Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепная полимеризация характеристика

    Общая характеристика элементарных реакций цепной полимеризации не отличается от характеристики тех же стадий обычных цепных процессов. Так, реакция образования активных центров всегда требует затраты большого количества энергии и протекает медленно. [c.63]

    Блестящие работы Н. Н. Семенова, его сотрудников и учеников по разработке теории цепных реакций имеют большое значение для катализа, особенно в связи с проблемами цепной полимеризации, ингибирования процессов окисления, проблемой антидетонаторов и т. д. В этом обзоре мы не имеем возможности дать хотя бы краткую характеристику многообразных и весьма важных работ, связанных с разработкой классической теории цепных реакций. Укажем лишь, что трудами этой школы (Н. Н. Семенов, 1929 г.) разработана теория процессов горения и взрывов, причем обнаружено явление ветвления цепей, а также показано существование верхнего и нижнего пределов давлений самовоспламенения и взрыва. Сравнительно недавно была выяснена роль катализа в цепных реакциях показано, например, что водяной пар благодаря возможности образования гидроксила может играть роль катализатора при некоторых цепных реакциях. [c.10]


    Далее преподаватель приступает к характеристике мономеров и полимеров цепной полимеризации. Он пишет на доске общую формулу мономеров СН2=СН—Р и приводит примеры мономеров  [c.167]

    Важнейшая характеристика цепной полимеризации — установленная опытом зависимость конверсии мономера и независимость среднего молекулярного веса полимера от времени полимеризации [c.38]

    Из рассмотрения механизма цепной полимеризации (стр. 348) видно, что продукты полимеризации являются полимергомологами с разной длиной цепи и могут быть охарактеризованы лишь величиной среднего молекулярного веса. Молекулярный вес полимеров является наиболее важной их характеристикой, так как от степени полимеризации (длины цепей макромолекул) зависят важнейшие физикомеханические свойства этих материалов. Большое значение имеет также степень ориентированности линейных цепей, их изогнутость и степень разветвленности. Чем более выпрямлены и ориентированы друг относительно друга цепи полимера, чем менее они разветвлены, тем сильнее проявляются силы взаимного притяжения, тем выше механическая прочность материала. Степень ориентации линейных молекул полимера может быть повышена при последующей обработке пластического материала путем дополнительной вытяжки пленок и нитей, при литье под давлением через узкие каналы и т. д. [c.384]

    Кроме различий в составе и структуре полимеров, Флори [3] обращает большое внимание на значительную разницу в механизмах их образования. На основании механизма процесса полимеризация делится на ступенчатую и цепную. Таким образом, ступенчатые полимеры — это полимеры, получающиеся ступенчатой полимеризацией (поликонденсацией), а цепные полимеры — это полимеры, образующиеся цепной полимеризацией. По своим характеристикам эти два процесса сильно различаются. При этом различие заключается главным образом в разной зависимости параметров реакции от времени. Если говорить более конкретно, то при поликонденсации и полимеризации требуется различный промежуток времени для получения высокомолекулярных полимеров, т. е. для завершения роста цепп макромолекулы. [c.18]

    ИЛИ (22), стр. 53]. Если процесс цепной полимеризации обрывается посторонней молекулой, примесями или в результате реакции передачи цепи, то эти группы находятся на одном или обоих концах макромолекулы. Определение этих концевых групп представляет существенную возможность характеристики высокомолекулярных соединений и исследования механизма их синтеза. Однако однозначное и количественное определение концевых групп экспериментально возможно лишь в том случае, когда эти группы содержат специфические группировки или аналитически определяемые элементы. [c.188]


    Общая характеристика элементарных реакций цепной полимеризации не отличается от характеристики тех же стадий обычных цепных процессов. Так, реакция образования активных центров всегда требует затраты большого количества энергии, и эта реакция протекает медленно. Рост цепи отличается малой энергией активации, и скорость этой реакции очень велика. Тепловой эффект реакции роста цепи всегда положителен. Реакция обрыва цепи, по-видимому, также характеризуется небольшой энергией активации и протекает с достаточно высокой скоростью. [c.53]

    Уже было указано на существование определенной зависимости совместимости от строения и величины молекулы полимерного пластификатора. Для более точной характеристики этой зависимости в табл. 283—284 приведена взаимосвязь между средним молекулярным весом или степенью полимеризации, критической температурой растворения поливинилхлорида, пленкообразующей способностью и длиной молекул исследованных соединений. Если сопоставить длину молекул различных полимерных пластификаторов, полученных радикально-цепной полимеризацией, и длину спиртового радикала в них с температурой совмещаемости с поливинилхлоридом, выявляются некоторые закономерности. [c.834]

    Ряд практически значимых полимеров получается в результате цепной полимеризации циклов. С другой стороны, при ступенчатой полимеризации образование циклов является побочной нежелательной реакцией. Термодинамические характеристики реакций, связанных с раскрытием или образованием циклов, в значительной мере определяются степенью напряжения последних. На рис. 5.17 приведены энергии напряжения циклов, отнесенные к одной группе СНг, которые были рассчитаны, исходя из раз- [c.282]

    Величина молекул органических полимеров оценивается обычно значениями молекулярной массы или числом химических звеньев, из которых состоят цепные молекулы полимеров. Эти две характеристики связаны друг с другом очевидно, что число мономерных звеньев в цепи должно быть равно отношению -молекулярной массы полимера к молекулярной массе соответствующего мономера. Эта величина называется степенью полимеризации. [c.370]

    Целлюлоза, как и другие полимеры, состоит из линейных цепных макромолекул с различной степенью полимеризации (СП) и, следовательно, различной молекулярной массой М. Для характеристики образца определяют среднюю молекулярную массу. Ее значение зависит от того, учитывают ли в расчете число молекул или их массу. В первом случае получают среднечисловую молекулярную массу Мп или среднечисловое значение СП , во втором случае — среднемассовую молекулярную массу Мш или среднемассовое значение СПт,. Среднечисловая молекулярная масса выражается формулой [c.15]

    Высокомолекулярная полимеризация виниловых и диеновых соединений представляет собой особый вид цепной реакции. Характерной особенностью ее является то, что развитие кинетических цепей сопровождается ростом молекулярных цепей из молекул мономера. Процесс полимеризации, как и все цепные реакции, определяется совокупностью элементарных реакций. Задачей теории полимеризации является установление химизма этих элементарных реакций, нахождения их кинетических характеристик и взаимной связи, т. е. механизма процесса. Другой важной задачей теории является нахождение связей между кинетическими характеристиками различных элементарных реакций и строением молекул, вступающих в эти реакции. [c.7]

    Количественной характеристикой степени саморазложения радиоактивного соединения служит коэффициент разложения К, под которым понимают число распадающихся молекул вещества (или число образующихся молекул продуктов реакции) на 100 эв поглощенной энергии. Для большинства органических соединений (насыщенные и ароматические углеводороды, спирты, эфиры, органические галогепиды) коэффициент разложения не превышает 10. Для ненасыщенных углеводородов, ввиду их меньшей стабильности и склонности к реакциям полимеризации, а также для четвертичных аммониевых солей и аминокислот коэффициент разложения достигает значений нескольких тысяч, а для цепных реакций может составлять величину порядка 10 . [c.88]

    Первый тип полимеризационных процессов близок к безобрывной ионной полимеризации, второй — к радикальной полимеризации. Точная количественная характеристика должна учитывать тип кинетической модели и степень сегрегации реактора идеального смешения. В работах [33, 34] исследовано влияние сегрегации на ММР для процессов поликонденсации, ступенчатой аддитивной полимеризации и цепной радикальной полимеризации. Сравнитель- [c.54]


    Как мы уже знаем, молекулярный вес высокомолекулярных соединений М измеряется десятками и сотнями тысяч, а в отдельных случаях, например для целлюлозы, и миллионами кислородных единиц и является важнейшей характеристикой этих соединений, обусловливающей все основные их свойства, в первую очередь размер (длину) I цепной макромолекулы и число повторяющихся звеньев в макромолекуле-полимере х. Число звеньев, или коэффициент полимеризации, зная вес звена Мз, можно вычислить из уравнения [c.161]

    Понятие механизма сложной химической реакции допускает различное толкование. Обычно его определяют как совокупность более простых стадий, из которых складывается весь процесс в целом. В этом смысле механизм представляет собой детальное описание процесса, природы и строения участников всех его стадий, вплоть до элементарных. При необходимости кратко охарактеризовать механизм мы отмечаем ту или иную интересующую нас особенность его. Так, например, говоря о том, что механизм является цепным, мы тем самым подразумеваем наличие определенных стадий процесса (т. е. прежде всего реакций инициирования, роста и обрыва цепи). Если же мы обращаем внимание на характер разрыва и образования связей или на природу активных промежуточных соединений, то говорим о гомо- или гетеролитических процессах, о радикальном или ионном механизме. Поскольку любой процесс полимеризации можно рассматривать как цепной, то при характеристике его на первый план выступает вопрос о природе активных центров, носителей цепи. Напомним, что существующая классификация процессов полимеризации основана на различиях в природе активного конца растущей цепи. Разумеется, это не означает, что кинетика отдельных стадий и всего процесса полимеризации в целом представляет второстепенный интерес. Сказанным лишь подчеркивается то, что кинетические особенности процесса при исследовании и характеристике механизма должны быть поставлены в связь с химической природой активных центров. [c.4]

    Принципиальное и очень важное отличие ценного процесса полимеризации от цепных процессов, приводящих к образованию низкомолекулярных продуктов, заключается в том, что кинетическая цепь, т. е. многократное повторение реакций роста, создает материальную цепь, состоящую из множества молекулярных звеньев, связанных между собой. Соотношение скоростей роста и обрыва цепи определяет длину полимерной цепи, а стереохимия акта роста цепи определяет структуру макромолекулы, т. е. порядок присоединения звеньев (если они несимметричны) и пространственное расположение боковых заместителей. Наряду с вышеупомянутыми основными реакциями цепного процесса существуют еще и такие, как реакции передачи (переноса) цепи на мономер, растворитель или другие вещества реакционной смеси, которые не вызывают кинетического обрыва, но приводят к ограничению длины цепи (см. стр. 11). Таким образом, важнейшие характеристики полимера — его молекулярный вес и структура — определяются отдельными стадиями цепного процесса и относительными скоростями их протекания, т. е. механизмом и кинетикой полимеризации. [c.8]

    Наиболее известен и шире всего распространен способ радикальной (инициированной) полимеризации. Все материалы, полученные этим способом, например полиэтилен, полипропилен, поливинилхло-рид, термопластичны. Полимеризация предполагает объединение мономеров, которые соединяются друг с другом при нагревании или воздействии катализатора за счет раскрытия имеющихся в мономерах двойных связей. Возникающие во время экзотермически протекающей реакции реак-ционноспособные радикалы объединяются преимущественно в цепные макромолекулы. Побочных продуктов при этом не образуется. Элементный состав полимера определяется участвующими в строении мономерами. Метод полимеризации предоставляет технологам возможность изменять свойства высокомолекулярных материалов путем воздействия на протекание процесса полимеризации. Для полимеризации характерны три фазы. В первой протекает реакция инициирования. При достаточном воздействии энергии и (или) катализатора образуется большое количество реакционноспособных молекул мономера, из которых во второй фазе реакции должна возникнуть цепь соответствующей длины. От длины цепи, т. е. степени полимеризации (число отдельных молекул мономера, соединенных в одну цепь) существенно зависят свойства материала. По этим данным можно рассчитать молекулярную массу, которая часто используется для характеристики полимерных материалов. [c.77]

    Большинство ранних работ по радиационной химии ограничивалось биологическими и водными системами, но возросшая доступность источников излучения в послевоенный период позволила распространить исследования на органические соединения. Легкость определения изменений, вызванных облучением, при помощи цепных реакций полимеризации быстро получила признание Мага, Шапиро и их сотрудники начали интенсивно исследовать эти реакции раньше, чем выявилась возможность каких-либо других применений радиации к полимерам. Настоящая глава по радиационной катионной полимеризации была задумана главным образом с целью выявления основных характеристик этого процесса в сравнении с более ранними исследованиями полимеризации. Для удобства читателей, недостаточно знакомых с радиационной химией и ее применениями к полимерам, в эту главу включено краткое введение в радиационную химию и терминологию. В следующем вводном разделе излагаются предпосылки к открытию радиационной ионной полимеризации. [c.508]

    Цепную полимеризацию проводят при низких темпе ратурах (порядка минус 70 — минус 100 °С) в присутствии безводного хлористого алюминия или фтористого бора. Получающиеся продукты представляют собой вязкие или каучукоподобные массы (эластомеры). Полимеры молекулярного веса 20000— 40 000 (суперол, эксанол или паратон) и каучукоподобные (оп-панол) применяются в качестве присадок к нефтяным смазочным маслам, улучшающих из вязкостные характеристики. Продукт совместной низкотемпературной полимеризации изобути-лена с небольшим количеством изопрена, так называемый бу-тилкаучук, является одним из специальных видов синтетического каучука. [c.142]

    Цепную полимеризацию можно подразделить на четыре типа в зависимости от применяемых каталитических систем радикальная полимеризация катионная, или электрофильная, полимеризация анионная, или нуклеофильная, полимеризация полимеризация на комплексных металлалкильных катализаторах. Эта классификация, конечно, несколько произвольна, но она оправдывается отчетливыми различиями в характеристиках перечисленных типов процесса. [c.220]

    Особенности кинетики отверждения связующих на начальной и конечной стадиях определяются механизмом протекающих при отверждении реакций. Если отверждение связующего происходит по механизму цепной полимеризации, на начальной стадии наблюдается достаточно длительный период активации процесса (инициирование), после чего реакция развивается с самоускорением и ее чрезвычайно трудно приостановить на какой-либо промежуточной стадии. В период инициирования вязкость связующего существенно не изменяется, а на стадии роста макрорадикалов или макроионов связующее практически мгновенно достигает вязкости эластичного или твердого тела вследствие достижения точки гелеобразования — момента возникновения пространственной сетки. По такому механизму отверждаются полимеризующиеся связующие, главным образом на основе ненасыщенных эфиров. Процесс носит ярко выраженный экзотермический характер и величина теплового эффекта оказывает решающее влияние на кинетику отверждения. Показателями, используемыми для характеристики кинетики отверждения полимеризующихся связующих, чаще всего служат период времени, предшествующий гелеобразованию (время гелеобразования), максимальное значение экзотермического эффекта при данной температуре и время достижения максимума экзотермического эффекта. В табл. 1П.5 приведены перечисленные показатели для некоторых связующих на основе полималеинатов, которые отверждаются в присутствии инициирующей системы, состоящей из 3% гипериза и 8% нафтената кобальта [5, с. 17]. [c.96]

    Один и тот же мономер может быть использован для получения большого числа различных полимеров. Первая группа структурных характеристик, которыми можно управлять, изменяя условия полимеризации, включает в себя молекулярную массу, степень развет-Бленности и плотность пространственной сетки. Поскольку на процесс полимеризации влияет большое число случайных факторов, совершенно невероятно, чтобы все цепные молекулы полимера имели одинаковую длину, одинаковое число ответвлений и т. д. Скорее можно ожидать существования более или менее широкого распределения этих структурных характеристик. Поэтому оказывается необходимым определять молекулярную массу, разветвленность и густоту сетки через их средние значения. При этом используются [c.36]

    Как видим, ступенчатые процессы синтеза полимеров существенно отличаются от цепных. Как поликонденсация, так и ступенчатая полимеризация протекает по реакциям концевых функциональных групп молекул мономеров или олигомеров. Растущие цепи являются устойчивыми молекулами на каждом этапе их формирования. В зависимости от числа функциональных групп в исходных молекулах (их должно быть не менее двух) образуются линейные или ра.зветвленные м сетчатые структуры конечных продуктов реакции. Большое значение имеет равновесность и обратимость реакций, что определяет время образования полимера, его молекулярную массу и другие характеристики. Существует не- [c.79]

    В последние годы получили широкое распрострапенне многие термопластические продукты высокого молекулярного веса, преимущественно линейные полимеры, обладающие физическими характеристиками, подобными каучуку. Из них наиболее типичным является полимер изобутилена, легко получаемый и обладающий простой химической структурой. Если раствор изобутилена в летучем растворителе, например в этилене, подвергнуть действию ВРз, играющего роль катализатора, ои полимеризуется почти мгновенно. Реакция, повидимому, имеет цепной характер, причем каждая последующая молекула, присоединенная к цепи, активирует соседнюю. Низкая температура благоприятствует получению высокомолекулярного продукта. Дополнительноевведениекатализатора не способствует дальнейшей полимеризации. Образующийся продукт имеет всего одну оставшуюся двойную связь на молекулу и поэтому очень слабо поддается окислению . В точности структура полимеризата неизвестна, но исчезновение всех двойных связей у мономеров, кроме одной, говорит о вероятности такого типа строения  [c.440]

    Рассмотренными выше работами по вязкотекучим свойствам полимеров были завершены исследования природы полимерного состояния вещества в широком интервале температур. Обобщение всех полученных экспериментальных данных позволило выдвинуть представления о трех физических состояниях линейных аморфных полимеров. Был разработан и предложен совместно с Т. И. Соголовой оригинальный метод характеристики физических состояний, основанный на определении податливости полимерного образца в широком интервале температур,— термомеханический метод, получивший в настоящее время распространение в различных вариантах в практике работы исследовательских институтов и заводских лабораторий. Отображая главнейшие свойства полимеров — их механические свойства, термомеханический метод оказался весьма эффективным для[ установления в по-лимергомологическом ряду молекулярного веса или степени полимеризации, при которых в результате количественных изменений (из-за удлинения цепных молекул) вещество переходит в качественно новое — полимер- [c.10]

    Хотя полимеризация может рассматриваться как классический тип радиационноиндуцированиых цепных реакций, не так давно в этой области обнаружены новые типы цепных реакций, которые могут быть весьма важными для промышленности. Они основываются на способности радиации к инициированию реакций в веществе, находящемся в твердом состоянии в широком диапазоне температур и в условиях более точного контроля, чем это возможно при обычных химических методах. При этих реакциях происходит присоединение к полимеру — ААА — мономера В, имеющего отличные от полимера —ААА — характеристики. В результате взаимодействия полимера — ААА — и мономера В получается комбинированная структура с новыми свойствами  [c.226]

    П рирода процесса роста цепи в нолимеризации с раскрытием цикла имеет поверхностное сходство с этим процессом при цепной нолимеризации. Только мономер присоединяется к растущей цепи на стадии роста. Частицы, большие чем мономер, не реагируют с растущими цепями. Однако нолимеризации с раскрытием цикла могут быть присущи черты как обычной полимеризации, так и ноликонденсации или обеих вместе. Отнесение полимеризации с раскрытием цикла к цепному или ступенчатому процессу может быть сделано двумя путями. Один путь — это экспериментальное наблюдение кинетических закономерностей, описывающих полимеризацию второй путь — исследование распределения образующегося высокомолекулярного полимера во времени. Последняя характеристика является основной, отличающей полимеризацию от поликонденсации. При полимеризации полимер с высоким молекулярным весом образуется на протяжении всей реакции в противоположность медленному увеличению молекулярного веса при ноликонденсации. Большинство (но не все) процессов полимеризации с раскрытием цикла протекает как ступенчатая полимеризация, в которой молекулярный вес полимера увеличивается постепенно в течение всего процесса. Высокомо.лекулярный полимер образуется лишь на поздних стадиях реакции. [c.413]

    В последние годы изучение температурной зависимости теплоемкостиг в широкой области температур стало важным методом исследования термодинамических характеристик полимеров. По теплоемкости можно оценить роль акустических колебаний полимерной цепи в тепловом движении ее частиц и установить область возбуждения оптических колебаний, можно рассчитать изменения термодинамических функций при полимеризации, если известны значения этих функций для мономера, оценить степень кристалличности, выявить возможные неравновесные структурные изменения и определить температуру стеклования и т. д. Одной из наиболее характерных работ в этом отношении является статья Вундерлиха [667] о теплоемкости полиэтилена — одного из наиболее простых по структуре цепных полимеров В связи с этим автор и Л. И. Павлинов [668] изучили теплоемкость дейтерополиэтилена (— D — Ds — Dg —) в широкой области температур. [c.188]

    Целлюлоза имеет состав (СеНюОб),,, причем п (или степень полимеризации) для целлюлозы хлопка равна по крайней мере 1000 таким образом, она является цепным полимером, состоящим из остатков целлобиозы. Целлобиоза представляет собой -глюкозид глюкозы, и связь между каждой следующей парой целлобиозных остатков образуется при отщеплении одной молекулы воды. При действии кислоты и окисляющих веществ, так же как и при нагревании, действии света и микроорганизмов, целлюлозная цепь разрушается и получающиеся при этом продукты гидролиза и окислительного действия (гидроцеллюлозы и оксицеллюлозы) сильно уменьшают прочность на разрыв. Мерсеризованный хлопок, т. е. подвергавшийся действию крепкого раствора (около 25%) едкого натра прн низкой температуре и натяжении пряжи или ткани, имеет повышенное сродство к красителям. Целью мерсеризации, которой подвергается только длинноволокнистый хлопок, является увеличение блеска и прочности на разрыв. После того, как было выяснено строение целлюлозы, оказалось возможным разработать и стандартизировать методы для испытания качества целлюлозы. Несмотря на то, что целлюлозу нельзя охарактеризовать непосредственно, как простое органическое соединение, вступающее в реакцию в стехео-метрических отношениях, и чистоту ее нельзя установить по обычным физико-химическим показателям, например температуре плавления или коэффициенту рефракции, она имеет ряд легкоизмеримых характеристик. К наиболее широко применяемым относятся восстановительное действие, измеряемое при помощи медного числа, и величина цепи молекулы, определяемая по вязкости медно-аммиачного раствора. Нецеллюлозные составные части, такие как влага, неорганические соли, жиры, воска и азотсодержащие вещества, определяются дополнительно. [c.296]

    Процесс радикальной полимеризации, как и все цепные процессы, определяется совокупностью элементарных реакций. Учеными уже достаточно хорошо выявлен механизм этих элементарных рсакци11, определе1 ы кинетические характеристики процесса, а 1акже связь между кинетическими характеристиками и строением молекул. [c.51]

    Важными характеристиками равновесной гибкости макромолекулы являются отношение (h )p /(h )o (нуль в индексе относится к случаю свободного вращения), колеблющееся в пределах от 1,4—1,7 (натуральный каучук, полидиметилсилоксаны) до 4,0—4,2 (нитраты целлюлозы), и персистентная длина а, представляющая собой проекцию вектора h )p на направление первой (крайней) химической связи цепн при условии, что степень полимеризации стремится к бесконечности (рис. 86). Величжта а, которая равна половине длины сегмента, определяется рентгеноструктурными методами и будет тем больше, чем выше жесткость макромолекулы. [c.369]


Смотреть страницы где упоминается термин Цепная полимеризация характеристика: [c.333]    [c.78]    [c.36]    [c.24]    [c.353]   
Химия высокомолекулярных соединений (1950) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Цепная полимеризация



© 2025 chem21.info Реклама на сайте