Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо влияние pH среды на скорость

    Коррозии подвержены и совершенно чистые металлы с однородной поверхностью. Так как характер электролита— один из факторов, определяющих потенциал металла, то влияние среды на течение коррозионного процесса может быть очень сильным. Например, смещение потенциала алюминия в сторону более отрицательных значений в щелочной среде (—2,35 В при pH 14, см. табл, 15) делает его более коррозионно неустойчивым. Скорость анодного растворения железа велика при ма- [c.278]


    На коррозионную активность почвы влияет наличие бактерий. В чем же состоит ускоряющее действие, оказываемое микроорганизмами на протекание коррозионных процессов В анаэробных условиях процесс коррозии заторможен из-за отсутствия катодных деполяризаторов. Незначительные количества атомарного водорода, образующегося в нейтральных грунтах на катодных участках поверхности труб, ни тем более связанный в сульфатах кислород не оказывают заметного влияния на скорость катодных процессов. При наличии в почве сульфатвосстанавливающих бактерий, рост которых связан с реакцией восстановления ионов серы водородом, в результате биологического процесса образуется свободный кислород, используемый микроорганизмами для дыхания и участвующий в катодной реакции в качестве деполяризатора. Образующиеся при этом ионы восстановленной серы 8 вызывают снижение pH среды, что благоприятствует протеканию катодного процесса с водородной деполяризацией, а выпадение в осадок нерастворимого сернистого железа активизирует процесс анодного растворения трубной стали. Поскольку этот процесс происходит без торможения, он может продолжаться непрерывно. При величине pH > 9 сульфат-восстанавливающие бактерии погибают, поэтому эффективным методом борьбы с ними является защелачивание среды. [c.16]

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Способность твердого соединения защищать металл зависит, конечно, от его растворимости в окружающей среде, адгезии с поверхностью металла, сцепления кристаллов и др. Различные системы металл — среда образуют слои твердых соединений, различающиеся по степени защиты, которую они сообщают металлу. Такие металлы, как N1, Сг, А1, Т1, и нержавеющие стали во многих средах обладают способностью образовывать тонкие невидимые пленки окислов (толщиной I—3 нм). Несмотря на электрохимическую активность этих металлов пленки оказывают значительное влияние на скорость реакции. Способность металла образовывать защитную пленку, так называемое пассивирование, является одним из самых важных средств противокоррозионной защиты. Одни металлы пассивны в разных условиях окружающей среды, другие — только в определенных условиях. Так, тантал пассивен в большинстве кислот, включая соляную кислоту, а железо — лишь в дымящейся азотной кислоте. [c.30]

    Влияние условий процесса восстановления на его результаты объясняется многостадийностью процесса. Образующийся в ходе восстановления арилгидроксиламин является весьма реакционноспособным соединением, способным взаимодействовать не только с восстанавливающим агентом, но и с присутствующим в реакционной массе нитрозосоединением. Конечный результат реакции зависит от того, с каким из этих соединений взаимодействие протекает быстрее. Так, при восстановлении нитросоединений железом в присутствии растворов электролитов или в кислой среде восстановление арилгидроксиламина идет с большей скоростью, чем его взаимодействие с нитрозосоединением. Поэтому основным продуктом реакции является амин. При использовании же цинка в щелочной среде скорость восстановления арилгидроксиламина до амина значительно меньше, чем скорость его реакции с нитрозо соединением, поэтому последняя реакция и является преобладающей  [c.95]

    Хлопья гидрата окиси железа тяжелее хлопьев гидроокиси алюминия в 1,5 раза и, следовательно, скорее осаждаются. Они более устойчивы и не разрушаются в щелочной среде, что имеет значение при объединении в общей установке процессов коагуляции и умягчения воды. Температура воды не оказывает существенного влияния на скорость процесса коагуляции солями железа. В силу этого соли железа нашли широкое применение в качестве коагулянтов, особенно на водоумягчительных установках. [c.35]

    Если реакция восстановления не определяется диффузией, то перемешивание или движение среды будет оказывать только незначительное влияние на скорость коррозии. Подвод кислорода в больших количествах может на практике даже снизить скорость коррозии, если он способствует восстановлению защитной окисной пленки на поверхности металла. Такой эффект отмечался для железа и цинка в нейтральных растворах (см. разд. 2.8). [c.87]

    Большое влияние на скорость коррозии железа оказывает pH раствора (рис. 48). В кислых средах при повышении pH до 4 скорость коррозии [c.126]

    В нейтральных средах и растворах окислителей повышение содержания углерода в металле практически не оказывает существенного влияния на скорость коррозии, протекающей в большинстве случаев с кислородной деполяризацией, при которой решающую роль играет доступ кислорода к поверхности металла. Кроме того, на поверхности металла образуются нерастворимые продукты коррозии, обладающие защитными свойствами. Однако электролитическое железо (0,01% С) и железо Армко (0,02— 0,03% С) все же обладают повышенной устойчивостью по сравнению с обычной углеродистой сталью. [c.102]

    Все обычные конструкционные материалы на основе железа, такие как малоуглеродистые стали, низколегированные стали и сварочное железо, в естественных водных средах при полном погружении корродируют практически с одинаковыми скоростями. Сварочное железо обладает несколько большей стойкостью, чем малоуглеродистая сталь при испытаниях в морской воде в Госпорте (Шотландия) потери массы образцов из сварочного железа после погружения в течение 1 года оказались на 15% меньше, чем у образцов из обычной малоуглеродистой стали. Способ производства и состав малоуглеродистой стали не оказывают существенного влияния на скорость коррозии [25] (табл. 1.2). [c.12]

    Как обсуждалось выше в связи с влиянием pH, скорость коррозии железа или стали в природных водах контролируется диффузией кислорода к поверхности металла. Отсюда следует, что будь то бессемеровская или мартеновская сталь, сварочное железо или чугун, все они по своим коррозионным свойствам в природной (но не в морской) воде мало или совсем не отличаются одно от другого. То же самое относится и к коррозии в различных почвах вследствие того, что факторы, определяющие скорость почвенной коррозии, аналогичны факторам, действующим при полном погружении в воду. Поэтому для этих сред, как правило, следует применять наименее дорогую сталь. [c.100]


    Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары (табл. 4). [c.52]

    Влияние состава и концентрации нейтральных растворов солей. В нейтральных средах коррозия протекает преимущественно с кислородной деполяризацией. Степень влияния нейтральных растворов солей на- скорость коррозии зависит от свойств образующихся продуктов коррозии. Труднорастворимые соединения экранируют поверхность металла, в результате чего скорость коррозии уменьшается. Карбонаты цинка и железа замедляют коррозию цинка и железа, сульфат свинца — коррозию свинца и т. д. Хромат олова, бихромат и перманганат ка- [c.24]

    Среди сплавов, испытанных по данной программе, были медноникелевые сплавы о добавками железа, составлявшими от 0,03 до 5 %. Влияние содержания железа на коррозию этих сплавов после 400 и 1064 сут экспозиции на глубине 1830 м показано на рис. 111. В целом скорости коррозии с увеличением содержания железа уменьшались. [c.278]

    Показатель п для различных металлов составляет Mg, Мп — 2 2п — 1,1 Ре — 0,42 5п — 0,13 Л1 — 0,63. Коррозия конструкционных материалов в среде нефтепродуктов, которые практически нейтральны, с примесью воды происходит с кислородной деполяризацией, и ее скорость определяется скоростью катодной реакции ионизации Кр. Влияние pH в нейтральной области невелико для железа 4—10, цинка 7—10, свинца 6—8, меди 5—11. Это объясняется тем, что труднорастворимые продукты коррозии этих металлов стабилизируют pH у поверхности корродирующего металла и коррозия протекает практически при постоянном значении pH. Скорость коррозии зависит ог концентрации и химической природы солей. Это влияние различно. [c.116]

    Растворенный в среде кислород может оказывать двоякое действие на процесс коррозии металлов. Если кислород играет роль деполяризатора, как, например, при коррозии в нейтральных и щелочных средах, то он усиливает процесс разрушения, а в чистой дистиллированной воде (при отсутствии депассиваторов) кислород, особенно при повышенных температурах, может приводить к образованию на поверхности металла оксидной пленки и тем самым тормозить коррозионные процессы. Влияние концентрации кислорода в воде на скорость коррозии имеет сложный характер. Сначала при повышении концентрации кислорода примерно до 12 мл/л скорость коррозии низкоуглеродистой стали в дистиллированной воде растет, а при дальнейшем повышении концентрации — резко снижается [11]. При наличии в воде растворенных солей концентрация кислорода, соответствующая максимуму скорости коррозии, сдвигается в сторону больших значений, а в щелочных растворах — уменьшается. Снижение скорости коррозии железа при высоких концентрациях кислорода объясняется тем, что у катода находится больше кислорода, чем это необходимо для ассимиляции электронов. Избыточный кислород, адсорбируясь на катодных участках, приводит к образованию адсорбционного слоя или слоя оксидов, выполняющих роль диффузионного барьера. [c.10]

    На основании анализа опубликованных данных и наших исследований можно сделать заключение, что воздух, который не оказывает заметного влияния на усталость гладких образцов и который обычно принимают за эталонную среду при сравнении агрессивности сред, существенно снижает сопротивление усталостному разрушению металлов по сравнению с вакуумом или очищенными газами. Вода и водные растворы солей и кислот также увеличивают скорость развития усталостных трещин в сплавах на основе железа, алюминия, титана и других металлов. [c.86]

    Образование зародышей на стенках тигля зависит от газовой среды в печи, что связано с влиянием газов на смачиваемость железа слюдяным расплавом. Так, в водородной среде материал тигля хуже смачивается (краевой угол 0 около 90°), чем в азоте и аргоне. Это способствует достижению более значительного переохлаждения расплава и более массовому характеру кристаллизации. Чем меньше краевой угол смачивания, тем легче происходит образование зародыша, и уже при 0 — 45° высота потенциального барьера для зарождения на поверхности на порядок меньше, чем для зарождения в объеме. При гетерогенном зарождении кристаллов расплав слюды характеризуется высокой кристаллизационной способностью. Максимальная скорость зародышеобразования по данным подсчета центров кристаллизации (сфе-ролитов) в образцах, полученных в условиях переохлаждения на несколько десятков градусов, составляет примерно 100 зародышей на 1 см2 поверхности в течение 1 с. [c.39]

    Большое влияние оказывают примеси. Загрязнение воздуха СО2, 802, парами воды вызывает повышение скорости газовой коррозии низкоуглеродистой стали в 1,3-2,0 раза. Нри увеличении содержания оксида углерода (II) — СО — скорость окисления стали понижается. Это явление связывают с тем, что при большом содержании СО на границе сталь-газ устанавливается равновесие 2СО С + СО2. Образующийся при этом атомарный углерод диффундирует в сталь с образованием карбида железа — цементита. Происходит науглероживание стали. Аналогичный процесс при высоких температурах может иметь место и в атмосфере углеводородов. Например, в среде метана устанавливается равновесие [c.58]

    Внешняя среда влияет на характер образующихся продуктов коррозии. Если они трудно растворимы и надежно экранируют металл, сплошь покрывая его поверхность, то скорость коррозии станет практически незначительной. Свинец в не очень концентрированных растворах серной кислоты корродирует очень медленно, так как покрывается нерастворимой пленкой сернокислого свинца. Железо в щелочных растворах корродирует также медленно потому, что ионы ОН , находящиеся в растворе, способствуют упрочению защитной пленки гидроокиси железа. Но даже и в тех случаях, когда нерастворимых продуктов не образуется, влияние внешней среды на коррозию очень велико. Напомним, что в различных средах стационарные электродные потенциалы различны. Коррозионный процесс одного и того же сплава при перемене среды начинается при различных начальных э. д. с., что может в значительной степени повлиять на дальнейший ход коррозии. [c.184]

    Исследование влияния различных факторов на коррозию стали в двухфазных системах показало сложный характер влияния кислорода, которое не во всех случаях может быть однозначно определено [9]. В условиях двухфазной среды и образования на поверхности металла сульфида железа кислород воздуха заметно увеличивает скорость коррозионного процесса. С повышением концентрации сероводорода в водной фазе (образуемой пластовыми и сточными водами) скорость коррозии углеродистой стали постепенно возрастает и имеет тенденцию достигать предельных величин при более высоком содержании сероводорода. Вместе с тем, при оценке влияния концентрации сероводорода на развитие коррозии стали в двухфазной системе электролит — углеводород необходимо учитывать общее содержание сероводорода во всей системе, поскольку растворимость его в обеих фазах неодинакова в углеводороде она в несколько раз выше, чем в электролитах. Повышенная концентрация сероводорода в углеводородной фазе среды играет важную роль в интенсификации коррозионного процесса в системе двух несмешивающихся жидкостей, так как поверхность металла, отделенная от неполярной фазы тонким слоем электролита, усиленно корродирует. [c.69]

    Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары, о чем свидетельствуют приведенные ниже данные о зависимости относительной скорости коррозии (%) стали с 0,17% С от состава газовой среды при 900° С (по Гатфилду). [c.128]

    Коррозии подвержены и совершенно чистые металлы с однородной поверхностью. Так как характер электролита — один из факторов, определяющих потенциал металла, то влияние среды на течение коррозионного процесса может быть очень сильным. Напюимер, смещение потенциала алюминия в сторону более отрицательньц значений в щелочной среде (—2,35 в при pH = 14, см. табл. 15) делает его более коррозионно неустойчивее. Скорость анодного растворения железа велика при малом pH и сильно замедляется при pH -> 14. Это связано с образованием нерастворимой пленки гидроокиси железа (П1) в присутствии ионов ОН. Амфотерность же 2п(0Н)2 увеличивает скорость коррозии цинка при отклонении pH от 7 как в сторону больших, так и в сторону меньших значений. [c.225]

    Восстановленные атомы водорода частично рекомбинируют, а частично диффундируют в металл, вызывая водородную хрупкость. Сульфиды железа, образующиеся в результате коррозии железа в сероводородсодержащих средах, имеют различное строение в зависимости от условий их образования и оказывают различное влияние на скорость коррозии. Так, при низких концентрациях сероводорода (до 2 мг/л) сульфидная пленка состоит главным образом из трои-лита Ре5 и пирита РеЗз с размерами кристаллов до 20 нм, образующих довольно плотную пленку и оказывающих некоторое защитное действие от коррозии. При концентрациях сероводорода от 2 до 20 мг/л дополнительно появляется небольшое количество кансита РедЗв. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит, размеры кристаллов увеличиваются до 75 нм, кристаллическая решетка несовершенна, не препятствует диффузии сероводорода и поэтому не обладает защитными свойствами. [c.21]

    От pH зависит растворимость продуктов коррозии и, следовательно, возможность образования защитных пленок, состоящих из этих продуктов. Для металлов, окислы которых могут растворяться как в кислой, так и в щелочной средах, существует зона pH, где скорость коррозии минимальна (рис. 1.9,а). Так, минимальная скорость коррозии для алюминия наблюдается при pH=6,5, для свинца при рН=8,0, для цинка при рН = 11,5. Для металлов, окислы которых растворимы в кислотах, но совсем мало растворимы в щелочных средах, наблюдается снижение скорости коррозии с ростом pH (рис. 1,9,6). К таким металлам относятся медь, хром, никель, кобальт. Зависимость скорости коррозии железа от pH при низких температурах подобна показанной на диаграмме рис. 1.9,6, а при высоких — на диаграмме рис. 1.9, а. В области pH >13 при высоких температурах железо растворяется в ЫаОН с образованием феррита Ма2ре204 и гипоферрита натрия ЫагРе02. Изменению pH соответствует изменение не только концентраций ионов Н+ и ОН , но и других ионов, в частности аниона кислоты и катиона основания. Так как среди них могут быть ионы, оказывающие влияние на скорость коррозионных процессов, связывать изменение скорости коррозии только с изменением pH не всегда правильно. Необходимо учитывать влияние на скорость коррозии всех компонентов раствора электролита. [c.43]

    Во многих работах отмечается, что железо относится к группе металлов, которые способствуют неравномерному отложению кокса на поверхности катализатора. Предполага ется [3.20], что па окисных катализаторах возможно образование поликристаллических графитов. Поочередное окисление и восстановление катализатора приводит к накоплению стерических изменепип в активном компоненте и к перестройке поверхности с изменением как скорости всех реакций, включая и коксоообразование, так и морфологии кокса. Возможно также образование угольных дендритов [3.21], чему способствует попеременное влияние окислительной и восстановительной сред, приводящее к разъеданию и разрыхлению поверхности катализатора. В таких случаях на поверхности катализатора появляются пе только выступы и неровности, способствующие возникновению трубчатых нитей, но и свобо ные частицы катализатора, играющие самостоятельную роль в образовании нитевидного углерода. Доказательством предполагаемого механизма карбидного цикла может быть общая лимитирующая стадия и общее проме- [c.64]

    Продукты коррозии железа, образующиеся в сероводородсодержащих средах, имеют общую формулу Ре Зв и оказывают существенное влияние на кинетику коррозионного процесса. Структура и защитные свойства сульфидов железа зависят от условий образования, главным образом от парциального содержания сероводорода в среде. Рентгеноструктурны ми и электронографическими исследованиями было установлено, что при низких концентрациях сероводорода (до 2,0 мг/л) сульфидная пленка состоит главным образом из троилита Ре5 и пирита РеЗа с размерами кристаллов до 20 нм. При концентрациях сероводорода от 2,0 до 20 мг/л дополнительно появляется небольшое количество кансита РедЗз. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит и размеры кристаллов увеличиваются до 75 нм. Кансит имеет несовершенную кристаллическую решетку, поэтому он не препятствует диффузии железа и не обладает защитными свойствами. В результате устанавливается постоянная и довольно высокая скорость коррозии. Кристаллические решетки пирита и троилита имеют относительно небольшое число дефектов, тормозят диффузию катионов железа и оказывают некоторое защитное действие. [c.18]

    О воздействии радиации на коррозионное поведение металлов известно мало. Влияние облучения на коррозионные свойства можно сравнить с действием холодной деформации, с той разницей, что при облучении в коррозионной среде образуются локальные пики смещения и химические вещества (например, HNOз или Н2О2), влияние которых на коррозию вторично. Это значит, что стойкость тех металлов, скорость коррозии которых лимитируется диффузией кислорода, практически не изменится после облучения. В кислотах скорость коррозии облученной стали (но не чистого железа) повысится, а стойкость облученного никеля останется прежней, так как он менее чувствителен к механической обработке. [c.154]

    В высокотемпературных водных средах на железе и его сплавах образуется характерная двухслойная оксидная пленка, состоящая в обескислороженных растворах, из магнетита Рез04 [38, 39]. Внешний слой состоит из неплотно упакованных кристаллов диаметром 1 мкм, внутренний защитный слой — из плотноупакованных кристаллитов диаметром 0,05— ,2 мкм, которые прочно связаны с металлической подложкой. Однако в растворах с очень высокими или очень низкими значениями pH защитный магнетитовый слой растворяется или разрыхляется, в результате чего скорость коррозии увеличивается. Влияние растворенного кислорода более сложно. [c.288]

    До настоящего времени не проводились систематические исследования влияния химической природы материала насадки на ее эффективность. В качестве материала для изготовления насадок для лабораторных работ используют прежде всего стекло, фарфор, глину и различные металлические сплавы. Учитывая коррозионную устойчивость в среде агрессивных жидкостей п стоимость, предпочтение обычно отдают стеклу и керамическим материалам. Важным обстоятельством является то, что фарфор после обжига становится твердым и не содержит железа, поэтому исключается возмояшость его каталитического воздействия на разделяемые вещества. Для обеспечения высокой эффективности непревзойденными являются насадки из нержавеющей проволоки или сетки (сталь У2А). Фукс и Рот [100] успешно применили для разделения смесей воды и уксусной кислоты насадки из сосновой и баль-зовой древесины, которые отличаются высокой смачиваемостью. Однако эффективность этих насадок существенно зависела от нагрузки, ввиду чего работали главным образом при скорости паров 0,18 м/сек. При применении подобных капиллярных насадок, к которым относятся также насадки из пористой глины, отходов [c.447]

    Кроме того, изучалось влияние сульфидных включений на электрохимическое поведение железа в реальной и модельной (1 н, Ка2С0з + 0,5н. НаНСОз) средах. В качестве объектов исследования использовались карбонильное железо и автоматная сталь А12, содержащие 0,002 и 0,16 % серы, соответственно. Потенциодинамические поляризационные кривые снимались со скоростью развертки 1 мВ/с на потенциостате ЕР-22. Результаты исследований приведены на рис. 1.22. Как видно из графиков, у железа и стали А12 наблюдается близкое электрохимическое поведение в реальной и модельных средах. Пиковые значения анодного тока в реальных средах ниже, чем в модельной среде, а потенциал, соответствующий пиковым значениям для реальной среды, находится ближе (на 100 мВ) к регламентированным значениям поляризаци- [c.36]

    Известно, что углерод существенно влияет на коррозионную стойкость сталей. С увеличением содержания углерода коррозионная стойкость сталей уменьшается, уменьшается она и при переходе к з алочным структурам. Так, например, скорость коррозии чистого железа в 1 н. рас1воре соляной кислоты приблизительно в сто раз меньше, чем серого чугуна и в десять раз меньше, чем Ст. 10. В нейтральных средах влияние содержания углерода на скорость коррозии уменьшается. Примесь марганца практически не влияет на коррозионную стойкость стали. Добавка кремния в количестве свыше 1 % несколько снижает Коррозионную стойкость стали, очень большие добавки кремния (от [c.38]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки. [c.453]

    Согласно 391, ионы двухвалентного железа восстанавливают RjNG до RjNOH. Предложенный в [39] механизм, по нашему мнению, не является достаточно обоснованном, поскольку он не объясняет независимость констант скорости реакций от природы нитроксила и характер влияния кислотности среды на скорость реакции. [c.63]

    Более быстрое образование гидроксидов и их осаждение при добавлении хлоридов алюминия и железа наблюдается в двойных смесях с анионами НСОз и С1 , а более медленное — с анионами НСО и SO4 . При большом содержании хлоридов и малой щелочности в дисперсионной среде хлопья гидроксидов алюминия не образуются. Высокие значения pH раствора и ионы хлора оказывают сенсибилизирующее, а при низких — стабилизирующее влияние на коагуляцию гидроксидов. При добавлении сульфатов алюминия и железа скорость процесса образования хлопьев и их осаждения зависит от pH среды. Катионы натрия, кальция, магния меньше влияют на процесс коагуляции. ЙГоны кальция оказывают большее влияние в водах, содержащих большие количества ионов SO4 , что объясняют в [46] формированием микрокристаллов aS04 в адсорбционных слоях коллоидных мицелл, являющихся центрами кристаллизации. Наличие большого количества сульфат-ионов в случае применения в качестве коагулянта алюмината натрия [47] значительно расширяет оптимальную для коагуляции зону значений pH (рис. 1.14). [c.41]

    ЗАКАЛИВАЕМОСТЬ — свойство стали приобретать в результате аа-калки макс. твердость. Зависит в осн. от содержания атомов углерода в решетке альфа-железа (рис.), определяется высоким пределом упругости кристаллов мартенсита, особой микро- и субмикроструктурой (обусловленной мартенситням превращением и заметной долей ковалентной связи, вносимой углеродом). В реальных условиях макс. твердости углеродистой стали невозможно достичь не только у крупных, но и у тонких образцов, что связано с недостаточной прокаливаемостью стали. Изделия из стали с низкой про каливаемостью сечением свыше 10 мм не прокаливаются на всю глубину даже при закалке в воде с раствором щелочи либо соли. Влияние на 3. легирующих добавок возрастает с уменьшением содержания углерода и проявляется в осн. косвенно. Большинство их уменьшает критическую скорость охлаждения, поэтому в легированной стали легче получить возможную для нее макс, твердость при закалке в более мягких средах (иногда даже на воздухе) или закалке крупных изделий. 3. легированной стали зависит от полноты растворения в аустените карбидов, нитридов и нек-рых др. стойких соединений. Поэтому выбирают такие условия аустенитиза-ции, когда в гамма-раствор переходит макс, количество углерода и [c.448]

    Лит. Ромашкин 10. П. К теории диффузии в пластически деформируемых металлах, Фи.чииа твердого тела , 1960, № 12 Ш а т и н с к и й В. Ф. Взаимодействие конструкционных металлов с расплавами солей и щелочей. В кн. Влияние рабочих сред на свойства материалов, в. 3. К., 1964 В ы в а л ь И. П. [и др.]. Интенсификация процесса диффузионного насыщения железа нри воздействии циклической деформации. Физико-химическая механика материалов , 1967, М 6 Вывал ь И. П., Попович В. В. О влиянии циклической деформации на скорость диффузии при азотировании быстрорежущей стали. Физико-химическая механика материалов , 197и, М 1. И. П. Вывали, [c.552]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]


Смотреть страницы где упоминается термин Железо влияние pH среды на скорость: [c.201]    [c.16]    [c.77]    [c.128]    [c.790]    [c.134]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.24 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость влияние среды



© 2025 chem21.info Реклама на сайте