Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные системы Молекулы и химическая связь

    К простейшим системам с химическими связями принадлежат те молекулы, построение которых из атомов правильно описал еще Авогадро, — это двухатомные молекулы газообразных элементов (На, N2 и т. д.). Самой простой молекулой является система из трех частиц с одной химической связью — молекулярный ион На , состоящий из двух протонов и одного электрона. Прежде чем рассматривать причины устойчивости простых молекул и для того, чтобы понять сущность химической связи в простейших формах ее проявления, следует познакомиться с экспериментальными доказательствами существования энергетических уровней в молекулах. При переходе от атомов к молекулам энергетические характеристики значительно усложняются, так как кроме изменения энергии электронов появляется возможность изменений вращательной и колебательной энергии. Изменения энергии, как правило, накладываются одно на другое, поэтому спектры молекул весьма сложны. Различают приблизительно три типа спектров вращательные в длинноволновой инфракрасной области (500—50 мкм), вращательно-колебательные в коротковолновой инфракрасной области (10—1 мкм) и вращательно-колебательные электронные в видимой и ультрафиолетовой областях. [c.71]


    Когда молекулярная система обладает потенциальной поверхностью со множеством минимумов, разделенных малыми и легко преодолимыми барьерами, то ее структура уже не может характеризоваться ядерной конфигурацией, так как плотность распределения ядер p (R ) в этом случае существенно делока-лизована. Атомы или фрагменты таких молекул постоянно мигрируют из одной внутримолекулярной области в другую на расстояния порядка длины химической связи и более. [c.120]

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Метод молекулярных орбиталей. Для приближенного представления вида функции основного состояния системы электронов молекулы существуют два метода, основанные на теории валентных связей (ВС) или на теории молекулярных орбиталей (МО). Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а потому отражают разные представления об основном строении молекулы. В методе ВС принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Метод ВС был разработан раньше метода МО. Он дает более наглядное представление о строении молекулы и поэтому его чаще применяют для качественного решения некоторых вопросов. В частности, метод ВС достаточно просто трактует геометрию молекулы. [c.23]


    В фотометрическом анализе, как правило, используют поглощение света молекулами комплексных (координационных) соединений, сольватов, а в ряде случаев и более сложных соединений (ассоциатов, аддуктов и т. п.). Взаимодействие светового излучения с такими сложными многоэлектронными системами описывают с помощью молекулярных спектров поглощения, вид которых определяется в основном состоянием электронов внешних орбиталей, участвующих в образовании химической связи. [c.180]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]

    Разрущение биологических систем обусловлено способностью радиоактивного излучения ионизировать молекулы и разрывать их на части. Энергия альфа-, бета-и гамма-лучей, испускаемых в процессе ядерного распада, намного превышает обычные энергии химических связей. При проникновении этих видов излучения в вещество они передают энергию молекулам, встречающимся на их пути, и оставляют за собой след в виде ионов и молекулярных осколков. Образуемые при этом частицы обладают очень большой реакционной способностью. В биологических системах они могут нарушать нормальное функционирование клеток. Разрушительное воздействие источника радиоактивного излучения, находящегося вне организма, зависит от проникающей способности излучения. Гамма-лучи представляют собой особенно опасное излучение, поскольку они, подобно рентгеновским лучам, эффективно проникают сквозь ткани человеческого организма. Оказываемое ими разрушительное воздействие не ограничивается кожей. В отличие от гамма-лучей большая часть альфа-излучения поглощается кожей, а бета-лучи способны проникать всего на глубину около 1 см под поверхность кожи. Поэтому альфа- и бета-лучи не так опасны, как гамма-лучи, если только, конечно, источник излучения не проник каким-то образом в организм. Внутри организма альфа-лучи представляют чрезвычайно большую опасность, поскольку, распространяясь в веществе, они оставляют за собой очень плотный след из разрушенных молекул. [c.263]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Следовательно, оба электрона образующейся устойчивой молекулы Нг описываются одной молекулярной волновой функцией г з+, т. е. занимают одну МО. Для согласования с принципом Паули эти электроны должны иметь противоположные направления спина. Два электрона с параллельными спинами, характеризующиеся антисимметричной функцией 5 , приводят к возрастанию энергии системы. Химическая связь в данном случае не образуется. [c.31]

    В зависимости от мест, занимаемых атомами в периодическои системе элементов Д. И. Менделеева, их физико-химические свойства закономерно изменяются. Наиболее интересна область температур от О К до нескольких тысяч градусов. В этой области под действием сил химических связей и молекулярных сил происходит дальнейшая агрегация вещества, образуются устойчивые группы атомов — молекулы и кристаллы. Совокупность атомов переходит в конденсированное состояние, возникает многообразный мир окружающих нас простых и сложных газообразных, жидких и твердых тел, включающий в себя и биологические объекты. Вблизи абсолютного нуля температуры наиболее ярко проявляются квантовые свойства конденсированных систем. [c.8]

    Построение системы энергетических уровней завершается размещением на них соответствующего числа электронов. В нашем случае на двух молекулярных орбиталях можно разместить четыре электрона, которые соответствуют образованию различных молекул и ионов. Это достигается следующим образом. Один электрон в системе из двух орбиталей а и а выбирает а как имеющую наиболее низкую энергию. Такое состояние отвечает образованию простейшей молекулы — молекулярного иона водорода HJ. Этот ион в теории молекул играет такую же роль, как атом водорода в теории строения атомов. В частности, принципиально важным является существование химической связи, образованной одним электроном. Второй электрон также направится на орбиталь а, и в соответствии с принципом Паули спины этих двух электронов должны быть спарены. [c.186]

    Если при образовании молекулы из атомов электрон займет молекулярную орбиталь 01 с низкой энергией, то полная энергия системы понизится, система перейдет в более устойчивое состояние, т. е. образуется химическая связь. Поэтому орбиталь 01 называют связывающей. Переход электрона на орбиталь [c.108]

    Атомы большинства элементов могут взаимодействовать между собой или с атомами некоторых других элементов с образованием химических связей. В результате возникают более сложные системы — многоатомные частицы. Важнейшими типами многоатомных частиц являются молекулы, молекулярные ионы и свободные радикалы, а также различные комплексы. [c.52]

    Наиболее простые системы с химической связью — двухатомные молекулы газов (N2, Н2, О2), состав которых установил еще Авогадро. Ион Н2+, содержащий два протона и электрон, — вот самая простая система из трех частиц с одной химической связью. Для того чтобы понять, что же такое химическая связь в самом простом ее проявлении, выясним причины устойчивости этих простых молекул. Однако прежде всего познакомимся с экспериментальными данными об энергетических уровнях молекул. Они значительно более разнообразны, чем в атомах, так как в молекулах наряду с электронными энергетическими переходами происходят также изменения колебательной и вращательной энергии. Поскольку все эти изменения энергии накла-дыЕ аются друг на друга, молекулярные спектры по большей части имеют очень сложное строение. Можно различать три ти-Таблица А.6. Характеристика спектров электромагнитного излучения [c.60]

    Общие положения. Мы под молекулярными конфигурациями рассматриваем такие конечные совокупности частиц, стрз ктурный принцип которых не основан на бесконечных повторениях. При этом слово конечные необходимо понимать чисто геометрически, и оно не связано с понятием насыщения сил связи. Если налицо имеется и такое насыщение (возможно, кроме так называемых ван-дер-ваальсовских сил, которые отличаются от собственно химических), то получаемые совокупности будут называться кратко молекулами или электронейтральными молекулярными конфигурациями. Если химическая связь, которая всегда может быть представлена как зависящая от электрических зарядов (например, от распределения внешних электронов по отношению к положительно заряженным ядрам), не насыщена (см. гл. П1), то в нормальных условиях образуются молекулярные конфигурации с положительным или отрицательным зарядом, которые вообще можно обозначать как островные радикалы, в частных случаях — как островные анионы или катионы. Так как отдельные атомы — химические элементы — представляют собой электронейтральные образования, то для образования ионов необходим приток электронов извне или отдача их вовне. Это значит, что наряду с катионами должны образоваться анионы, и наоборот. Но смесь ионов, способствующая электронейтральному характеру всей системы, не может считаться соединением, пока отсутствуют хорошо определенные и вполне упорядоченные зависимости между ними как составными частями объединения. Отдельные ионы (иногда вместе с НгО-оболочками в водных растворах) сохраняют в таких случаях подвижность и самостоятельность и образуют в отдельности более замкнутые в себе единицы, чем смесь ионов. [c.198]

    Ковалентная связь. На рис. 22 представлено образование связывающей и разрыхляющей МО молекулы Нг из АО, а также диаграмма плотности вероятности (плотности электронного облака). В нижней части рис. 22, а и б приведены условные контурные диаграммы электронной плотности, напоминающие топографические карты. В пространстве между ядрами значения ф5 и ф5р выше, чем были бы они для изолированной атомной орбитали. Соответственно выше здесь и плотность электронного облака. Это означает, что для молекулярной орбитали вероятность пребывания электрона в межъядерной области велика. Отрицательный заряд между ядрами притягивает к себе положительные заряды обоих ядер и в то же время экранирует их друг от друга, уменьшая их взаимное отталкивание. В результате наблюдается значительное понижение энергии электрона в поле двух ядер молекулы по сравнению с энергией электрона в атоме. Общее понижение энергии —результат преобладающего понижения потенциальной энергии электрона. Поэтому система из двух ядер и электрона оказывается более устойчивой, чем система разъединенных ядер, иными словами, вследствие понижения потенциальной энергии электрона возникает химическая связь. Характерной ее особенностью является коллективизирозание электрона всеми (здесь двумя) ядрами молекулы. Такая связь называется ковалентной. В основе хими- [c.69]

    Связь в молекуле Н2 обусловлена коллективизированием одного-единственного электрона. Таким образом, укоренившееся в химии представление Льюиса о химической связи, как образованной общей парой электронов, не выдерживает в данном случае проверки опытом. Дело не в числе общих электронов, а в таком их распределении между атомами, чтобы переход от атомной системы к молекулярной сопровождался понижением средней потенциальной энергии электронов. [c.70]

    На расстоянии оо интеграл О и (оо) = а = Е(Н). На других расстояниях р< О и Еа > а = Е(Н), т. е. при сближении ат омов в состоянии фл энергия системы непрерывно возрастает по сравнению с энергией разделенных атомов. Это значит, что на любом расстоянии между атомами преобладают силы отталкивания, образование устойчивой молекулы невозможно. На рис. 22, б представлены атомные волновые функции Хг и Хг с разными знаками и образованная путем ЛКАО волновая функция фл. В центре межъядерной оси и в плоскости, проходящей через нее перпендикулярно оси, Гд, = гв,, откуда XI = Ха и фл = 0. Здесь функция меняет знак (узловая точка, узловая плоскость). Электронная плотность 1ф в узловой плоскости равна нулю. Это означает, что на МО типа фл электронная плотность в межъядерной пространстве понижена, в результате чего отталкивание ядер преобладает над притяжением к ним электрона и химическая связь не образуется. Поэтому молекулярная орбиталь называется антисвязывающей или разрыхляющей МО. Она также обладает осевой симметрией и относится к а-типу. [c.71]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Аналогично можно рассчитать и другие свойства наполнепных систем на первой стадии вулканизации. На второй стадии уирочне-ния наполненной системы — при переходе физических связей в химические при соответствующей температуре (вулканизация, спекание) — между молекулами связующего, а также между молекулами связующего и наполнителя возникают пространственные связи. Молекулярная структура и соотнощение компонентов в УНС, а также соотношение в них физических и химических связей позволяют определить механические, физико-химические и эксплуатационные свойства наполненной системы. [c.84]

    Существует мнение f84], что хмодели броуновского движения неприменимы к молекулярным системам. Это связано с тем, что, во-первых, между молекулами существуют физические или химические связи, т. е. движение отдельных молекул не является независимым. Во-вторых, теории броуновского движения не учитывают геометрического строения молекул растворителя и растворенного вещества. В-третьнх, молекулы не являются твердыми частицами, а состоят из атомов, связанных химическими связями. Существуют внутренние степени свободы, также дающие вклад в тепловое движение. Удар молекулы и соответствующая передача энергии может быть перераспределена между другими степенями свободы. Однако такая точка зрения не является общепризнанной. В [86] показано, что уравнения, описывающие броуновское движение, применимы вплоть до молекулярных размеров м). Уравнения броуновского [c.46]

    Кроме разложения по базису в квантовой химии часто используется и другой способ построения приближенной волновой функции, который для определенного типа молекулярных структур соответствует интуитивным представлениям о химических связях в молекуле. В этом способе волновая функция молекулы записьшается (приближенно) с помощью двухэлектронных функций, в качестве которых естественно брать антисимметричные 0(лс1, х ) = —Щх , 1). Эти функции принято называть спин-геминапями (или геминтями). Наиболее простое выражение многозлектронной волновой функции получают с помощью гемина-лей в случае синглетного состояния системы, где число электронов четно, N = 1п. Ъ этом случае можно использовать синглетные спин-геминали [c.70]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]

    Зависимость скорости реакции от природы реагирующих веществ. Влияние природы реагирующих частиц определяется их атомным составом, пространственным строением и молекулярными свойствами. Скорость химической реакции определяется скоростью разрыва одних и образования других химических связей. Эти превращения происходят в элементарном акте реакции. Мы знаем, что изменение длины химической связи, валентных углов и других геометрических параметров молекулы сопровождается изменением ее потенциальной энергии. Поэтому и взаимодействие частиц в элементарном акте реакции также должно характеризоваться изменением потенциальной энергии всей системы. Поскольку реагирующие молекулы обьгчно содержат много атомов, то элементарный акт химической реакции характеризуется многомерной поверхностью потенциальной энергии. На этой поверхности потенциальной энергии отражается влияние изменения каждого геометрического параметра одной молекулы на энергии ее взаимодействия с другой молекулой и наоборот. [c.189]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]

    В реакциях окисления мы встречаемся с еще одним обстоятельством. Реакция НН + О КООН, в Которой участвует молекула кислорода в триплетном состоянии, не может протекать из-за нарушения закона сохранения спина (спин исходной системы равен 1, спин продукта равен 0). Цепной радикальный механизм позволяет преодолеть это препятствие. Применение внешних источников инициирования (свет, электроны, инициаторы, активная поверхность) ускоряет цепной процесс. Таким образом, возникновение активных промежуточных частиц и их многократное участие в отдельных стадиях сложного процесса и является преимуществом цепного процесса, объясняющим широкую распространенность цепных реакций. Чаще всего цепная реакция — экзотермический процесс. В отличие от одностадийных экзотермических реакций в цепном процессе часть энергии исходных веществ переходит в энергию промежуточных частиц, обеспечивающую им высокую активность. Чаще всего это химическая энергия валентноненасыщенных частиц — свободных радикалов, атомов, активных молекулярных продуктов со слабыми связями. Реже это колебательновозбужденные состояния молекул, в которых молекулы вступают в реакции. И в том, и в другом случае имеет место экономное использование энергии суммарного процесса для ускорения превращения исходных частиц в продукты. Размножение активных частиц в разветвленных и вырожденно-разветвленных реакциях является уникальным способом самообеспечения системы активными промежуточными частицами. Разветвление цепей позволяет преодолеть высокую эн-дотермичность актов зарождения цепей и во многих случаях отказаться от внешних источников инициирования. [c.219]

    Таким образом, физический смысл функций Ч 1 и 2 состоит в том, что М -функция описывает электронное облако, электронная плотность в межъядерр[ом пространстве которого больше и энергия ниже, а—облако с меньшей плотностью в межъядер-ном пространстве, чем в изолированных атомах и большей энергией Е . Молекулярную орбиталь с более низкой энергией (Ч 1 и Е- , чем любая атомная орбиталь, из которых данная МО образуется, называют связывающей. В этом случае, когда при образовании молекулы из атомов электрон занимает орбиталь 1, полная энергия системы понижается, система переходит в более устойчивое состояние и образуется химическая связь. Орбиталь Ч . с энергией Е называют разрыхляющей. При переходе электрона на разрыхляющую орбиталь энергия системы увеличивается, система становится менее прочной ( разрыхляется ), связь не образуется. [c.114]

    Для атомов элементов второго периода системы Д. И. Менделеева можно принять, что электроны первого слоя ( = ) не участвуют в образовании химической связи они составляют остов молекулы (обозначим его буквой К), молекулярные орбитали образуются Б процессе взаимодействия атомных 2з- и 2/ -ор6италей. [c.115]

    Влияние среды при проведении ионной полимеризации сводится в основном к стабилизации тех или иных форм образующихся ионизированных составляющих активного центра и к изменению реакционной способности активных центров. Стабилизация заряженных активных центров молекулами растворителя особенно важна при их возникновении, поскольку при этом компенсируются энергетические потери на гетеролитический разрыв химических связей при образовании инициирующих ионов. Изменение реакционной способности активных центров в различных средах зависит от полярности среды, специфической сольватации, сокаталитического действия растворителя. В катионной полимеризации доминирующим фактором является полярность среды. Обычно при увеличении полярности среды скорость катионной полимеризации и молекулярная масса образующегося полимера возрастают. Так, при полимеризации в системе стирол —5пСи —растворитель скорость реакции возрастает примерно в 100 раз, а молекулярная масса — в 5 раз при переходе от бензола (е = 2,3) к нитробензолу (е=36). [c.21]

    Молекулы с дефицитом электронов. В предыдущих разделах мы познакомились с применением метода МО к простейшим системам — двухатомным молекулам. Орбитали, которые охватывают только два ядра, называются двухцентровыми. Одним из примеров многоцентровых молекулярных орбиталей являются молекулы, в которых число валентных электронов меньше, чем 2 п — 1), где п — число атомов в молекуле, — так называемые электрондефицитные соединения. Такое условие возникает потому, что минимальное количество химических связей, необходимое для объединения п атомов, равно п— 1, а если каждая связь является двухэлектронной, то требуется 2 п — 1) электронов. Наиболее известный представитель этого класса — молекула диборана BjHe. Она состоит из восьми атомов и в ней должно быть по крайней мере семь связей, т. е. 14 электронов. Подсчет показывает, что на самом деле имеется только 12 валентных электронов. [c.195]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    В конечном счете единственными существенными силами, действующими на молекулярном уровне, являются электростатические. Теорема Геллмана — Фейнмана позволяет утверждать, что химическая связь осуществляется за счет компенсации сил отталкивания между ядрами силами притяжения ядер к электронным облакам. Взаимное расположение ядер и характер распределения электронной плотности в системе прогнозируются, конечно, в ходе квантово-химического анализа молекулы, но в ряде предельных случаев удается сформулировать упрощенные правила оценки этих величин и перейти к электростатическим моделям. Вариантов реализации электростатического подхода в химии комплексных соединений много. Мы ограничимся двумя из них. [c.50]


Смотреть страницы где упоминается термин Молекулярные системы Молекулы и химическая связь: [c.207]    [c.115]    [c.328]    [c.157]    [c.638]    [c.186]    [c.76]    [c.328]    [c.638]    [c.273]    [c.168]    [c.280]    [c.82]    [c.102]   
Смотреть главы в:

Введение в квантовую химию -> Молекулярные системы Молекулы и химическая связь




ПОИСК





Смотрите так же термины и статьи:

Молекулы связь

Связь химическая молекулярная

Химическая связь

Химическая связь связь

Химический связь Связь химическая

связям системам



© 2024 chem21.info Реклама на сайте