Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение растворителя, распределение растворителя, величины

    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]


    При рассмотрении теоретической основы хроматографии в тонком слое следует отметить, что во всех хроматографических процессах разделения основной принцип один и тот же. Подвижная фаза движется сквозь неподвижную фазу и при этом разделяемые компоненты перемещаются с различными скоростями в направлении движения потока. Получение хроматограмм в тонком слое в основном выполняется методом элюционного анализа. Если в бумажной распределительной хроматографии за основную характеристику принята величина /, то здесь к этому показателю следует относиться с осторожностью. Движение растворителя и веществ протекает в тонких слоях несколько иначе. Так как сорбент в ХТС берется сухой, распределение растворителя вдоль пути неодинаково и относительные скорости перемещения хроматографируемых веществ будут неравномерны. [c.80]

    Часто применяют нисходящую бумажную хроматографию (рис. 58), при которой лист хроматографической бумаги свисает из укрепленной в верху сосуда специальной лодочки со смесью растворителей. Ток этой смеси перемещает разделяемые вещества, нанесенные у верхнего края бумаги, на разное расстояние. Отношение скорости движения растворителя к скорости движения какого-либо вещества называется коэффициентом распределения (Ry) и в стандартных условиях является величиной постоянной. [c.146]

    Для этого используются закрытые камеры с постоянной температурой, атмосфера внутри которых все время насыщена соответствующим растворителем. Распределение веществ вдоль бумажной полосы характеризуется постоянным коэффициентом (Р ), определяемым через отношение расстояний, пройденных фронтом вещества и растворителя от места их нанесения за равные промежутки времени, поскольку эти величины пропорциональны скорости движения фронта  [c.310]

    При отсутствии заметной адсорбции или ионного обмена движение вещества в основном зависит от его растворимости в подвижной фазе (проявляющем растворителе). Величину можно так же рассматривать как отношение скорости движения зоны выделяемого вещества к скорости движения фронта растворителя, т. е. подвижной фазы. По теории распределительной хроматографии величина R закономерно связана с коэффициентом распределения, что подтверждают и опыты. Коэффициент распределения является логарифмической функцией химического потенциала данного вещества, разделенного на величину RT. [c.199]

    Этот способ основан на том, что отдельные вещества по-разному распределяются между двумя несмешивающимися жидкостями, т. е. имеют различные коэффициенты распределения. Растворяясь в жидкости, которая может перемещаться по бумаге (подвижная фаза), вещество перемещается вместе с этой жидкостью. Способность вещества к перемещению на бумаге характеризуется величиной Rf, которая показывает отношение скорости движения определяемого вещества к скорости движения растворителя. Метод распределительной хроматографии на бумаге находит применение для идентификации отдельных компонентов лекарственных смесей, для установления степени чистоты препаратов и для количественного анализа. Хромато- [c.49]


    Коэффициент распределения вещества зависит от его растворимости в подвижном растворителе и от адсорбции его на целлюлозе. Механизм разделения смеси веществ с помощью хроматографии на бумаге заключается в следующем. На пути движения растворителя по бумаге помещают смесь веществ, подлежащих разделению. Растворитель, достигнув участка бумаги, на котором находится смесь веществ, начинает экстрагировать отдельные вещества и передвигать их по бумаге с различной скоростью. При движении по бумаге вещества группируются по скорости их движения, образуя ряд отдельных групп, каждая из которых содержит одно или несколько веществ. Величина скорости движения веществ по бумаге обусловлена величиной равнодействующей двух противоположно направленных сил силы сродства вещества к растворителю (растворимость) и силы адсорбции вещества на набухшей целлюлозе. Чем выше растворимость данного вещества в растворителе и чем быстрее передвигается растворитель по бумаге, тем больше сила, двигающая вещество в направлении движения растворителя. Сила адсорбции вещества на целлюлозе тормозит это движение. Величина и конфигурация молекул передвигаемых веществ оказывает влияние на скорость движения вещества и его отделение от других веществ. Коэффициенты распределения веществ различны при употреблении различных растворителей, поэтому для хроматографического разделения смесей различных веществ необходимо выбирать растворитель, обеспечивающий наиболее полное разделение веществ. [c.73]

    Процесс хроматографии на бумаге сводится к следующему. Из фильтровальной бумаги вырезается узкая длинная полоска, один конец которой сужен в виде языка. На некотором расстоянии от этого конца полоски наносится маленькая капля раствора, содержащего вещество для хроматографии. Бумажная полоска подвешивается в закрытом сосуде, насыщенном парами подвижного растворителя, и опускается суженным концом в чашечку с растворителем. Воздушно-сухая бумага содержит около 25% воды, которая служит неподвижной фазой. Растворитель поднимается по бумажной полоске в силу капиллярности, вместе с ним перемещаются вещества, нанесенные на бумагу, в соответствии со своим коэффициентом распределения между подвижным растворителем и водой. Когда растворитель пройдет определенное расстояние по полоске, бумагу высушивают и тем или иным методом определяют положение пятен компонентов. При хроматографии на бумаге главной характеристикой для установления вещества пятен является величина — коэффициент распределения, т. е. отношение скорости движения данного вешества к скорости движения растворителя. [c.240]

    Для процесса набухания оказалось характерным наличие релаксационной волны менее значительных по величине напряжений по сравнению с напряжениями, возникающими в поверхностном слое гранулы сополимера. Эта волна продвигается в материале сополимера одновременно с фронтом диффузии низкомолекулярного компонента в сополимер (см. рис. 4.15). Релаксационная волна напряжений может быть объяснена нестационарным распределением вещества растворителя в системе. Наиболее резкий перепад концентраций, который локализован на фронте движения оптической границы, обусловливает, в свою очередь, наиболее крутой подъем напряжений релаксационной волны. Здесь же наблюдается и резкий спад напряжений до нулевых значений. Таким образом, область оптической границы, продвигающаяся в глубь образца сополимера, характеризуется не только большим градиентом концентраций растворителя, но и всплеском напряжений, развиваемых в системе при ограниченном набухании последней. [c.326]

    Известно, что по поведению вещества при хроматографии на бумаге можно составить примерную картину его поведения на целлюлозных колонках . Первым, легко выполнимым условием является выбор сравнимых отношений количества вещества и количества бумаги или целлюлозного порошка. Вторым, труднее реализуемым условием надежного сравнения является одинаковая скорость движения и одинаковое распределение подвижной фазы вдоль разделительного слоя . Это условие наверняка не выполняется, если, как обычно, применять колонку, предварительно пропитанную растворителем [79]. В принципе то же самое относится к попыткам в целях увеличения пропускной способности по веществу перейти от тонких слоев к колонкам с силикагелем. В последнее время разработан, однако, вариант колоночной хроматографии [81], позволяющий считать более или менее выполненным также и второе из упомянутых условий. Этот вариант характеризуется тем, что растворитель, как и в случае горизонтальных тонких слоев [64], проникает в силикагель исключительно под действием капиллярных сил после полного смачивания, как и в случае проточной методики [64] с закрытыми пластинками. Затем он перемещается дальше вследствие испарения в конце колонки. Как показывает практика, во многих случаях, согласно Дану и Фуксу [81], величины Rf для закрытых пластинок сравнимы с величинами для колонки. Поэтому зависимости на колонке должны быть особенно близки к зависимостям на закрытых пластинках, поскольку и в том и в другом случае понятие насыщение камеры не имеет смысла. [c.127]


    Аззам [15] исследовал вопрос о связывании ионами ближайших молекул воды, рассматривая при помощи методов статистической механики распределение диполей растворителя вокруг иона. Он установил критерий существования связывания и предложил способ определения числа связанных ионом молекул воды раствора. Аззам пришел к выводу, что связывание наблюдается при наличии таких ионов, как На+, К , С1 и т. д. В этих случаях, согласно Аззаму, ближайшие к иону молекулы-воды прочно с ним связаны, и молекулы воды и ион вместе ведут себя как замкнутое целое (имеется в виду отсутствие обмена). Аззам определил числа гидратации для ионов Н , Ц+, Ка" , К+, Rb+, Сз+, Р, С1, Вг", 1". В ряде работ [16—19] обоснована точка зрения, согласно которой ближнюю (или, по терминологии Бокриса, первичную) гидратацию ионов в водных растворах следует рассматривать не как связывание ионом какого-то числа молекул воды раствора, а как действие ионов на тепловое и, прежде всего, на трансляционное движение ближайших молекул воды. Это действие характеризуется величинами E — изменениями под влиянием ионов потенциального барьера, разделяющего временные положения равновесия молекул воды раствора, по сравнению с величиной потенциального барьера для чистой воды. Величины для различных ионов могут быть как положительными, что означает затруднение обмена ближайших к ионам молекул воды, так и отрицательными. В последнем случае обмен ближайших к ионам молекул воды в растворе происходит чаще, чем обмен ближайших молекул воды в воде вблизи ионов молекулы воды становятся более подвижными, чем в чистой воде. Это явление названо отрицательной гидратацией. Из катионов щелочных металлов отрицательная гидратация свойственна К" , НЬ+ и Сз+. Отрицательная гидратация ряда ионов в водных растворах подтверждается при экспериментальном исследовании самодиффузии воды в водных растворах электролитов. В самом деле, поскольку вблизи ионов с отрица- [c.51]

    Как указывалось в разд. II, введение изотопа в молекулу может привести к заметным изменениям в распределении заряда. В связи с этим кажется нелогичным приступать к обсуждению изотопных эффектов, наблюдаемых в величинах кислотности или в других ионных равновесиях в растворе, не выяснив предварительно, каким образом зависимость распределения заряда от введения изотопа в молекулу сказывается на энергии и энтропии сольватации. Влияние растворителя можно было бы, вообще говоря, формально учесть путем экспериментального определения изотопных эффектов, проявляющихся в растворимости и давлении пара, а также путем изучения их зависимости от температуры и состава растворителя. С другой стороны, можно было бы ввести в уравнение (III-6) в явном виде некоторые дополнительные члены, учитывающие те внутренние движения сольватных молекул воды, которые зависят от изотопного замещения колебания водородных связей, разрывы этих связей и т. д. Оба эти подхода к проблеме учета влияния растворителя представляются, однако, малоперспективными. Поэтому при изучении влияния растворителя на вторичные изотопные эффекты нам приходится пользоваться эмпирическими величинами физической органической химии. [c.111]

    Если мы имеем дело со смесью различных веществ, то в процессе продвижения растворителя происходит неравномерное перераспределение веществ смеси между подвижной и неподвижной фазами растворителя. Поскольку различные компоненты смеси в силу особенностей строения и состава имеют разные величины коэффициентов распределения, то скорость их передвижения по бумаге оказывается неодинаковой. Эта скорость выражается величиной Ку (коэффициент скорости движения). [c.35]

    Упорядочивающему действию электростатического влияния постоянно препятствует тепловое движение сольватирован- ных ионов, подвергающихся ударам молекул растворителя. Поэтому в растворе сильного электролита распределение ионов представляет нечто промежуточное между беспорядочным распределением молекул в жидкости и упорядоченным расположением ионов в кристаллической решетке. Следовательно, совокупность ионов в растворе обладает некоторой добавочной энергией, подобной энергии кристаллической решетки. Эта энергия проявляется в величине энергии разбавления раствора сильного электролита, так как при разбавлении расстояние между ионами увеличивается. [c.54]

    Наибольшей скоростью прохождения колонки обладают компоненты, не способные проникнуть в зерна гелевой фазы. Сефадексы 0-10 и 0-15 служат для фракционирования низкомолекулярных веществ, первый из них используется для веществ с молекулярным весом до 700, а второй — до 1500. Гели сефадекса 0-25 не способны поглощать, а следовательно, и задерживать перемещение по колонке веществ с молекулярным весом 3500— 4500. Этот предел для сефадекса 0-50 лежит в области значений молекулярных весов 8000—10000, а для сефадекса 0-75 эта величина достигает 40000—50000. Медленно перемещаются по колонке низкомолекулярные вещества, для которых коэффициент распределения между гелевой и жидкой фазами приближается к единице. Во многих случаях компоненты смеси при хроматографическом разделении на сефадексах следуют в порядке уменьшения их молекулярных весов. Однако наблюдается иногда и специфическое сорбционное взаимодействие разделяемых веществ с матрицей сефадекса, что влечет за собой увеличение коэффициента распределения К и снижение скорости перемещения по колонке. Так, замедление движения хроматографических зон наблюдается у основных пептидов и аминокислот в основных растворителях и кислых аминокислот и пептидов в кислых растворителях. Наблюдается также повышение степени удерживания в колонке ароматических веществ при гельфильтрации [22]. Ряд белков, таких как рибонуклеаза, лизоцим, трипсин, бычий сывороточный альбумин, в отсутствие солей также сорбируется и удерживается сефадексом при хроматографии. В связи с этим целесообразно проводить элюирование на сефадексах растворами солей или кислот. [c.202]

    Коэффициент разделения зависит только от отношения коэффициентов распределения двух растворенных веществ между растворителем и газом-носителем, и величину его можно подобрать, выбирая неподвижную жидкую фазу или изменяя температуру колонки. Коэффициенты разделения для членов гомологического ряда, как правило, уменьшаются с повышением температуры, но это правило не является универсальным. Обычно оно справедливо, поскольку отношение скоростей движения двух растворенных веществ через колонку представляет собой экспоненциальную функцию их тепл от растворения в неподвижной фазе и температуры [c.249]

    Хотя в свете изложенных ранее (стр. 188) фактов трудно было бы ожидать значительной адсорбции на носителе из полярных неподвижных растворителей, в действительности влияние адсорбции при распределительной хроматографии нередко довольно заметно. Так, при разделении аминокислот на влажной крахмальной колонне [296—298] скорость движения алифатических аминокислот находится в соответствии с величиной их коэффициентов распределения, согласно формуле (4), ароматические же аминокислоты движутся со скоростью значительно меньшей, чем по теории, что несомненно связано с их заметной [c.214]

    Независимо от характера движения жидкости у границы раздела фаз всегда существует диффузионный слой жидкости. Он представляет собой некоторое сопротивление диффузии частиц растворяемого вещества в массу раствора, а в случае химического растворения — диффузии химически активного растворителя к поверхности растворяющегося вещества и диффузии в раствор образующегося на этой поверхности продукта реакции. Поэтому скорость растворения кристаллических тел в жидкостях определяется главным образом законами диффузии. Интенсивность растворения, как интенсивность всякого гетерогенного процесса, зависит от величины поверхности контакта фаз — чем мельче кристаллы, тем больше их удельная поверхность и тем быстрее они растворяются. Мелкие кристаллы растворяются быстрее также и потому, что в них относительная доля материала (ионов, молекул), находящаяся у вершин трехгранных углов и ребер, значительно больше, чем в крупных. Затрата же энергии на разрушение вершин и ребер кристалла, отнесенная к единице массы, меньше, чем на разрушение граней. С наименьшей скоростью растворяются наиболее развитые грани кристалла. Различной скоростью растворения отдельных элементов кристалла, в том числе разных его граней, объясняется и изменение его формы при частичном растворении — грани и ребра искривляются. Существенную роль при этом играют также неравномерно распределенные в кристалле примеси, делающие его неоднородным. [c.36]

    Распределительная хроматография. Принцип распределительной хроматографии впервые описан Мартином и Синджем в их работе по аминокислотам. В этом случае, вместо равновесия между твердой и жидкой фазами, устанавливающегося при работе по методу Цветта, равновесие устанавливается между двумя жидкими фазами, причем одна из жидкостей поддерживается в состоянии геля или находится на подходящем субстрате. Сначала был применен силикагель, способный адсорбировать до 70% воды и сохраняющий при этом вид сухого порошка. При пропускании раствора исследуемой смеси в несмешивающемся с водой растворителе (например, в хлороформе) через колонку из силикагеля происходит разделение компонент смеси, обусловленное различиями их коэффициентов распределения. Впоследствии в качестве стационарной фазы стали применять листы фильтровальной бумаги, насыщенной водой. Наиболее подходящими органическими растворителями оказались фенол, н-бутиловый спирт, коллидин и некоторые другие растворители, частично смешивающиеся с водой. Индивидуальные аминокислоты были идентифицированы по цветным реакциям и охарактеризованы величинами Rf, представляющими собой отношения скорости движения зоны адсорбции к скорости движения фронта растворителя. Можно также измерять и использовать для идентификации отношение расстояния, на которое переместилось данное вещество, к расстоянию, на которое перемещается эталонное вещество (например [c.1512]

    Важной характеристикой в бумажной хроматофафии является величина Л/ = f Jfx, где / - смещение зоны компонента Л -смещение фронта растворителя (рис. 24.1). В начальный момент времени хроматофафируемая проба Л наносится на начальную (стартовую) линию бумажной полоски, которую погружают нижним концом в подвижную фазу (растворитель). При движении по бумаге растворитель увлекает компоненты пробы, и они движутся с разной скоростью, определяемой коэффициентом распределения вещества между подвижной и неподвижной жидкими фазами. Если компоненты окращены, через некоторое время на хроматограмме можно будет увидеть отдельные цветные пятна. Компонент 1 будет иметь Л/, = / /Л. компонент 2 - [c.293]

    Принцип распределительной хроматографии основан на различии в коэффициентах распределения аминокислот между водой и органическим растворителем. Особенность метода распределительной хроматографии на бумаге по сравнению с обычной экстракцией ам.инокислот из водного раствора органическим растворителем заключается в том, что одну из фаз, чаще всего водную, помещают на какой-нибудь инертный твердый носитель, а органический растворитель — подвижная фаза,— проходя через первую, извлекает и распределяет аминокислоты на бумаге в соответствии с их коэффициентами распределения. Положение аминокислот на бумаге определяют по отношению скорости движения аминокислоты скорости движения фронта растворителя и обозначают Rf. Величина за висит в первую очередь от строения аминокислоты, затем от системы растворителей, pH среды и сорта бумаги, Чем полярнее аминокислота, тем меньше она растворяется в органических растворителях и тем меньше ее R . Увеличение длины углеродной цепи повышает . Введение в молекулу полярных групп, например, гидроксильной, аминной или карбоксильной понижает Rf Так, Rf фенилаланина в системе фенол/вода = 0,85, а тирозиит 0,51. Другие примеры изменения в зависимости от строения аминокислоты представлены на рис. 3 и 4. Подбирая соответствующие смеси растворителей, можно провести достаточно тонкое разделение аминокислот. Наиболее часто пользуются для такого разделения системами вода — фенол — аммиа вода — бутапол — уксусная кислота бутанол — аммиак — коллидин и т. д. Разделение можно проводить на одномерной или двумерной хроматограммах. Можно пользоваться также различными типами распределительной хроматографии на бумаге — нисходящей, восходящей и радиальной. Величины Rt для каждой из систем растворителей оказываются постоянными при соблюдении [c.479]

    В разделе, относящемся к растворению хроматограммы (разд. I, стр. 98— 99), уже упоминалось, что движение растворителя и вещества при хроматографии в тонких слоях или при хроматографии на бумаге протекает во времени иначе, чем в лотке Сигнера. Причина заключается в том, что слой является сухим. Мы обнаруживаем в этом случае особую временную зависимость для движения фронта растворителя, изменяющееся распределение растворителя вдоль пути и в результате этого неравномерные относительные скорости перемещения хроматографируемых веществ. Последнее обстоятельство означает, что величины Rf меняются во время хроматографического процесса. [c.107]

    Распределение растворенного вещества между двумя несмеши-вающимися растворителями было известно давно. Мартин и Синг предложили использовать фильтровальную бумагу, чтобы полярную фазу удерживать в стационарном состоянии, в то время как неполярная, подвижная фаза передвигается по поверхности бумаги. Растворенное вещество, нанесенное на бумагу, распределяется между фазами, и скорость его продвижения по бумаге относительно движения фронта растворителя зависит от величины коэффициента распределения данного вещества между полярной и подвижной фазами (полярной фазой обычно служит вода). При соответствующем подборе растворителей можно разделить многие соединения. Дальнейшее разделение можно осуществить с помощью двумерной [c.27]

    При экстракции, проводимой по принципу противотока, движущей силой процесса массообмена является разность концентраций (аналогично при теплообмене движущей силой является разность температур). Так же как при теплообмене требуется возмохсно большая поверхность контакта (о теплообмене см. стр. 363 и сл,), при экстракции и абсорбции решающее значение имеет величина поверхности соприкосновения взаимодействующих сред. Отсюда ясно, что при проведении этих процессов надо стремиться к возхюжно более тесному соприкосновению твердого вещества и жидкости или газа и жидкости и тонкому распределению их друг в друге. Это может быть достигнуто применением насадки, перемешиванием, распылением (образование жидкостной завесы), а также образованием тонких пленок на вращающихся поверхностях 3 сепараторах (см. стр. 265). Колпачковые ректификационные колонны (стр. 127) являются идеальными устройствами для промывания газов жидкостями. Любой процесс ректификации в колонне основан на вымывай и и высококипящах компонентов конденсатом и получаемой флегмой по принципу противотока. Аналогичное значение имеет циркуляция при гидрогенизации и многих каталитических процессах, напри.мер в реакциях с участием ацетилена. При проведении реакций между твердыми веществами и жидкостями, как, например, при гидролизе древесины или при экстракции дубильной коры, нарезанной свеклы, лекарственного сырья и т. д., процесс ведут в одной колонне, заполненной твердым веществом, с послойным движением через него растворителя (принцип п е р к о л я ц и и) или в группе аппаратов с меняющейся последовательностью их включения (экстракционная, или диффузионная, батареи). [c.75]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    Впервые этот термин был использован в работах Перрена, Гельмгольца и других в конце девятнадцатого столетия. Перрен предложил рассматривать двойной слой как простой конденсатор [1]. Граница раздела представлялась в виде двух параллельных заряженных плоскостей, содержащих одинаковые по величине и противоположные по знаку заряды - избыток или недостаток электронов со стороны металла и соответствующий недостаток или избыток ионов со стороны раствора (рис. 1).Гуи [2] и Чэпмен [3] независимо показали, что в этой модели не учитывалось влияние теплового движения ионов и молекул растворителя, которое должно привести к диффузному распределению ионного заояда, а не к сосредоточению его в плоскости. Используя подход, в основных чертах сходный с теорией Дебая -Хюккеля для сильных электролитов, Гуи и Чэпмен получили выражение для распределения ионов и потенциала внутри диффузного слоя, а также рассчитали некоторые экспериментально наблюдаемые [c.50]

    В методе распределительной хроматографии, основанной на различии в распределении разделяемых веществ между двумя жидкими фазами, основным требованием является взаимное насыщение одной фазы другой жидкой фазой. Разделяемые вещества должны хорошо растворяться в обоих растворителях и иметь константы Rf в пределах от 0,2 до 0,8. Ряд органических веществ оказывается хорошо растворимым только в определенных растворителях, нанример стрептомицин хорошо растворим в воде и плохо растворим в спиртах. Его растворимость повышает добавление п-толуолсу.льфоновой кислоты. Величина констант Rf для органических оснований может быть повышена введением органических кис.лот в систему растворителей. Наоборот, добавление органическпх аминов повышает скорость движения веществ кислотного характера в толще иосителя, например, в бумаге. Регулирование концентрации ионов гидроксония имеет большое значение как в распреде-лите.льной, так и в адсорбционной хроматографии, так как это изменяет соотношение между молекулами и ионами, распределяющимися или адсорбирующимися по-разному, а также ионообменную е.мкость ионитов п т. д. Увеличенпе степени диссоциации разделяемых веществ приводит к повышению коэффициента распределения в пользу воды, так как ионы лучше растворимы в воде, чем недиссоциированные молекулы вещества. Отсюда понятно значение буферирования смесей, применяемых б распределительной хроматографии (табл. 2). [c.398]

    Распределение числа молекул по скоростям согласно уравнению Максвелла является формой равновесия теплового движения. Растворимость тоже равновесное явление. Поэтому соотношение Максвелла послужило автору основой для вывода уравнения растворимости газов жидкостях, которое обеспечило вычисление растворимости газов в жидкостях определение энергии взаимодействия газовы.х молекул с молекулами растворителей позволило раскрыть физическую природу константы закона Генри и привело к обоснованию других эмпирических и полуэмпирически.х закономерностей. Оно же позволило раскрыть физическую природу двух констант, входящих в полуэмпирическое уравнение И. Р. Кричевского и Я. С. Казарновского и теоретически рассчитать их значения. Полученные расчетным путем значениу двух констант уравнения И. Р. Кричевского и Я. С. Казарновского близостью теоретически вычисленных величин к экспериментально найденным И. Р. Кричевским и Я. С. Казарновским и др. подтверждают справедливость уравнения автора и указывают на раскрытие физической природы констант известного полуэмпирического уравнения. [c.123]

    Метод распределительной хроматографии, предложенный в 1941 г. А. Мартином и Р. Сннджем, основан на распределении вещества между двумя жидкими фазами (как в экстракции), но одна из них закреплена на каком-нибудь пористом носителе (стационарная фаза), а вторая — является подвижной и продвигается вдоль носителя. Анализируемая смесь растворяется в подвижном растворителе и вносится в колонку. Затем колонка промывается чистым подвижным растворителем. Растворенные вещества по-разному взаимодействуют со стационарной и подвижной жидкими фазами, что и приводит к их разделению. Скорость движения компонентов в колонке будет различной ввиду различия их величин коэффициентов распределения. Чем медленнее движется компонент, тем больще его величина коэффициента распределения. Таким образом, в распределительной хроматографии разделение веществ обусловливается различиями коэффициентов распределения веществ между двумя несмещивающи-мися жидкими фазами. [c.66]

    Нанесем на полоску фильтровальной бумаги каплю раствора, содержащего смесь веществ, и дадим ей высохнуть. Один конец полоски поместим в сосуд с растворителем (подвижной фазой, элюирующим раствором). При этом растворитель под действием капиллярных сил будет просачиваться вдоль полоски бумаги. Для того чтобы пе происходило испарения растворителя с бумаги, которое может привести к нежелательному изменению состава растворителя, поместим все устройство в закрытую камеру, атмосфера которой насыщена парами растворителя. Как только подвижная фаза подходит к месту, на которое была нанесена исследуемая смесь, происходит распределение молекул отдельных компонентов смеси между подвижной и неподвижной фазами. Неподвижной фазой является или бумага, или система, образованная целлюлозо бумаги и жидкостью (чаще всего водой), или адсорбционный чехол волокон целлюлозы, образованный соответствующей пропиткой ). При не очень большой скорости движения подвижной фазы отношение концентраций определенного компонента разделяемой смеси в подвижной и неподвижно фазах приближается 1 равновесному. Уравнение, определяющее взаимозависимость этих концентраций, будем называть функцией разделения. При распределении вещества между двумя жидкостями это урав ение будет соответствовать уравнению коэффициента распределения. Если же мы имеем дело с адсорбцией растворенных веществ на поверхности твердой фазы, это уравнение будет соответствовать уравнению изотермы адсорбции и т. п. Молекулы, попадающие в подвижную фазу, переносятся к соседнему месту неподвижной фазы. Однако здесь концентрация вещества не является равновесной по отпошению к концентрации этого вещества в подвижной фазе. Поэтому снова происходит переход вещества из одной фазы в другую, приводящий к уста 9влению равновесия в новом месте. Та часть молекул, которая осталась в подвижной фазе, переносится дальше. В результате этого процесса более удаленный от фронта подвижного растворителя край пятна, образовавшегося при нанесении капли раствора на фильтровальную бумагу, как бы съедается , а более близкий край наращивается. Таким образом пятно движется вдоль листа бумаги в направлении потока подвижной фазы. Скорость движения пятна зависит от функции разделения соответствующего вещества. Если при равновесии в подвижной фазе оказывается намного больше молекул, чем в неподвижной, то пятно движется сравнительно быстро. Если же равновесие сдвинуто в сторону неподвижной фазы, пятно перемещается медленно. Все вещества, у которых величины констант функций разделения (например, величина коэффициента распределения) различаются хотя бы незначительно, образуют при хроматографировании пространственно разделенные зоны. [c.33]


Смотреть страницы где упоминается термин Движение растворителя, распределение растворителя, величины: [c.110]    [c.146]    [c.9]    [c.67]    [c.310]    [c.813]    [c.389]    [c.173]    [c.29]    [c.77]    [c.86]   
Смотреть главы в:

Хроматография в тонких слоях -> Движение растворителя, распределение растворителя, величины




ПОИСК







© 2025 chem21.info Реклама на сайте