в порах зерна катализатора 7) диффузия продукта от поверхности зерна катализатора в ядро потока. [c.145]

    Контактные катализаторы — металлы, окислы металлов, сернистые соединения металлов — применяются, главным образом, в процессах циклизации (ароматизации) и дегидрогенизации углеводородов и нефтяных фракций. Контактные катализаторы действуют по мультиплетному механизму. Процесс, происходящий при гетерогенном катализе на контактном катализаторе можно разбить на стадии 1) адсорбция исходной молекулы на поверхности катализатора 2) образование мультиплетного комплекса (валентно-химическое состояние) 3) новообразование молекул 4) десорбция новообразованных молекул. [c.222]

    Рассмотрим результаты таких опытов, исходя из основных положений гетерогенного катализа. Реакция гетерогенного каталитического окисления (не осложненная гомогенными стадиями) осушествляется на поверхности раздела двух фаз газовой (редко жидкой) фазы, содержащей исходные соединения и продукты их взаимодействия, и твердой фазы, представленной катализатором. В реакцию вступают вешества, находящиеся на этой поверхности, и скорость каталитической реакции, если она не лимитируется стадиями адсорбции исходных веществ или десорбции продуктов реакции, определяется концентрацией поверхностных форм реагирующих веществ, и в частности в окислительном гетерогенном катализе-концентрацией определенных поверхностных форм кислорода, ответственных за данную реакцию. [c.104]

    В настояшем параграфе будут рассмотрены лишь те аспекты гетерогенного катализа, которые имеют непосредственное отношение к расчету реактора. Важнейшей новой характеристикой (по сравнению с гомогенными реакциями) является эффективная поверхность катализатора. Так как реакция рассматриваемого типа протекают на поверхностях в результате адсорбции или десорбции, любое изменение плошадп поверхности будет, естественно, вызывать изменение скорости реакции. Следовательно, поверхность катализатора является важной переменной, которую необходимо учитывать. [c.39]

    Гетерогенный катали ) сложное явление, протекает через ряд промежуточных стадий а) адсорбция реагирующих веществ б) реакция на поверхпости в) десорбция продуктов реакции. Главная химическая супшость гетерогенного катализа заключается во взаимодейстнии реагирующих молекул с поверхностью катали.чатора, приводящим к ик активации. [c.157]

    Ускоряющее действие на разложение пероксида водорода оказывают свет, температура, твердые катализаторы (платиновая чернь, стекло, многие металлы, соли, оксиды металлов). Каталитическое разложение Н2О2 на платиновой черни является примером гетерогенного катализа. Видимо, лимитирующей стадией в данном случае является диффузия молекул Н2О2 к поверхности платины. Стадии адсорбции и десорбции, а также отвод продуктов в глубину фазы протекают быстро и не определяют скорость процесса. [c.154]

    Химические производства включают три основных этапа подготовка сырья (1), химические превращения (2), разделение продуктов (3). Массообмен в значительной степени обеспечивает первую стадию, когда требуется подготовить сырье определенного состава (с заданным содержанием компонентов). Он обычно играет определяющую роль на третьей стадии. Дело в том, что процессы происходят не со 100-процентными выходами и не с идеальной селективностью — остаются непрореагировавшие вещества, появляются побочные продукты. Поэтому из гаммы полученных компонентов необходимо вьщелить целевые, хорошо бы разделить и остальные с целью их разумного использования. Но и на второй стадии собственно химическое превращение сопровождается массопереносом. Например, гетерогенный катализ вкпючает адсорбцию исходных компонентов на зерне катализатора, собственно химическое взаимодействие и десорбцию продуктов с поверхности зерна в ряде случаев именно адсорбция или десорбция (а это — массообменные эффекты) являкугся наиболее медленной стадией процесса и потому определяют скорость технологического процесса в целом. [c.735]

    Процесс гетерогенного катализа состоит в адсорбции реагирующих молекул поверхностью катализатора, реакции между ними и десорбции, т. е. отделении от поверхности продуктов реакции. Адсорбция приводит реагирующие молекулы в состояние тесного соприкосновения, изменяет структуру их электронных оболочек и может понизить энергию активации. Как показал Баландин в своей мультиплетной теории катализа [9], важнейшую роль в процессе играет геометрическое структурное соответствие между поверхностями катализатора и сорбируемой молекулы. Металлический катализатор обладает кристаллической структурой. Если симметрия его кристаллической решетки и межатомные расстояния соответствуют геометрии молекул реагентов, то последние могут эффективно сорбироваться и приходить в необходимое для реакции состояние в результате взаимодействия с атомами металла. Так, реакция гидрирования бензола СйНеЗНа СбН12 катализируется платиной, никелем и некоторыми другими металлами, но не железом, серебром и т. д. Молекула бензола — правильный шестиугольник с длинами связей С—С, равными 1,4 А. Атомы на поверхности кристаллического никеля и других эффективных катализаторов также располагаются в виде шестиугольников, примерно на тех же расстояниях, что и в бензоле [10]. Напротив, атомы некатализирующих эту реакцию металлов либо размещаются по-иному, либо обладают неподходящими размерами. [c.359]

    Массоперенос в капиллярно-пористых телах — сложный процесс, который обусловлен рядом причин, зависящих от вида технологического процесса (сущка, десорбция, экстрагирование, гетерогенный катализ на пористых катализаторах и т. д.), характеристик пористой среды (величина и конфигурация пор, распределение пор по размерам, характер соединения их между собой), энергетического состояния поверхности стенок пор, физико-химического сродства молекул извлекаемого вещества (диффузант) и скелета твердого тела, температуры, давления, степени заполнения пор извлекаемым веществом. [c.534]

    Закон установло опытным путем Г. И. Гессом в 1836. ГЕТЕРОГЕННЫЙ КАТАЛИЗ, вызывается катализаторами, образующими самостоят. фазу, отделенную от реагентов границей раздела. Наиб, распространен Г. к., при к-ром ТВ. кат. ускоряет р-цию в газовой фазе или в р-ре. При Г. к. процесс всегда состоит из неск. стадий диффузии реагентов к пов-сти катализатора, их адсорбции, хим. р-ции на пов-сти, десорбции продуктов. Практически различают диффуз. и кинетич. области протекания Г. к. Поскольку катализаторами часто бывают пористые тела, а р-ции происходят при высоких давл. и т-рах с большими скоростями, суммарная скорость процесса может определяться диффузией в-ва в порах катализатора или теплопередачей (о роли диффузии и теплопередачи в Г. к. см. Макрокинетика). Чтобы уменьшить влияние диффузии и теплопередачи и увеличить эффективность катализатора, его раздробляют, наносят на непористый носитель или проводят процесс в псевдоожиж. слое, где пьи.евидный катализатор поддерживается потоком реагентов во взвеш. состоянии. [c.129]

    Гетерогенный катализ орто-пара-превращения водорода на металлах включает не реакцию на поверхности, а только стадии адсорбции и десорбции, причем последняя определяет скорость превращения. Следовательно, эта реакция проще, чем гетерогенно-каталитические реакции, данные в табл. 2 она значительно более близка к случаю 16, чем к 1а. В соответствии с представлением, что относительные скорости реакций с одной простой стадией могут зависеть больше от энергий активации, чем от предэкспоненциальных множителей, в одной весьма тщательно проделанной работе [45] по превращению над сплавами золота и палладия было показано, что при определенных составах сплавов наблюдаются резкие изменения энергии активации при малых изменениях предэкспонен-цильных множителей. На рис. 60 (стр. 274) показано изменение Е, а также слабое изменение величины Во, представляющей пред-экспоненциальный множитель с внесенной поправкой на различные поверхностно-объемные соотношения в проводимых опытах. [c.39]

    Почти во всех исследованиях в области гетерогенного катализа скорость реакции определялась как скорость исчезновения одного из реагирующих веществ из газовой фазы или как скорость выделения в газовую фазу продукта реакции. Изменение свойств катализатора можно использовать для измерения скорости реакции только в одном тине гетерогенных реакций, в котором единственной реакцией является хемосорбция или десорбция атомов или молекул и в котором не обнаруживается дальнейшая реакция между хемосорбированными фрагментами. В этих случаях можно воспользоваться изменением таких поверхностных свойств, как коэффициент аккомодации [7, 12], контактный потенциал [13], эмиссия электронов [14] или поверхностная электропроводность [15]. Подобные исследования важны для развития современных представлений о катализе, так как хемосорбция представляет неотъемлемую стадию всех гетерогенно-каталитических реакций и изменения свойств поверхности можно использовать для установления того, какая хемосорбция происходит во время катализируемых реакций и, следовательно, каковы возможные механизмы последних. Так, например, Дауден [10] связал гидро- и дегидрогенизационные свойства ряда смешанных окисей с их полупроводниковыми свойствами. Эти методы рассмотрены в следующей главе. [c.158]

    Как указывалось выше, хемосорбция является существенным условием возможности осуществления гетерогенного катализа. Хемосорбция — процесс обратимый, связанный с установлением динамического равновесия адсорбция — десорбция. Для энергетически однородной поверхности количественным выражением адсорбции является уравнение Ленгмюра. Согласно И. Ленг-мюру, число адсорбирующихся в секунду молекул пропорционально числу ударов молекул о поверхность, в свою очередь пропорциональному давлению. Если поверхность адсорбента равна единице, Ь —часть ее, покрытая адсорбированными молекулами, al—9 — свободная часть поверхности, то скорость адсорбции (заполнения поверхности) равна [c.186]

    В этой главе рассматриваются закономерности кинетики ге-терогейно-каталитических реакций в отсутствие диффузионного торможения. Мы ограничиваемся, таким образом, исследованием трех из перечисленных стадий — адсорбции, собственно реакции и десорбции. В обычных кинетических исследованиях эти стадии неразличимы тем не менее, гетерогенно-каталитиче-ский процесс остается по своей природе сложным, что и служит причиной характерных для гетерогенного катализа сложных и разнообразных кинетических закономерностей. [c.101]

    При повышении температуры до 873° К кетенные комплексы рас-рушаются с отрывом от поверхности углерода молекул СО. Разрушение перекисно-адсорбционных комплексов сопровождается десорбцией молекул углекислого газа СО . Наиболее типичным случаем необратимой активированной адсорбции является обменная адсорбция. Если адсорбируется и десорбируется одно и то же вещество, то активированная адсорбция называется обратимой. Последняя является одной из важнейших стадий гетерогенного катализа. Примером обратимой активированной адсорбции является адсорбция водорода на смеси оксилов хрома и марганца (СГ2О3 -Ь -Ь МпО), на никеле и других адсорбентах. В противоположность физической адсорбции активированная адсорбция сопровождается значительным тепловым эффектом. Последний в некоторых случаях превышает даже тепловой эффект реакции глежду соответствующими веществами. Объясняется это тем, что выделяющаяся при образовании поверхностных соединений энергия не расходуется на отрыв этих соединений от поверхности адсорбента. Скорость активированной адсорбции так же, как и скорость химической реакции, резко увеличивается при увеличении температуры. Скорость же физической адсорбции практически не зависит от температуры. Поэтому при низких температурах преобладает физическая адсорбция, а при высоких — активированная. [c.153]

    Основные научные исследования относятся к нефтехимии и каталитической химии. Впервые систематизировал опытные данные, полученные русскими и зарубежными учеными по химии и физикохимии нефти. Изучая адсорбцию, высказал (1911—1912) гипотезу о существовании физико-химической силы притяжения, являющейся промежуточной между химической связью и молекулярным притяжением. На основании этой гипотезы объяснил образование коллоидных растворов и суспензий флоридина (отбеливающей земли) и металлов в жидкостях, а также процессы адсорбции и десорбции. Результаты этих исследований легли в основу разработки методов промышленной очистки нефтепродуктов и были использованы им в работах по гетерогенному катализу (1916). Объяснил (1908) физическую сущность процесса перегонки нефти с водяным паром. Доказал (1911— 1912), что полимеризация олефинов идет на природном алюмосиликате. Его исследования поверхностного натяжения на границе нефтепрод5т<т — водный раствор способствовали формированию представлений об образовании и разрущении водно-нефтяных эмульсий. Автор труда Научные основы переработки нефти (1913, 3-е изд. 1940). [22, 23, 123[ [c.159]

    Процессы адсорбции — десорбции и реакции ассоциации — дисоциации между адсорбированными частицами на поверхности твердого тела играют большую роль в гетерогенном катализе. Концепция активных центров в гетерогенном катализе связывает каталитическую активность со структурными особенностями поверхности катализатора. Например, на каталитическую активность могут оказывать влияние ступени и изломы (регистрируемые методами ДЭНЭ и ПЭМ) [37]. В работах [38, 39] исследованы реакции обмена водород — дейтерий на гладкой и ступенчатой поверхностях платины. Показано, что на ступенчатой поверхности Pt [грань (111)], облучаемой потоком водорода, образуются (в отличие от гладкой) и масс-спектрометрически детектируются молекулы HD. Установлено, что ступенчатая поверхность увеличивает выход молекул HD на четыре порядка по сравнению с достигаемым на гладкой поверхности и что ступени являются промоторами адсорбции и диссоциации молекул Нг и Ог. [c.238]

    Гетерогенный катализ дегидрога-логепирования и дегидратации, несмотря на большое значение в качестве препаративного метода, гораздо труднее объяснить теоретически, так как здесь вводится много новых факторов — значительно больше, чем в случае гомогенного катализа. 0бш,ая скорость зависит от природы поверхности катализатора, природы молекул, вступивших в реакцшо, и может определяться либо скоростью адсорбции реагирующих веществ, скоростью реакции адсорбированных молекул, либо скоростью десорбции продуктов реакции. Самым простым для обсуждения будет случай, для которого адсорбция и десорбция — процессы быстрые, а процесс, определяющий скорость, — реакция на поверхности. В этом случае влияние как природы катализатора, так и природы реагентов может быть легко исследовано. Для гетерогенной реакции наблюдаемая константа скорости дается уравнением [c.146]

    Несомненно, что хемоадсорбция для исходных веществ и десорбция продуктов реакции представляют важные и обязательные этапы. Они начинают и завершают гетерогенный катализ но механизм катализа нельзя сводить только к этим стадиям, так как их недостаточно для обеспечения катализаторами их внутренних кибернетических функций применительно-к более сложным процессам. Покажем это для сопряжения стадий и реакций. [c.57]

    К 1920 г. было опубликовано несколько работ, весьма способствовавших развитию учения о гетерогенном катализе. Некоторые из них имели теоретическое значение, а другие — прикладной характер. Так, Сабатье [5] к этому времени уже выдвинул предположение, что никель, который был известен как катализатор реакций гидрирования, проявляет активность благодаря способности легко образовывать промежуточные гидриды, которые в свою очередь разлагаются, образуя свободный металл. Хабер осуществил каталитический синтез аммиака и дал термодинамическое описание этой системы. Ленгмюр уже почти завершил свои работы, показавшие, что теория Нернста, удовлетворительно объясняющая кинетические особенности растворения твердых тел в жидкостях, не пригодна для объяснения кинетики реакций газов на поверхностях. В этот период, после того как Ленгмюр, Райдил, Хиншельвуди сотрудники сконцентрировали свое внимание на изучении кинетики гетерогенных каталитических реакций, оказалось возможным сформулировать некоторые общие принципы, объясняющие найденные ранее экспериментально различные типы зависимости скорости от давления. Согласно предложенному Ленгмюром и Хиншельвудом механизму каталитического процесса, скорость гетерогенной реакции лимитируется реакцией между адсорбированными молекулами, адсорбция и десорбция являются равновесными процессами. В то же время, по мнению Райдила и Или, гетерогенная реакция может происходить между сильно адсорбированными атомами (т. е. хемосорбированными атомами) и молекулами, удерживаемыми у поверхности только слабыми вандерваальсовыми силами (т. е. физически адсорбированными молекулами). [c.16]

    Рассматриваемый здесь гетерогенный катализ состоит во взаимодействии с твердыми поверхностями. В присутствии катализатора реакция протекает быстрее. Обычно считают, что катализируемая реакция протекает путем адсорбции реагирующих веществ на поверхности, реакции адсорбированных молекул или с такой же адсорбированной молекулой или молекулой из окружающей катализатор фазы и, наконец, десорбции продукта с регенерацией поверхностного центра. В большинстве случаев контроль над каталитическими процессами осуществляется при по1>ющи эмпирических методов. На основе наблюдений за составом продуктов и исследования кинетики реакции делаются предположения о структуре поверхностных промежуточных соединений. С привлечением указанных методов была получена значительная информация и созданы определенные представления о характере реакции, однако предполагаемые кинетические и поверхностные структуры редко носят однозначный характер, поскольку обычно можно предположить больше, чем один набор поверхностных структур, согласующихся со всеми наблюдаемыми данными. Многие каталитические реакции являются высокоспецифичпыми в отношении получаемых продуктов, давая главным образом один продукт, в то время как термодинамически возможно образование нескольких соединений. Любое фундаментальное понимание этих каталитических процессов должно основываться на детальном знании строения и реакционной способности поверхностных структур. [c.320]

    Однако геометрическое соответствие компонентов мультиплетного комплекса является необходимым, но не достаточным условием для гетерогенного катализа. Второе необходимое условие состоит в принципе энергетического соответствия между адсорбционным потенциалом катализатора (энергии связи катализатора с реагирующей гдолекулой) и энергией разрываемых и вновь возникающих при каталитической реакции связей. Наибольшую активность проявляют катализаторы, адсорбционный, потенциал которых составляет половину теплового эффекта катализируемой реакции. При слишком высоких адсорбционных потенциалах затрудняется десорбция продуктов с поверхности катализатора, которая, таким образом, не освобождается для последующих актов катализа. [c.139]

    Обратимся к гетерогенному катализу и посмотрим, какие представления развиты в этой области. Теперь уже никто не сомневается в том, что химическому превращению молекул предшествует адсорбция их на поверхности раздела двух фаз, нанример твердой (кристаллической) и газообразной. После завершения собственно химической реакции следует выделение продукта реакции в газовую фазу— десорбция. Эти два процесса могут быть очень точно измерены, и именно эти измерения позволяют проследить за кинетикой реакции. О процессах, протекающих на поверхности, судят по изменению концентрации компонентов реакции в газовой (или жидкой) фазе. Однако из самых общих соображений можно предположить, что молекулы, сталкиваясь с поверхностными атомами, образуют промежуточные соединения или неустойчивые комплексы. Структура комплексов может быть самой разнообразной, но одно ясно — электронную перестройку будут претерпевать те участки адсорбированных молекул, которые входят в непосредственный контакт с атомами поверхности, так как радиус действия химических сил по порядку величины сравним с размерами атомов. По предложению академика А. А. Баландина (1928) эти контактирующие части называют мультинлетами . На рис. 4 приведены некоторые из предполагаемых механизмов перестройки атомных структур, входящих в мульти-плеты. Атомы и химические связи мультиплета заключе- [c.44]

    Единственным путем к пониманию любор области науки, столь сложной, как катализ, является полный анализ всех действующих факторов и исследование каждой переменной возможно более независимо от влияния всех других переменных. Гетерогенный катализ всегда связан с адсорбцией. При высокотемпературных реакциях каталитического разложения адсорбционный комплекс может существовать в течение очень короткого времени. При бимолекулярных реакциях для образования продукта часто должны быть адсорбированы оба реагирующих вещества иногда бывает достаточно адсорбции одного из них. Стадией, определяющей скорость гетерогенных реакций, может быть скорость адсорбции реагента (или реагентов) поверхностью или скорость десорбции с нее продукта (или продуктов) реакции. Только в редких случаях определяющим фактором является скорость поверхностной реакции. По определению, катализатор понижает энергию активации реакции в гетерогенном катализе это достигается путем образования активированного адсорбционного комплекса с катализатором. Указанное отнюдь не означает, что сильная адсорбция эквивалентна высокой каталитической активности. В действительности слишком сильная адсорбция может просто привести к тому, что поверхность окажется покрытой любым из реагентов или продуктов реакции, сильно отравляющих ее для любой дальнейшей реакции. Это показывает, что энергию активации, необходимую для образования активированного адсорбционного комплекса, следует рассматривать в связи с энергией активации, необходимой для соответствующей реакции внутри активированного адсорбционного комплекса. Например, автор настоящей статьи со своими сотрудниками [1] показал, что для гидрирования этилена при температуре, близкой к комнатной, и при обыкновенном давлении водород должен быть адсорбирован в виде атомов. Далее в этой работе [2] показано, что сам этилен не адсорбируется поверхностью, а что он просто отрывает от нее два атома водорода. Разумеется, это не значит, что в акте отрыва двух атомов водорода этилен не образует на мгновение [c.198]


Смотреть страницы где упоминается термин Десорбция при гетерогенном катализе: [c.295]    [c.15]    [c.221]    [c.129]    [c.178]    [c.683]    [c.81]    [c.396]   
Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.172 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Десорбция

Катализ гетерогенный



© 2024 chem21.info Реклама на сайте