Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная доказательство

    Теория карбоний-иона весьма полезна для объяснения таких случаев присоединения, как для изопропилэтилена, который дает вторичное и третичное галоидпроизводные в примерно одинаковых количествах. Уитмор показал, что первоначально образующийся вторичный хлорид, так же как и приготовленный другими путями, был так же стабилен, как и другие вторичные хлориды, и не изомеризуется в третичный хлорид. Доказательством в пользу наличия стадии изомеризации в этом и во многих других случаях является то, что в карбоний-ионе, образующемся в качестве промежуточного продукта, происходит миграция водородного атома и что такие перемещения происходят исключительно быстро. ГЗ случае изопропилэтилена первоначально образовавшийся карбоний-ион изомеризуется следующим образом [86]  [c.367]


    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]

    При практическом использовании метода ИК-спектроскопии для доказательства образования внутримолекулярных водородных связей съемки ИК-спектров должны проводиться при разных концентрациях, в том числе при больших разбавлениях, так как только независимость положения и интенсивности полосы поглощения связанной гидроксильной группы от концентрации может служить доказательством образования внутримолекулярной водородной связи. Если же при разбавлении происходят существенные изменения, это свиде тельствует о межмолекулярной ассоциации с помощью водородных связей. [c.352]

    Интересно, что косвенные экспериментальные доказательства реальности водородных связей впервые были получены сравнительным анализом некоторых физических свойств летучих гидридов. Хорошо известен факт аномально высоких температур кипения Н2О, HF, NH3 и отчасти НС1 и H2S (рис. 134), который обусловлен ассоциацией их молекул за счет водородных связей с образованием ди-, три- и полимеров в жидкой фазе. Вода, например, имела бы температуру кипения -80, а не +100°С, если бы в жидкой фазе не было водородных связей между молекулами. Аномалия наблюдается при сравнении энтальпий испарения и температур плавления (водородная связь в твердом состоянии) обсуждаемых водородных соединений. [c.298]


    Дейтеро-водородный обмен. Весьма убедительное доказательство, подтверждающее, что изомеризация в присутствии серной кислоты протекает с участием промежуточных карбоний-ионов, получено в результате изучения дейтеро-водороДного обмена при взаимодействии как дейтерированных углеводородов и серной кислоты, так и дейтеро-серной кислоты и обычных углеводородов. Обмен атомов водорода, находящихся в а-положении по отношению к положительно заряженному углероду, объясняют передачей положительного заряда этим атомам водорода в результате гиперсопряжения  [c.97]

    Имеются также доказательства того, что планарность скольжения не является достаточным условием для восприимчивости к КР [66, 70]. Все же отмеченное выше сходство, во-первых, позволяет предположить, что процесс КР в рассматриваемых сталях содержит вклад водородного охрупчивания так же, как и вклад анодного растворения, и, во-вторых, показывает, что как при КР, так и при водородном охрупчивании металлургические факторы играют важную роль. Дальнейшее рассмотрение этого вопроса мы отложим до общего обсуждения. [c.70]

    Наиболее распространенным из таких процессов переноса является диффузия в кристаллической решетке. Водород очень быстро диффундирует в большинстве металлов, особенно с о. ц. к. структурой решетки (стали и титановые р-сплавы), и поэтому вполне уместно сопоставить скорости растрескивания (например, в области II на рис. 2) со скоростями диффузии. Такое сравнение принято проводить на основе параметров активации (в частности, энергии активации) и в целом ряде работ было получено согласие данных для двух процессов в титановых сплавах [207], сталях [172, 308, 309] и некоторых других материалах [172]. Следует, правда, отметить, что обычно нет уверенности в протекании единственного термически активированного процесса и поэтому получение энергии активации растрескивания, близкой к энергии активации диффузии, не свидетельствует ни о наличии единственного диффузионного механизма переноса, ни даже об определяющей роли диффузии в процессе переноса водорода [39, 310]. Мы не сомневаемся, что некоторые явления водородного растрескивания контролируются диффузией, однако имеющиеся доказательства такого контроля не всегда достаточно убедительны. [c.129]

    Другие ионы. Было предположено, что рост величины Кыр для сплава Ti — 8А1 — 1Мо — IV, испытанного в растворах хлорида меди без наложения потенциала, служит доказательством в пользу гипотезы водородного охрупчивания. Наличие ионов Си + в водных растворах изменяет условия в испытании без наложения потенциала двумя путями. Во-первых, потенциал изменяется вследствие того, что контролирующей стадией становится катодная реакция [c.399]

    Известно несколько случаев, когда гидроксильная группа не вступает во взаимодействие с п-электронами двойной связи, хотя эти группы находятся на таком расстоянии, при котором взаимодействие в принципе возможно 112]. Обсуждение вопроса об отсутствии внутрикомплексных связей в 2-ами-нофеноле см. на стр. 152. Следовательно, отсутствие водородной связи не всегда служит строгим доказательством, что две группы, способные образовать такую связь, удалены друг от друга на расстояние более 3,4 А. [c.117]

    Ранние представления Попа, Дикстра и Эдгара [16], считавших, что начальная атака направлена на метильную группу в конце самой длинной алкильной цепи, уступили место общепризнанному мнению, что, строго говоря, атака свободных радикалов может быть направлена на любой атом водорода в углеводородной молекуле и что частота атак в любое положение зависит от таких обстоятельств, как реакционная способность водородных атомов, количество их в данном положении и в некоторых случаях от стерических факторов. В общем случао реакционная способность возрастает в ряду — первичный, вторичный и, наконец. Третичный атомы водорода. Например, в нормальных парафинах начальная атака направлена преимущественно на метиленовые Г1)упны, а между ними более или менее произвольно. Это было четко показано Бентоном и Виртом [6], которые, изучая самоокисление н-декана при 145° С, установили, что все восемь метиленовых групп в пределах точности эксперимента подвержены атаке в одинаковой степени, тогда как обе метильные группы являются гораздо менее реакционноспособными. Такой обычный характер атаки главным образом на метиленовые группы по является неожиданным в связн с ранними исследованиями свободнорадикальных реакций хлорирования однако доказательствам Бентона и Вирта противостоят утверждения других исследователей, нашедших, что атака направлена преимущественно в 2-положение [11]. Таким образом начальная ассоциация радикала и кислорода будет обычно приводить к образованию вторичного алкилперекисного радикала  [c.271]

    Более высокомолекулярные парафины, d-3-метилгендекан подвергался рацемизации и водородному обмену в присутствии смеси серной в дейтеросерной кислот [25J. У каждой рацемированной молекулы были заменены дейтерием практически все атомы водорода. Вероятно, происходила также, и структурная изомеризация, хотя прямых доказательств нет. [c.37]


    Брэдли приводит ряд доказательств в пользу предложенного механизма. Выше отмечалось, что продуктами реакции диспропорционирования радикалов СНдОаС- являются СНзСОаН и СОаСНа-Этот факт легко можно объяснить на основе механизма голова к голове . Если предположить, что различные бутильные радикалы соединяются примерно с равными скоростями, то должна иметь место зависимость величины А от числа водородных атомов в р-положении. Такая зависимость найдена экспериментально. Так как исходные состояния реакций (5.2) и (5.3) совпадают, а переходные состояния близки по своим свойствам, то очевидно, что отношения констант скоростей этих реакций должны быть связаны с устойчи- [c.106]

    Однако именно здесь сказывается бездумность вынесения энтропийной составляющей энергии активации в предэкспоненциальный множитель. В действительности а priori ниоткуда не следует, что энтропия при элементарном акте течения должна возрастать. В случае продольного течения, сопровождающегося ориентацией и, следовательно, уменьшением конфигурационной энтропии системы в целом (см. гл. VI), этот антитезис вообще не нуждается в доказательстве. Однако и сдвиговое напряжение, обычно приводящее к разрушению структуры, в некоторых случаях может порождать ее. Это явление, именуемое антитиксотропией [29, с. 87— 138], чаще всего наблюдается в растворах полярных полимеров и полиэлектролитов, где возможно образование дополнительной флуктуационной сетки водородных связей. Но в принципе подобное ограничение даже не обязательно. [c.170]

    Характеристические полосы в длинноволновой части спектра (области отпечатков пальцев X > 7 мкм) при отсутствии дополнительной информации обычно не могут служить убедительным доказательством наличия соответствующих группировок. В этой сложной области спектра, как правило, много полос скелетных колебаний с широкими диапазонами частот, накладывающихся на характеристические полосы галогенов, треха омных групп СНг, NO2, SO2, деформационных колебаний водорода при двойных связях и кольцах ароматических и гетероароматических соединений. В таких условиях полезным дополнительным критерием при отнесении полос может быть высокая интенсивность некоторых характеристических полос (валентных колебаний NO2, SO2, 5=0, G—О, N—О), но почти всегда необходимы дополнительные сведения о происхождении, составе и структуре исследуемого вещества. Обнаружение полосы в данном диапазоне Частот само по себе еще не может служить достаточным основанием для ее однозначного отнесения. Предполагаемое отнесение спектральной полосы должно быть подтверждено наличием в спектре других характеристических полос данного структурного фрагмента. Так, например, наличие максимумов поглощения на участке 1500—1600 см еще не доказывает, что исследуемое вещество относится к ароматическим соединениям. Этот вывод можно сделать только при одновременном присутствии в спектре полос, которые могут быть приписаны валентным и деформационным колебаниям водородных атомов бензольных колец (см. рис, 1.8), а также характерного для каждого типа замещения слабого поглощения на участке 1650—2000 см" . Совокупность всех этих признаков не только подтверждает [c.19]

    Первая стадия — это медленная ионизация субстрата, и имеино она определяет скорость реакции. Вторая стадия — это быстрое взаимодействие промежуточного карбокатиона и нуклеофила. Растворитель всегда оказывает содействие процессу ионизации, так как энергия, необходимая для разрыва связи, в значительной степени компенсируется сольватацией R+ и X. Например, ионизация трет-бутилхлорида на грег-бутил-катион и хлорид-ион в газовой фазе без растворителя требует 150 ккал/моль. В отсутствие растворителя такой процесс просто не пойдет иначе как при высоких температурах. В воде для протекания диссоциации необходимо лишь 20 ккал/моль, а разность —это энергия сольватации. Тогда, когда роль растворителя состоит исключительно в содействии отщеплению уходящей группы с фронтальной стороны, т. е. когда молекулы растворителя не имеют никакой возможности участия в атаке с тыла (Sn2), механизм представляет собой предельный случай процесса SnI- Существуют кинетические и иные доказательства [17] того, что при отрыве X от RX две молекулы протонного растворителя образуют слабые водородные связи с X  [c.17]

    Видно, что эти механизмы состоят из двух или трех стадий соответственно, и тем не менее вполне возможна согласованность двух или трех из них. Принципиально механизмы можно различить, изучая влияние заместителей на миграцию групп. В механизме а реакция по отношению к мигрирующей группе является электрофильным ароматическим замещением с переходным состоянием, в котором кольцо положительно заряжено. Электронодонорные заместители в орго- или /гара-положении будут способствовать миграции, электроноакцепторные — замедлять ее. При механизме б реакция является нуклеофильным ароматическим замещением с отрицательно заряженным переходным состоянием эффект заместителей будет противоположным. Полученные результаты согласуются с механизмом а [189]. Остается открытым вопрос о числе стадий в механизме. Имеются доказательства того, что в некоторых случаях процесс двухстадиен интермедиат 62 был выделен в виде литиевого производного и превращен в диарилацетилен нагреванием [190] кроме того, показано протекание водородно-дейтериевого обмена [185]. Однако в других случаях возможно согласованное осуществление двух стадий. Стереоселективность реакции не требует такого согласованного механизма, так как винильные карбанионы могут сохранять конфигурацию (т. 1, разд. 5.5). [c.151]

    Специальными работами было показано, что стереохимический результат 5 у2-реакций одинаков для процессов нуклеофильного замещения как при первичном, так и при вторичном и третичном атомах углерода. Возможность исследовать стереохимию реакций замещения при первичном атоме углерода появилась лишь после того, как были получены оптически активные вещества с водородно-дейтериевой асимметрией . Примером может служить использование 1-дейтероэтанола для доказательства обращения конфигурации при щелочном гидролизе его /г-толуолсульфоната. [c.273]

    Интересно, что косвенные эк- водородных соединениях спериментальные доказательства [c.103]

    Доказательством влияния водородной связи между атомами азота и кислорода в молекуле гидроокиси аммония на ее слабую диссоциацию служит возможность получения хорошо диссоциируюпдей гидроокиси тетраметиламмония путем последовательного замещения водорода на метильные группы. Например, ион аммония путем замещения атомов водорода на соответствующие радикалы можно перевести последовательно в метиламмоний, диметиламмоний, триметиламмоний, тетраметиламмоний и соответствующие гидроокиси (образование которых объясняется по теории Бренстеда и теории Вернера). [c.95]

    Позднее Циглер (1954) разработал эффективный метод непрерывной термической димеризации бутадиена в 1 ис-г ис-циклооктадиен-1,5 и установил, что этот углеводород устойчив и отличается от описанного Вильштеттером соединения, которое очень активно в реакциях присоединения фенилазида, диазометана и дифенилдиазометана. Циглер считал вероятной для этого лабильного диена транс-гранс-конфигурацию, но Коуп (1962) привел несомненное доказательство цис-транс-к.онфи-гурации. Он установил, что продукт первого гофмановского расщепления (II) является 1-диметиламино-г ис-циклооктеном-4, который получается также из п-бромбензолсульфоната циклооктен-4-ола-1 и диметиламина. транс-изомеризация промежуточного соединения II вряд ли могла произойти при втором гофмановском расщеплении, так как в восьмичленном кольце более устойчивой является 1 ис-двойная связь (см. выше). Поэтому для лабильного диена возможна только одна структура, а именно г ис-транс-циклооктадиена-1,5 (III). Промежуточный амин II был разделен на антиподы путем кристаллизации его ( + )-10-камфорсульфокислых солей из диизобутилкетона, а оптически активные амины были превращены в иодметилаты с [аЬ = —14,9° и + 14,3° и в четвертичные основания. Прн гофмановском расщеплении (-(-)-основание дало (-Ь)-г ас-7-ранс-циклооктадиен-1,5 с [а]о=+Л21,3°, а из (—)-основания образовался его энантиомер с Ыб= —120,5°. В этих углеводородах со средними кольцами жесткая циклическая система и водородное взаимодействие препятствуют вращению транс-группиров-ки —СН = СН— по отношению к остальному кольцу и таким образом предотвращают рацемизацию. [c.90]

    Начальное отнятие первичного водородного атома от бутана может приводить к продуктам, содержащим четыре углеродных атома в молекуле, как масляная кислота, у утиролактон, янтарная кислота. В табл. 10, составленной на основании результатов лабораторных опытов, указано присутствие лишь следов пропионовой кислоты, масляной кислоты и v-бути-ролактона. Убедительные доказательства образования этих соединений удалось получить в условиях промышленной установки, когда были выделены достаточные их количества для очистки и идентификации. Продукт. первой стадии — гидроперекись к-бутила — может образоваться по уравнениям (106), (108) и (110) затем гидроперекись н-бутила вступает в дальнейшие реакции, ведущие к конечный продуктам  [c.222]

    Предполагается, что и в этом случае галоидные ионы и водород в качестве опасных компонентов ответственны за высокотемпературное растрескивание. Предположение о роли водорода бы ло впервые сделано в работе [139], авторы которой остались его наиболее активными сторонниками. В основе предложенной гипотезы лежит образование водорода в результате пирогидролиза хлорида. Этот водород абсорбируется либо в металле, либо в области концентрации напряжений в вершине трещины, снижая энергию разрушения. Доказательства, приводимые в пользу механизма водородного охрупчивания, следующие 1) водород образуется в процессе высокотемпературной солевой коррозии 2) данные ASTM [144] и результаты [148] показывают, что водород может абсорбироваться в условиях высокотемпературного солевого коррозионного растрескивания 3) при комнатной температуре [c.402]

    Водородный обмен. Это реакция частично уже рассматрнвапась выше. Легкий обмен водорода в положении 1 адамантана в суперкислой среде является доказательством треугольного переходного состояния н [c.381]

    Из бег13ИЛ-8-метилксаг1тогената (X), в котором также отсутствует р-водородный атом, который мог бы элиминироваться, при пиролизе при 160—185° образопались стильбен (20—24%) [27, 28], толуол (20%) [27] и дитиокарбонат XI [27]. Из дитио-карбоната п результате пиролиза прн 290° образовались стильбен (60%) и толуол (25%). Хотя, по-видимому, в этих опытах по пиролизу происходит образование промежуточных соединений типа свободных радикалов, имеется мало прямых доказательств, которые бы способствовали выяснению механизма реакции. [c.76]

    Ряд необычных структур, таких, как НР и димер уксусной кислоты в газовой фазе (рис. 14.11), служат доказательством образования водородных связей. Необычно высокая константа кислотной диссоциации салициловой (орто-оксибензойной) кислоты по сравнению с мета- и яара-нзомерами также свидетельствует об образовании водородной связи. Водородная связь образуется тогда, когда протон поделен между двумя электроотрицательными атомами, такими, как Р, О или Ы, которые находятся на соответствующем расстоянии друг от друга. Протон водородной связи притягивается отрицательным зарядом высокой плотности электроотрицательных атомов. Фтор образует очень сильные водородные связи, кислород — более слабые, а азот — еще более слабые. Необычные свойства воды обусловлены в значительной степени водородными связями, включающими четыре неподе-ленные пары электронов на кислороде (разд. 11.6). Лед имеет тетрагональную структуру, причем каждый атом кислорода связан с четырьмя атомами водорода. В этом случае водородные связи образуются вдоль оси каждой неподеленной пары электронов в жидкой воде их существование ответственно за высокую температуру кипения по сравнению с температурой кипения гидридов других элементов той же подгруппы периодической таблицы (—62° С для НгЗ, —42° С для НгЗе, —4° С для НгТе). При испарении воды водородные связи разрываются, [c.445]

    Расчет энергии проводился, как и для хлорофилла, по частотам валентных колебаний воды, поэтому на рис. 65 в качестве примера представлено поглощение в этой спектральной области для некоторых соединений. Из рисунка видно, что в спектрах изученных кристаллических солей отсутствует полоса у - 3600 см , следовательно, несвязанных ОН-групп в данных соединениях нет. В то же время в неорганических фосфатах существование таких групп вполне возможно, доказательством чего служит наличие полосы при 3600 см . Можно, таким образом, полагать, что в соединениях NAD, ADP, NADP мо- лекула воды одновременно участвует в двух водородных [c.147]

    Рис. 4.5 демонстрирует возможность образования водородных связей для симметричных и асимметричных пептидных ассоциатов. В последнем случае эндотермический эффект гидрофобных взаимодействий между гидратированными боковыми цепями пептидов будет усиливаться благодаря эндоэффекту взаимодействия полярных (амидных) групп с неполярными радикалами. Оба типа взаимодействий дают положительный вклад в величину Лг- Большйе значения Й2 и /13 для ВЬ-а-аланил-р-аланина и глицил-у-аминомасляной кислоты по сравнению со значениями указанных величин для их структурных изомеров Ь-а-аланил-Ь-а-аланина и р-аланил-р-аланина (см. табл. 4.2) служат доказательством данного заключения. Первая пара пептидов формирует ассоциаты с асимметричной структурой в растворе, а вторая формирует симметричные ассоциаты. Изображенная на рис. 4.6 линейная зависимость между /13 и числом сольват1фованных молекул в первой сольватной оболочке свидетельствует о том, что значения величин [c.200]

    Трехмерные структуры двух глобулярных белков дали блестящее и, казалось, бесспорное доказательство справедливости господствующим в течение почти двух десятилетий а-спиральной концепции Полинга и структурной классификации белков Линдерстрем-Ланга. В лишенных какой-либо симметрии белковых молекулах а-спираль, действительно, оказалась доминирующей структурой (75%), стабилизированной пептидными водородными связями типа 5 — 1. Идентифицированные структуры удовлетворительно согласовывались и с еще одной гипотезой структурной организации белков - гидрофобной концепцией У. Козмана. [c.73]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]

    Доказательство конфигурации синтетических изомеров мускарина. Конфигурация изомеров была установлена по инфракрасным спектрам и методом окисления. Инфракрасные спектры частично непосредственно дают ответ на вопрос о стереохимии изомеров, так как та пара изомеров, в которых окси- и диметил-аминометильные группы характеризуются ис-расположением (эпи- и алло-формы), вследствие наличия внутримолекулярной водородной, связи обнаруживает независимо от концентрации валентные колебания связанной ОН-группы при 3,16 мк, тогда как нормускарин и эпиаллоиормускарин в достаточно разбавленном растворе обнаруживают валентные колебания свободной [c.454]

    Различная сольватация переходных состояний вызывает небольшие отклонения в отношении апротонныйУ/гг протонный растворитель в реакциях с 8 2 механизмом, проходящих с участием одинаковых нуклеофильных, но различных остающихся групп [12, 701. Так, реакции с замещением атома иода по 5 у2-механизму примерно в 50 раз более чувствительны к тормозящему эффекту замены полярного апротонного растворителя протонным, чем реакции с замещением атома хлора. Это объясняется тем, что в переходном состоянии хлор с частичным отрицательным зарядом более сольватирован, т. е. более стабилизован водородными связями, чем иод в аналогичном переходном состоянии. В реакциях отношение апро-тонный/ 2 протонный растворитель остается одинаковым при замещении атомов фтора, хлора и иода на тиофенолят- и азид-ион [711-Эти данные могут служить дальнейшим доказательством, что переходные состояния в реакциях 5дг2 и 5дгАг существенно различны, т. е. что в реакциях с механизмом 5дг2 стадия расщепления связей значительно резче выражена в переходном состоянии, чем в реакциях с механизмом [c.15]

    Для объяснения этих аномалий на основании различных доказательств было предложено понятие водородной связи атом водорода служит мостиком между двумя электроотрицательными атомами, причем с одним из них он связан ковалентной связью, а с другим — электростатическими силами притяжения. Энергия этой электростатической связи около 5 ккал/моль (20,93-10 Дж/моль) [для большинства ковалентных связей эта величина составляет 50—100 ккал/моль (209,34-10 —418,68-10 Дж/моль)]. Жидкости, молекулы которых удерживаются вместе водородными связями, называют ассоциированными жидкостями-, их аномально высокие тe шepaтypы кипения обусловлены большей энергией, необходимой для разрушения водородных связей. Водородные связи обычно изображают пунктирными линиями. [c.481]

    Следующий важный класс кислородных производных алканов — оксо-соединения. Как следует из их реакций и способов получения, оксосоеди-нения можно рассматривать как алканы, в которых два водородных атома ири одном углероде замещены на двухвалентный атом кислорода. Таким образом, функциональной группой оксосоединений является карбонильная группа 0—0. Доказательством наличия в оксосоединениях карбонильной группы могут служить, например, следующие реакции. [c.128]

    Анализ пейтропоструктурных данных, характеризующих углы Н—О—Н и 0...Н—О — Н...0, показывает, что между этими параметрами водородного мостика также нет четкой взаимосвязи (рис. 3). Разброс значений угла молекулы воды составляет 108 + 6°, в то время как угол 0...Н—О —Н...Оменяется от 80 до 140°. Многочисленные данные такого рода [111, 199, 223, 233, 246—248, 289, 389] послужили основой для доказательства высказывавшегося уже давно [370] утверждения, что молекулы и ионы, окружающие молекулу воды, ее почти пе деформируют (расстояния /-qh и/ нн практически пе изменяются), а лишь меняют ее ориентацию в крист алле. В результате этого некоторые Н-связи существенно изгибаются, так что угол 0Н...0 уменьшается от 180 до 140—130°. Атом водорода при этом смещается с прямой, соединяющей атомы кислорода водородного мостика, соответственно па 0,4—0,5 Д. В результате этого в кристаллах искривленные Н-связи являются скорее типичным явлением, чем редкостью. В среднем Н-связь в кристаллах имеет угол 167° [288], а предельным можно считать угол 130° [111]. Искривление водородных связей происходит не только в плоскости молекулы воды. Отмечены случаи, когда угол между плоскостями Н—О — Н и О...О составляет 12°. [c.18]

    Вскоре после того, как Байер опубликовал свою теорию напряжения, Закс установил, что можно построить неплоские модели циклогексанового кольца, в которых все валентные углы будут тетраэдрическими [27] или близкими к ним. Если углеродные атомы циклогексана расположить в одной плоскости, го они образовали бы лишь один шестиугольник с углами между связями в 120°, что привело бы к значительному байеровскому напряжению. Более того, в плоской форме должны были бы проявиться сильные взаимодействия за счет заслонения, возникающего между вицинальными водородными атомами. Закс показал, что ненапряженные углы между связями, равные 109,5°, могли бы существовать, если бы атомы углерода находились в альтернирующих положениях выше и ниже общей плоскости кольца. При таком расположении атомов углерода вицинальные водородные атомы становятся заторможенными и, таким образом, устраняются неблагоприятные взаимодействия, связанные с заслонением. Неплоская высокосимметричная форма циклогексана, предложенная впервые Заксом, в настоящее время повсеместно рассматривается как конформация кресла (см. ниже). Закс рассмотрел также другую, менее жесткую модель неплоского циклогексана, которую он называл гибкой формой. Хотя некоторые дополнительные соображения, на которых был основан анализ Закса, были отброшены Мором [28], все же этот анализ явился первым проникновением в конформационные свойства циклических молекул. В настоящее время имеется много доказательств того, что наиболее устойчивой конформацией циклогексана и многих его производных является конформация кресла. На приведенных выше проекциях Ньюмена подчеркнуто заторможенное положение атомов водорода в кольце. Из этой конформации вытекает существование двух типов связей углерод — водород. Конформация кресла имеет простую ось симметрии третьего порядка. Шесть связей С—Н примерно параллельны этой оси три направлены вверх, а три — вниз. Эти связи называют аксиальными. Остальные шесть С—Н-связей почти перпендикулярны оси симметрии, их называют экваториальными [c.83]

    Тот факт, что другая сериновая протеиназа, субтилизин, белок,, не обладающий структурной близостью к группе химотрипсина, содержит, тем не менее, тот же каталитический участок, явился ошеломляющим открытием. Из трехмерной структуры субтили-зина следует, что в последнем также имеется система водородных связей аспарагиновая кислота-32. .. гистидин-64. .. серин-221,. аналогичная найденной в химотрипсине [51] (см. рис. 24.1.14). Этот факт означает, что каталитические механизмы, используемые обоими этими ферментами, также идентичны. Отсюда, безусловно,, следует заключение, что две линии в эволюции ферментов пришли к одному и тому же решению проблемы гидролиза амидной связи. Если это заключение справедливо для сериновых протеиназ, оно может быть справедливо и для протеиназ, в механизмах действия которых участвуют другие аминокислотные остатки, и вообще для ферментов, катализирующих любую данную реакцию. Эти данные, таким образом, могут служить косвенным доказательством нашего предположения о том, что очень большое число-ферментов, участвующих в жизненных процессах, может использовать значительно меньшее число каталитических механизмов. [c.490]

    В настоящее время получены бесспорные доказательства, что в стабилизации пространственной структуры белков, помимо ковалентных связей (пептидные и дисульфидные связи), основную роль играют так называемые нековалентные связи (рис. 1.22). К этим связям относятся водородные связи, электростатические взаимодействия заряженных групп, межмолеку-лярные ван-дер-ваальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия и т.д. [c.66]


Смотреть страницы где упоминается термин Водородная доказательство: [c.183]    [c.4]    [c.63]    [c.504]    [c.87]    [c.334]    [c.73]    [c.21]    [c.816]    [c.181]    [c.865]    [c.206]    [c.518]   
Электрохимия растворов издание второе (1966) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная молекула доказательство существования

Водородная связь экспериментальные доказательства

Доказательства образования водородной связи в водном растворе

Доказательство существования водородной связи



© 2025 chem21.info Реклама на сайте